A two-dimensional analytical subthreshold behavior model for junctionless dual-material cylindrical surrounding- gate (JLDMCSG) metal-oxide-semiconductor field-effect transistors (MOSFETs) is proposed. It is deriv...A two-dimensional analytical subthreshold behavior model for junctionless dual-material cylindrical surrounding- gate (JLDMCSG) metal-oxide-semiconductor field-effect transistors (MOSFETs) is proposed. It is derived by solving the two-dimensional Poisson's equation in two continuous cylindrical regions with any simplifying assumption. Using this analytical model, the subthreshold characteristics of JLDMCSG MOSFETs are investigated in terms of channel electro- static potential, horizontal electric field, and subthreshold current. Compared to junctionless single-material cylindrical surrounding-gate MOSFETs, JLDMCSG MOSFETs can effectively suppress short-channel effects and simultaneously im- prove carrier transport efficiency. It is found that the subthreshold current of JLDMCSG MOSFETs can be significantly reduced by adopting both a thin oxide and thin silicon channel. The accuracy of the analytical model is verified by its good agreement with the three-dimensional numerical simulator ISE TCAD.展开更多
A Ⅲ-Ⅴ heterojunction tunneling field-effect transistor(TFET) can enhance the on-state current effectively,and GaAsSb/InGaAs heterojunction exhibits better performance with the adjustable band alignment by modulating...A Ⅲ-Ⅴ heterojunction tunneling field-effect transistor(TFET) can enhance the on-state current effectively,and GaAsSb/InGaAs heterojunction exhibits better performance with the adjustable band alignment by modulating the alloy composition.In this paper,the performance of the cylindrical surrounding-gate GaAsSb/InGaAs heterojunction TFET with gate-drain underlap is investigated by numerical simulation.We validate that reducing drain doping concentration and increasing gate-drain underlap could be effective ways to reduce the off-state current and subthreshold swing(SS),while increasing source doping concentration and adjusting the composition of GaAsSbInGaAs can improve the on-state current.In addition,the resonant TFET based on GaAsSb/InGaAs is also studied,and the result shows that the minimum and average of SS reach 11 mV/decade and 20 mV/decade for five decades of drain current,respectively,and is much superior to the conventional TFET.展开更多
A continuous surface potential versus voltage equation is proposed and then its solution is further discussed for a long channel intrinsic surrounding-gate(SRG) MOSFET from the accumulation to strong inversion regio...A continuous surface potential versus voltage equation is proposed and then its solution is further discussed for a long channel intrinsic surrounding-gate(SRG) MOSFET from the accumulation to strong inversion region.The original equation is derived from the exact solution of a simplified Poisson equation and then the empirical correction is performed from the mathematical condition required by the continuity of the solution,which results in a continuous surface potential versus voltage equation,allowing the surface potential and the related derivatives to be described by an analytic solution from the accumulation to strong inversion region and from linear to the saturation region accurately and continuously.From these results,the dependences of surface potential and centric potential characteristics on device geometry are analyzed and the results are also verified with the 3-D numerical simulation from the aspect of accuracy and continuity tests.展开更多
Using an exact solution of two-dimensional Poisson's equation in cylindrical coordinates,a new analytical model comprising electrostatic potential,electric field,threshold voltage and subthreshold current for halodop...Using an exact solution of two-dimensional Poisson's equation in cylindrical coordinates,a new analytical model comprising electrostatic potential,electric field,threshold voltage and subthreshold current for halodoped surrounding-gate MOSFETs is developed.It is found that a new analytical model exhibits higher accuracy than that based on parabolic potential approximation when the thickness of the silicon channel is much larger than that of the oxide.It is also revealed that moderate halo doping concentration,thin gate oxide thickness and small silicon channel radius are needed to improve the threshold voltage characteristics.The derived analytical model agrees well with a three-dimensional numerical device simulator ISE.展开更多
A surface potential based non-charge-sheet core model for cylindrical undoped surrounding-gate (SRG) MOSFETs is presented. It is based on the exact surface potential solution of Poisson's equation and Pao-Sah's du...A surface potential based non-charge-sheet core model for cylindrical undoped surrounding-gate (SRG) MOSFETs is presented. It is based on the exact surface potential solution of Poisson's equation and Pao-Sah's dual integral without the charge-sheet approximation, allowing the SRG-MOSFET characteristics to be adequately described by a single set of the analytic drain current equation in terms of the surface potential evaluated at the source and drain ends. It is valid for all operation regions and traces the transition from the linear to saturation and from the sub-threshold to strong inversion region without fitting-parameters, and verified by the 3-D numerical simulation.展开更多
Based on the quasi-two-dimensional (2D) solution of Poisson's equation in two continuous channel regions, an an- alytical threshold voltage model for short-channel junctionless dual-material cylindrical surrounding...Based on the quasi-two-dimensional (2D) solution of Poisson's equation in two continuous channel regions, an an- alytical threshold voltage model for short-channel junctionless dual-material cylindrical surrounding-gate (JLDMCSG) metal-oxide-semiconductor field-effect transistor (MOSFET) is developed. Using the derived model, channel potential dis- tribu6o~, h~riz~atal electrical ~eld distributign, a~d threshold v~ltage roll-off of ~LDMCSG MOSFET are in,instigated. Compared with junctionless single-material CSG (JLSGCSG) MOSFET~ JLDMCSG MOSFET can effectively suppress short-channel effects and simultaneously improve carrier transport efficiency. It is also revealed that threshold voltage roll- off of JLDMCSG can be significantly reduced by adopting both a small oxide thickness and a small silicon channel radius. The model is verified by comparing its calculated results with that obtained from three-dimensional (3D) numerical device simulator ISE.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61204092 and 61076101)the Fundamental Research Funds for the Central Universities of Ministry of Education of China(Grant No.K50511250001)
文摘A two-dimensional analytical subthreshold behavior model for junctionless dual-material cylindrical surrounding- gate (JLDMCSG) metal-oxide-semiconductor field-effect transistors (MOSFETs) is proposed. It is derived by solving the two-dimensional Poisson's equation in two continuous cylindrical regions with any simplifying assumption. Using this analytical model, the subthreshold characteristics of JLDMCSG MOSFETs are investigated in terms of channel electro- static potential, horizontal electric field, and subthreshold current. Compared to junctionless single-material cylindrical surrounding-gate MOSFETs, JLDMCSG MOSFETs can effectively suppress short-channel effects and simultaneously im- prove carrier transport efficiency. It is found that the subthreshold current of JLDMCSG MOSFETs can be significantly reduced by adopting both a thin oxide and thin silicon channel. The accuracy of the analytical model is verified by its good agreement with the three-dimensional numerical simulator ISE TCAD.
