The Traveling Salesman Problem(TSP)is a well-known NP-Hard problem,particularly challenging for conventional solving methods due to the curse of dimensionality in high-dimensional instances.This paper proposes a novel...The Traveling Salesman Problem(TSP)is a well-known NP-Hard problem,particularly challenging for conventional solving methods due to the curse of dimensionality in high-dimensional instances.This paper proposes a novel Double-stage Surrogate-assisted Pigeon-inspired Optimization algorithm(DOSA-PIO)to address this issue.DOSA-PIO integrates the ordering points to identify the clustering structure method for data clustering and employs a local surrogate model to assist the evolution of the Pigeon-inspired Optimization(PIO)algorithm.This combination enhances the algorithm’s ability to explore the solution space and converge to optimal solutions more effectively.Additionally,two novel approaches are introduced to extend the generalizability of continuous algorithms for solving discrete problems,enabling the adaptation of continuous optimization techniques to the discrete nature of TSP.Extensive experiments using benchmark functions and high-dimensional TSP instances demonstrate that DOSA-PIO significantly outperforms comparative algorithms in various dimensions(10D,20D,30D,50D,and 100D).The proposed algorithm provides superior solutions compared to traditional methods,highlighting its potential for solving high-dimensional TSPs.By leveraging advanced data clustering techniques and surrogate-assisted optimization,DOSA-PIO offers an effective solution for high-dimensional TSP instances,with experimental results confirming its superior performance and potential for practical applications in complex optimization problems.展开更多
In recent years,the development of new types of nuclear reactors,such as transportable,marine,and space reactors,has presented new challenges for the optimization of reactor radiation-shielding design.Shielding struct...In recent years,the development of new types of nuclear reactors,such as transportable,marine,and space reactors,has presented new challenges for the optimization of reactor radiation-shielding design.Shielding structures typically need to be lightweight,miniaturized,and radiation-protected,which is a multi-parameter and multi-objective optimization problem.The conventional multi-objective(two or three objectives)optimization method for radiation-shielding design exhibits limitations for a number of optimization objectives and variable parameters,as well as a deficiency in achieving a global optimal solution,thereby failing to meet the requirements of shielding optimization for newly developed reactors.In this study,genetic and artificial bee-colony algorithms are combined with a reference-point-selection strategy and applied to the many-objective(having four or more objectives)optimal design of reactor radiation shielding.To validate the reliability of the methods,an optimization simulation is conducted on three-dimensional shielding structures and another complicated shielding-optimization problem.The numerical results demonstrate that the proposed algorithms outperform conventional shielding-design methods in terms of optimization performance,and they exhibit their reliability in practical engineering problems.The many-objective optimization algorithms developed in this study are proven to efficiently and consistently search for Pareto-front shielding schemes.Therefore,the algorithms proposed in this study offer novel insights into improving the shielding-design performance and shielding quality of new reactor types.展开更多
In recent years,feature selection(FS)optimization of high-dimensional gene expression data has become one of the most promising approaches for cancer prediction and classification.This work reviews FS and classificati...In recent years,feature selection(FS)optimization of high-dimensional gene expression data has become one of the most promising approaches for cancer prediction and classification.This work reviews FS and classification methods that utilize evolutionary algorithms(EAs)for gene expression profiles in cancer or medical applications based on research motivations,challenges,and recommendations.Relevant studies were retrieved from four major academic databases-IEEE,Scopus,Springer,and ScienceDirect-using the keywords‘cancer classification’,‘optimization’,‘FS’,and‘gene expression profile’.A total of 67 papers were finally selected with key advancements identified as follows:(1)The majority of papers(44.8%)focused on developing algorithms and models for FS and classification.(2)The second category encompassed studies on biomarker identification by EAs,including 20 papers(30%).(3)The third category comprised works that applied FS to cancer data for decision support system purposes,addressing high-dimensional data and the formulation of chromosome length.These studies accounted for 12%of the total number of studies.(4)The remaining three papers(4.5%)were reviews and surveys focusing on models and developments in prediction and classification optimization for cancer classification under current technical conditions.This review highlights the importance of optimizing FS in EAs to manage high-dimensional data effectively.Despite recent advancements,significant limitations remain:the dynamic formulation of chromosome length remains an underexplored area.Thus,further research is needed on dynamic-length chromosome techniques for more sophisticated biomarker gene selection techniques.The findings suggest that further advancements in dynamic chromosome length formulations and adaptive algorithms could enhance cancer classification accuracy and efficiency.展开更多