基金supported by the National Natural Science Foundation of China(Grant Nos.61176038 and 61474093)the Science and Technology Planning Project of Guangdong Province,China(Grant No.2015A010103002)the Technology Development Program of Shaanxi Province,China(Grant No.2016GY-075)
文摘A Ⅲ-Ⅴ heterojunction tunneling field-effect transistor(TFET) can enhance the on-state current effectively,and GaAsSb/InGaAs heterojunction exhibits better performance with the adjustable band alignment by modulating the alloy composition.In this paper,the performance of the cylindrical surrounding-gate GaAsSb/InGaAs heterojunction TFET with gate-drain underlap is investigated by numerical simulation.We validate that reducing drain doping concentration and increasing gate-drain underlap could be effective ways to reduce the off-state current and subthreshold swing(SS),while increasing source doping concentration and adjusting the composition of GaAsSbInGaAs can improve the on-state current.In addition,the resonant TFET based on GaAsSb/InGaAs is also studied,and the result shows that the minimum and average of SS reach 11 mV/decade and 20 mV/decade for five decades of drain current,respectively,and is much superior to the conventional TFET.
基金Project supported by the National Natural Science Foundation of China(No.60876027)the Competitive Earmarked Program from the Research Grant Council of Hong Kong SAR,China(No.HKUST6289/04E)+1 种基金the Industry,Education and Academy Cooperation Program of Guangdong Province,China(No.2009B090300318)the Fundamental Research Project of Shenzhen Science & Technology Foundation,China(No.JC200903160353A).
文摘A continuous surface potential versus voltage equation is proposed and then its solution is further discussed for a long channel intrinsic surrounding-gate(SRG) MOSFET from the accumulation to strong inversion region.The original equation is derived from the exact solution of a simplified Poisson equation and then the empirical correction is performed from the mathematical condition required by the continuity of the solution,which results in a continuous surface potential versus voltage equation,allowing the surface potential and the related derivatives to be described by an analytic solution from the accumulation to strong inversion region and from linear to the saturation region accurately and continuously.From these results,the dependences of surface potential and centric potential characteristics on device geometry are analyzed and the results are also verified with the 3-D numerical simulation from the aspect of accuracy and continuity tests.
基金Project supported by the National Natural Science Foundation of China(No.61076101)
文摘Using an exact solution of two-dimensional Poisson's equation in cylindrical coordinates,a new analytical model comprising electrostatic potential,electric field,threshold voltage and subthreshold current for halodoped surrounding-gate MOSFETs is developed.It is found that a new analytical model exhibits higher accuracy than that based on parabolic potential approximation when the thickness of the silicon channel is much larger than that of the oxide.It is also revealed that moderate halo doping concentration,thin gate oxide thickness and small silicon channel radius are needed to improve the threshold voltage characteristics.The derived analytical model agrees well with a three-dimensional numerical device simulator ISE.
基金supported by the National Natural Science Foundation of China (No. 60876027)a Competitive Earmarked Grant from theResearch Grant Council of Hong Kong SAR (No. HKUST6289/04E)the International Joint Research Program from Japan (No.NEDOO5/06.EG01).
文摘A surface potential based non-charge-sheet core model for cylindrical undoped surrounding-gate (SRG) MOSFETs is presented. It is based on the exact surface potential solution of Poisson's equation and Pao-Sah's dual integral without the charge-sheet approximation, allowing the SRG-MOSFET characteristics to be adequately described by a single set of the analytic drain current equation in terms of the surface potential evaluated at the source and drain ends. It is valid for all operation regions and traces the transition from the linear to saturation and from the sub-threshold to strong inversion region without fitting-parameters, and verified by the 3-D numerical simulation.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 61204092 and 61076101) and the Fundamental Research Funds for the Central Universities of Ministry of Education of China (Grant No. K50511250001 ).
文摘Based on the quasi-two-dimensional (2D) solution of Poisson's equation in two continuous channel regions, an an- alytical threshold voltage model for short-channel junctionless dual-material cylindrical surrounding-gate (JLDMCSG) metal-oxide-semiconductor field-effect transistor (MOSFET) is developed. Using the derived model, channel potential dis- tribu6o~, h~riz~atal electrical ~eld distributign, a~d threshold v~ltage roll-off of ~LDMCSG MOSFET are in,instigated. Compared with junctionless single-material CSG (JLSGCSG) MOSFET~ JLDMCSG MOSFET can effectively suppress short-channel effects and simultaneously improve carrier transport efficiency. It is also revealed that threshold voltage roll- off of JLDMCSG can be significantly reduced by adopting both a small oxide thickness and a small silicon channel radius. The model is verified by comparing its calculated results with that obtained from three-dimensional (3D) numerical device simulator ISE.