When dealing with expensive multiobjective optimization problems,majority of existing surrogate-assisted evolutionary algorithms(SAEAs)generate solutions in decision space and screen candidate solutions mostly by usin...When dealing with expensive multiobjective optimization problems,majority of existing surrogate-assisted evolutionary algorithms(SAEAs)generate solutions in decision space and screen candidate solutions mostly by using designed surrogate models.The generated solutions exhibit excessive randomness,which tends to reduce the likelihood of generating good-quality solutions and cause a long evolution to the optima.To improve SAEAs greatly,this work proposes an evolutionary algorithm based on surrogate and inverse surrogate models by 1)Employing a surrogate model in lieu of expensive(true)function evaluations;and 2)Proposing and using an inverse surrogate model to generate new solutions.By using the same training data but with its inputs and outputs being reversed,the latter is simple to train.It is then used to generate new vectors in objective space,which are mapped into decision space to obtain their corresponding solutions.Using a particular example,this work shows its advantages over existing SAEAs.The results of comparing it with state-of-the-art algorithms on expensive optimization problems show that it is highly competitive in both solution performance and efficiency.展开更多
Flexible job shop scheduling problems(FJSP)have received much attention from academia and industry for many years.Due to their exponential complexity,swarm intelligence(SI)and evolutionary algorithms(EA)are developed,...Flexible job shop scheduling problems(FJSP)have received much attention from academia and industry for many years.Due to their exponential complexity,swarm intelligence(SI)and evolutionary algorithms(EA)are developed,employed and improved for solving them.More than 60%of the publications are related to SI and EA.This paper intents to give a comprehensive literature review of SI and EA for solving FJSP.First,the mathematical model of FJSP is presented and the constraints in applications are summarized.Then,the encoding and decoding strategies for connecting the problem and algorithms are reviewed.The strategies for initializing algorithms?population and local search operators for improving convergence performance are summarized.Next,one classical hybrid genetic algorithm(GA)and one newest imperialist competitive algorithm(ICA)with variables neighborhood search(VNS)for solving FJSP are presented.Finally,we summarize,discus and analyze the status of SI and EA for solving FJSP and give insight into future research directions.展开更多
Computational time complexity analyzes of evolutionary algorithms (EAs) have been performed since the mid-nineties. The first results were related to very simple algorithms, such as the (1+1)-EA, on toy problems....Computational time complexity analyzes of evolutionary algorithms (EAs) have been performed since the mid-nineties. The first results were related to very simple algorithms, such as the (1+1)-EA, on toy problems. These efforts produced a deeper understanding of how EAs perform on different kinds of fitness landscapes and general mathematical tools that may be extended to the analysis of more complicated EAs on more realistic problems. In fact, in recent years, it has been possible to analyze the (1+1)-EA on combinatorial optimization problems with practical applications and more realistic population-based EAs on structured toy problems. This paper presents a survey of the results obtained in the last decade along these two research lines. The most common mathematical techniques are introduced, the basic ideas behind them are discussed and their elective applications are highlighted. Solved problems that were still open are enumerated as are those still awaiting for a solution. New questions and problems arisen in the meantime are also considered.展开更多
Evolutionary algorithms have been shown to be very successful in solving multi-objective optimization problems(MOPs).However,their performance often deteriorates when solving MOPs with irregular Pareto fronts.To remed...Evolutionary algorithms have been shown to be very successful in solving multi-objective optimization problems(MOPs).However,their performance often deteriorates when solving MOPs with irregular Pareto fronts.To remedy this issue,a large body of research has been performed in recent years and many new algorithms have been proposed.This paper provides a comprehensive survey of the research on MOPs with irregular Pareto fronts.We start with a brief introduction to the basic concepts,followed by a summary of the benchmark test problems with irregular problems,an analysis of the causes of the irregularity,and real-world optimization problems with irregular Pareto fronts.Then,a taxonomy of the existing methodologies for handling irregular problems is given and representative algorithms are reviewed with a discussion of their strengths and weaknesses.Finally,open challenges are pointed out and a few promising future directions are suggested.展开更多
Application of the multiobjective evolutionary algorithms to the aerodynamicoptimization design of a centrifugal impeller is presented. The aerodynamic performance of acentrifugal impeller is evaluated by using the th...Application of the multiobjective evolutionary algorithms to the aerodynamicoptimization design of a centrifugal impeller is presented. The aerodynamic performance of acentrifugal impeller is evaluated by using the three-dimensional Navier-Stokes solutions. Thetypical centrifugal impeller is redesigned for maximization of the pressure rise and blade load andminimization of the rotational total pressure loss at the given flow conditions. The Bezier curvesare used to parameterize the three-dimensional impeller blade shape. The present method obtains manyreasonable Pareto optimal designs that outperform the original centrifugal impeller. Detailedobservation of the certain Pareto optimal design demonstrates the feasibility of the presentmultiobjective optimization method tool for turbomachinery design.展开更多
Steady-state non-dominated sorting genetic algorithm (SNSGA), a new form of multi-objective genetic algorithm, is implemented by combining the steady-state idea in steady-state genetic algorithms (SSGA) and the fitnes...Steady-state non-dominated sorting genetic algorithm (SNSGA), a new form of multi-objective genetic algorithm, is implemented by combining the steady-state idea in steady-state genetic algorithms (SSGA) and the fitness assignment strategy of non-dominated sorting genetic algorithm (NSGA). The fitness assignment strategy is improved and a new self-adjustment scheme of is proposed. This algorithm is proved to be very efficient both computationally and in terms of the quality of the Pareto fronts produced with five test problems including GA difficult problem and GA deceptive one. Finally, SNSGA is introduced to solve multi-objective mixed integer linear programming (MILP) and mixed integer non-linear programming (MINLP) problems in process synthesis.展开更多
In this paper we discuss the paradigm of evolutionary algorithms (EAs). We argue about the need for new heuristics in real-world problem solving, discussing reasons why some problems are difficult to solve. After intr...In this paper we discuss the paradigm of evolutionary algorithms (EAs). We argue about the need for new heuristics in real-world problem solving, discussing reasons why some problems are difficult to solve. After introducing the main concepts of evolutionary algorithms, we concentrate on two issues: (1) self-adaptation of the parameters of EA, and (2) handling constraints.展开更多
A methodology for the selection of the optimal land uses of the reclamation of mined areas is proposed. It takes into consideration several multi-nature criteria and constraints, including spatial constrains related t...A methodology for the selection of the optimal land uses of the reclamation of mined areas is proposed. It takes into consideration several multi-nature criteria and constraints, including spatial constrains related to the permissible land uses in certain parts of the mined area. The methodology combines desirability functions and evolution searching algorithms for selection of the optimal reclamation scheme. Its application for the reclamation planning of the Amynteon lignite surface mine in Greece indicated that it handles effectively spatial and non-spatial constraints and incorporates easily the decision-makers preferences regarding the reclamation strategy in the optimization procedure.展开更多
Immune evolutionary algorithms with domain knowledge were presented to solve the problem of simultaneous localization and mapping for a mobile robot in unknown environments. Two operators with domain knowledge were de...Immune evolutionary algorithms with domain knowledge were presented to solve the problem of simultaneous localization and mapping for a mobile robot in unknown environments. Two operators with domain knowledge were designed in algorithms, where the feature of parallel line segments without the problem of data association was used to construct a vaccination operator, and the characters of convex vertices in polygonal obstacle were extended to develop a pulling operator of key point grid. The experimental results of a real mobile robot show that the computational expensiveness of algorithms designed is less than other evolutionary algorithms for simultaneous localization and mapping and the maps obtained are very accurate. Because immune evolutionary algorithms with domain knowledge have some advantages, the convergence rate of designed algorithms is about 44% higher than those of other algorithms.展开更多
Based on immune network regulatory mechanism, a new adaptive immune evolutionary algorithm (AIEA) is proposed to improve the performance of genetic algorithms (GA) in this paper. AIEA adopts novel selection operation ...Based on immune network regulatory mechanism, a new adaptive immune evolutionary algorithm (AIEA) is proposed to improve the performance of genetic algorithms (GA) in this paper. AIEA adopts novel selection operation according to the stimulation level of each antibody. A memory base for good antibodies is devised simultaneously to raise the convergent rapidity of the algorithm and adaptive adjusting strategy of antibody population is used for preventing the loss of the population adversity. The experiments show AIEA has better convergence performance than standard genetic algorithm and is capable of maintaining the adversity of the population and solving function optimization problems in an efficient and reliable way.展开更多
Evolutionary computation is a kind of adaptive non--numerical computation method which is designed tosimulate evolution of nature. In this paper, evolutionary algorithm behavior is described in terms of theconstructio...Evolutionary computation is a kind of adaptive non--numerical computation method which is designed tosimulate evolution of nature. In this paper, evolutionary algorithm behavior is described in terms of theconstruction and evolution of the sampling distributions over the space of candidate solutions. Iterativeconstruction of the sampling distributions is based on the idea of the global random search of generationalmethods. Under this frame, propontional selection is characterized as a gobal search operator, and recombination is characerized as the search process that exploits similarities. It is shown-that by properly constraining the search breadth of recombination operators, weak convergence of evolutionary algorithms to aglobal optimum can be ensured.展开更多
Multi-objective Evolutionary Algorithm (MOEA) is becoming a hot research area and quite a few aspects of MOEAs have been studied and discussed. However there are still few literatures discussing the roles of search an...Multi-objective Evolutionary Algorithm (MOEA) is becoming a hot research area and quite a few aspects of MOEAs have been studied and discussed. However there are still few literatures discussing the roles of search and selection operators in MOEAs. This paper studied their roles by solving a case of discrete Multi-objective Optimization Problem (MOP): Multi-objective TSP with a new MOEA. In the new MOEA, We adopt an efficient search operator, which has the properties of both crossover and mutation, to generate the new individuals and chose two selection operators: Family Competition and Population Competition with probabilities to realize selection. The simulation experiments showed that this new MOEA could get good uniform solutions representing the Pareto Front and outperformed SPEA in almost every simulation run on this problem. Furthermore, we analyzed its convergence property using finite Markov chain and proved that it could converge to Pareto Front with probability 1. We also find that the convergence property of MOEAs has much relationship with search and selection operators.展开更多
Multi-objective evolutionary algorithms(MOEAs) are typically used to optimize two or three objectives in the accelerator field and perform well. However, the performance of these algorithms may severely deteriorate wh...Multi-objective evolutionary algorithms(MOEAs) are typically used to optimize two or three objectives in the accelerator field and perform well. However, the performance of these algorithms may severely deteriorate when the optimization objectives for an accelerator are equal to or greater than four. Recently, many-objective evolutionary algorithms(MaOEAs)that can solve problems with four or more optimization objectives have received extensive attention. In this study, two diffraction-limited storage ring(DLSR) lattices of the Extremely Brilliant Source(ESRF-EBS) type with different energies were designed and optimized using three MaOEAs and a widely used MOEA. The initial population was found to have a significant impact on the performance of the algorithms and was carefully studied. The performances of the four algorithms were compared, and the results demonstrated that the grid-based evolutionary algorithm(GrEA) had the best performance.Ma OEAs were applied in many-objective optimization of DLSR lattices for the first time, and lattices with natural emittances of 116 and 23 pm·rad were obtained at energies of 2 and 6 GeV, respectively, both with reasonable dynamic aperture and local momentum aperture(LMA). This work provides a valuable reference for future many-objective optimization of DLSRs.展开更多
Technical debt(TD)happens when project teams carry out technical decisions in favor of a short-term goal(s)in their projects,whether deliberately or unknowingly.TD must be properly managed to guarantee that its negati...Technical debt(TD)happens when project teams carry out technical decisions in favor of a short-term goal(s)in their projects,whether deliberately or unknowingly.TD must be properly managed to guarantee that its negative implications do not outweigh its advantages.A lot of research has been conducted to show that TD has evolved into a common problem with considerable financial burden.Test technical debt is the technical debt aspect of testing(or test debt).Test debt is a relatively new concept that has piqued the curiosity of the software industry in recent years.In this article,we assume that the organization selects the testing artifacts at the start of every sprint.Implementing the latest features in consideration of expected business value and repaying technical debt are among candidate tasks in terms of the testing process(test cases increments).To gain the maximum benefit for the organization in terms of software testing optimization,there is a need to select the artifacts(i.e.,test cases)with maximum feature coverage within the available resources.The management of testing optimization for large projects is complicated and can also be treated as a multi-objective problem that entails a trade-off between the agile software’s short-term and long-term value.In this article,we implement a multi-objective indicatorbased evolutionary algorithm(IBEA)for fixing such optimization issues.The capability of the algorithm is evidenced by adding it to a real case study of a university registration process.展开更多
The study of optimization methods for reliability–redundancy allocation problems is a constantly changing field.New algorithms are continually being designed on the basis of observations of nature,wildlife,and humani...The study of optimization methods for reliability–redundancy allocation problems is a constantly changing field.New algorithms are continually being designed on the basis of observations of nature,wildlife,and humanity.In this paper,we review eight major evolutionary algorithms that emulate the behavior of civilization,ants,bees,fishes,and birds(i.e.,genetic algorithms,bee colony optimization,simulated annealing,particle swarm optimization,biogeography-based optimization,artificial immune system optimization,cuckoo algorithm and imperialist competitive algorithm).We evaluate the mathematical formulations and pseudo-codes of each algorithm and discuss how these apply to reliability–redundancy allocation problems.Results from a literature survey show the best results found for series,series–parallel,bridge,and applied case problems(e.g.,overspeeding gas turbine benchmark).Review of literature from recent years indicates an extensive improvement in the algorithm reliability performance.However,this improvement has been difficult to achieve for high-reliability applications.Insights and future challenges in reliability–redundancy allocation problems optimization are also discussed in this paper.展开更多
In this paper, the authors show that the general linear second order ordinary Differential Equation can be formulated as an optimization problem and that evolutionary algorithms for solving optimization problems can a...In this paper, the authors show that the general linear second order ordinary Differential Equation can be formulated as an optimization problem and that evolutionary algorithms for solving optimization problems can also be adapted for solving the formulated problem. The authors propose a polynomial based scheme for achieving the above objectives. The coefficients of the proposed scheme are approximated by an evolutionary algorithm known as Differential Evolution (DE). Numerical examples with good results show the accuracy of the proposed method compared with some existing methods.展开更多
A software defined networking(SDN) system has a logically centralized control plane that maintains a global network view and enables network-wide management, optimization, and innovation. Network-wide management and o...A software defined networking(SDN) system has a logically centralized control plane that maintains a global network view and enables network-wide management, optimization, and innovation. Network-wide management and optimization problems are typicallyvery complex with a huge solution space, large number of variables, and multiple objectives. Heuristic algorithms can solve theseproblems in an acceptable time but are usually limited to some particular problem circumstances. On the other hand, evolutionaryalgorithms(EAs), which are general stochastic algorithms inspired by the natural biological evolution and/or social behavior of species, can theoretically be used to solve any complex optimization problems including those found in SDNs. This paper reviewsfour types of EAs that are widely applied in current SDNs: Genetic Algorithms(GAs), Particle Swarm Optimization(PSO), Ant Colony Optimization(ACO), and Simulated Annealing(SA) by discussing their techniques, summarizing their representative applications, and highlighting their issues and future works. To the best of our knowledge, our work is the first that compares the tech-niques and categorizes the applications of these four EAs in SDNs.展开更多
基金funded by National Natural Science Foundation of China(Project No.52072314,52172321,52102391)China Shenhua Energy Co.,Ltd.,Science and Technology Program(Project No.GJNY-22-7)+2 种基金China State Railway Group Co.,Ltd.Science and Technology Program(P2022×013,K2023×030)Key science and technology projects in the transportation industry of the Ministry of Transport(2022-ZD7-131)the fundamental research funds for the central universities(2682022ZTPY068).
文摘The Traveling Salesman Problem(TSP)is a well-known NP-Hard problem,particularly challenging for conventional solving methods due to the curse of dimensionality in high-dimensional instances.This paper proposes a novel Double-stage Surrogate-assisted Pigeon-inspired Optimization algorithm(DOSA-PIO)to address this issue.DOSA-PIO integrates the ordering points to identify the clustering structure method for data clustering and employs a local surrogate model to assist the evolution of the Pigeon-inspired Optimization(PIO)algorithm.This combination enhances the algorithm’s ability to explore the solution space and converge to optimal solutions more effectively.Additionally,two novel approaches are introduced to extend the generalizability of continuous algorithms for solving discrete problems,enabling the adaptation of continuous optimization techniques to the discrete nature of TSP.Extensive experiments using benchmark functions and high-dimensional TSP instances demonstrate that DOSA-PIO significantly outperforms comparative algorithms in various dimensions(10D,20D,30D,50D,and 100D).The proposed algorithm provides superior solutions compared to traditional methods,highlighting its potential for solving high-dimensional TSPs.By leveraging advanced data clustering techniques and surrogate-assisted optimization,DOSA-PIO offers an effective solution for high-dimensional TSP instances,with experimental results confirming its superior performance and potential for practical applications in complex optimization problems.
基金supported by the National Natural Science Foundation of China(Nos.12475174 and 12175101)Yue Lu Shan Center Industrial Innovation(No.2024YCII0108)。
文摘In recent years,the development of new types of nuclear reactors,such as transportable,marine,and space reactors,has presented new challenges for the optimization of reactor radiation-shielding design.Shielding structures typically need to be lightweight,miniaturized,and radiation-protected,which is a multi-parameter and multi-objective optimization problem.The conventional multi-objective(two or three objectives)optimization method for radiation-shielding design exhibits limitations for a number of optimization objectives and variable parameters,as well as a deficiency in achieving a global optimal solution,thereby failing to meet the requirements of shielding optimization for newly developed reactors.In this study,genetic and artificial bee-colony algorithms are combined with a reference-point-selection strategy and applied to the many-objective(having four or more objectives)optimal design of reactor radiation shielding.To validate the reliability of the methods,an optimization simulation is conducted on three-dimensional shielding structures and another complicated shielding-optimization problem.The numerical results demonstrate that the proposed algorithms outperform conventional shielding-design methods in terms of optimization performance,and they exhibit their reliability in practical engineering problems.The many-objective optimization algorithms developed in this study are proven to efficiently and consistently search for Pareto-front shielding schemes.Therefore,the algorithms proposed in this study offer novel insights into improving the shielding-design performance and shielding quality of new reactor types.
基金funded by the Ministry of Higher Education of Malaysia,grant number FRGS/1/2022/ICT02/UPSI/02/1.
文摘In recent years,feature selection(FS)optimization of high-dimensional gene expression data has become one of the most promising approaches for cancer prediction and classification.This work reviews FS and classification methods that utilize evolutionary algorithms(EAs)for gene expression profiles in cancer or medical applications based on research motivations,challenges,and recommendations.Relevant studies were retrieved from four major academic databases-IEEE,Scopus,Springer,and ScienceDirect-using the keywords‘cancer classification’,‘optimization’,‘FS’,and‘gene expression profile’.A total of 67 papers were finally selected with key advancements identified as follows:(1)The majority of papers(44.8%)focused on developing algorithms and models for FS and classification.(2)The second category encompassed studies on biomarker identification by EAs,including 20 papers(30%).(3)The third category comprised works that applied FS to cancer data for decision support system purposes,addressing high-dimensional data and the formulation of chromosome length.These studies accounted for 12%of the total number of studies.(4)The remaining three papers(4.5%)were reviews and surveys focusing on models and developments in prediction and classification optimization for cancer classification under current technical conditions.This review highlights the importance of optimizing FS in EAs to manage high-dimensional data effectively.Despite recent advancements,significant limitations remain:the dynamic formulation of chromosome length remains an underexplored area.Thus,further research is needed on dynamic-length chromosome techniques for more sophisticated biomarker gene selection techniques.The findings suggest that further advancements in dynamic chromosome length formulations and adaptive algorithms could enhance cancer classification accuracy and efficiency.
基金supported in part by the National Natural Science Foundation of China(51775385)the Natural Science Foundation of Shanghai(23ZR1466000)+2 种基金the Shanghai Industrial Collaborative Science and Technology Innovation Project(2021-cyxt2-kj10)the Innovation Program of Shanghai Municipal Education Commission(202101070007E00098)Fundo para o Desenvolvimento das Ciencias e da Tecnologia(FDCT)(0147/2024/AFJ).
文摘When dealing with expensive multiobjective optimization problems,majority of existing surrogate-assisted evolutionary algorithms(SAEAs)generate solutions in decision space and screen candidate solutions mostly by using designed surrogate models.The generated solutions exhibit excessive randomness,which tends to reduce the likelihood of generating good-quality solutions and cause a long evolution to the optima.To improve SAEAs greatly,this work proposes an evolutionary algorithm based on surrogate and inverse surrogate models by 1)Employing a surrogate model in lieu of expensive(true)function evaluations;and 2)Proposing and using an inverse surrogate model to generate new solutions.By using the same training data but with its inputs and outputs being reversed,the latter is simple to train.It is then used to generate new vectors in objective space,which are mapped into decision space to obtain their corresponding solutions.Using a particular example,this work shows its advantages over existing SAEAs.The results of comparing it with state-of-the-art algorithms on expensive optimization problems show that it is highly competitive in both solution performance and efficiency.
基金supported in part by the National Natural Science Foundation of China(61603169,61773192,61803192)in part by the funding from Shandong Provincial Key Laboratory for Novel Distributed Computer Software Technologyin part by Singapore National Research Foundation(NRF-RSS2016-004)
文摘Flexible job shop scheduling problems(FJSP)have received much attention from academia and industry for many years.Due to their exponential complexity,swarm intelligence(SI)and evolutionary algorithms(EA)are developed,employed and improved for solving them.More than 60%of the publications are related to SI and EA.This paper intents to give a comprehensive literature review of SI and EA for solving FJSP.First,the mathematical model of FJSP is presented and the constraints in applications are summarized.Then,the encoding and decoding strategies for connecting the problem and algorithms are reviewed.The strategies for initializing algorithms?population and local search operators for improving convergence performance are summarized.Next,one classical hybrid genetic algorithm(GA)and one newest imperialist competitive algorithm(ICA)with variables neighborhood search(VNS)for solving FJSP are presented.Finally,we summarize,discus and analyze the status of SI and EA for solving FJSP and give insight into future research directions.
基金This work was supported by an EPSRC grant (No.EP/C520696/1).
文摘Computational time complexity analyzes of evolutionary algorithms (EAs) have been performed since the mid-nineties. The first results were related to very simple algorithms, such as the (1+1)-EA, on toy problems. These efforts produced a deeper understanding of how EAs perform on different kinds of fitness landscapes and general mathematical tools that may be extended to the analysis of more complicated EAs on more realistic problems. In fact, in recent years, it has been possible to analyze the (1+1)-EA on combinatorial optimization problems with practical applications and more realistic population-based EAs on structured toy problems. This paper presents a survey of the results obtained in the last decade along these two research lines. The most common mathematical techniques are introduced, the basic ideas behind them are discussed and their elective applications are highlighted. Solved problems that were still open are enumerated as are those still awaiting for a solution. New questions and problems arisen in the meantime are also considered.
基金supported in part by the National Natural Science Foundation of China(61806051,61903078)Natural Science Foundation of Shanghai(20ZR1400400)+2 种基金Agricultural Project of the Shanghai Committee of Science and Technology(16391902800)the Fundamental Research Funds for the Central Universities(2232020D-48)the Project of the Humanities and Social Sciences on Young Fund of the Ministry of Education in China(Research on swarm intelligence collaborative robust optimization scheduling for high-dimensional dynamic decisionmaking system(20YJCZH052))。
文摘Evolutionary algorithms have been shown to be very successful in solving multi-objective optimization problems(MOPs).However,their performance often deteriorates when solving MOPs with irregular Pareto fronts.To remedy this issue,a large body of research has been performed in recent years and many new algorithms have been proposed.This paper provides a comprehensive survey of the research on MOPs with irregular Pareto fronts.We start with a brief introduction to the basic concepts,followed by a summary of the benchmark test problems with irregular problems,an analysis of the causes of the irregularity,and real-world optimization problems with irregular Pareto fronts.Then,a taxonomy of the existing methodologies for handling irregular problems is given and representative algorithms are reviewed with a discussion of their strengths and weaknesses.Finally,open challenges are pointed out and a few promising future directions are suggested.
文摘Application of the multiobjective evolutionary algorithms to the aerodynamicoptimization design of a centrifugal impeller is presented. The aerodynamic performance of acentrifugal impeller is evaluated by using the three-dimensional Navier-Stokes solutions. Thetypical centrifugal impeller is redesigned for maximization of the pressure rise and blade load andminimization of the rotational total pressure loss at the given flow conditions. The Bezier curvesare used to parameterize the three-dimensional impeller blade shape. The present method obtains manyreasonable Pareto optimal designs that outperform the original centrifugal impeller. Detailedobservation of the certain Pareto optimal design demonstrates the feasibility of the presentmultiobjective optimization method tool for turbomachinery design.
文摘Steady-state non-dominated sorting genetic algorithm (SNSGA), a new form of multi-objective genetic algorithm, is implemented by combining the steady-state idea in steady-state genetic algorithms (SSGA) and the fitness assignment strategy of non-dominated sorting genetic algorithm (NSGA). The fitness assignment strategy is improved and a new self-adjustment scheme of is proposed. This algorithm is proved to be very efficient both computationally and in terms of the quality of the Pareto fronts produced with five test problems including GA difficult problem and GA deceptive one. Finally, SNSGA is introduced to solve multi-objective mixed integer linear programming (MILP) and mixed integer non-linear programming (MINLP) problems in process synthesis.
文摘In this paper we discuss the paradigm of evolutionary algorithms (EAs). We argue about the need for new heuristics in real-world problem solving, discussing reasons why some problems are difficult to solve. After introducing the main concepts of evolutionary algorithms, we concentrate on two issues: (1) self-adaptation of the parameters of EA, and (2) handling constraints.
文摘A methodology for the selection of the optimal land uses of the reclamation of mined areas is proposed. It takes into consideration several multi-nature criteria and constraints, including spatial constrains related to the permissible land uses in certain parts of the mined area. The methodology combines desirability functions and evolution searching algorithms for selection of the optimal reclamation scheme. Its application for the reclamation planning of the Amynteon lignite surface mine in Greece indicated that it handles effectively spatial and non-spatial constraints and incorporates easily the decision-makers preferences regarding the reclamation strategy in the optimization procedure.
基金Projects(60234030 60404021) supported by the National Natural Science Foundation of China
文摘Immune evolutionary algorithms with domain knowledge were presented to solve the problem of simultaneous localization and mapping for a mobile robot in unknown environments. Two operators with domain knowledge were designed in algorithms, where the feature of parallel line segments without the problem of data association was used to construct a vaccination operator, and the characters of convex vertices in polygonal obstacle were extended to develop a pulling operator of key point grid. The experimental results of a real mobile robot show that the computational expensiveness of algorithms designed is less than other evolutionary algorithms for simultaneous localization and mapping and the maps obtained are very accurate. Because immune evolutionary algorithms with domain knowledge have some advantages, the convergence rate of designed algorithms is about 44% higher than those of other algorithms.
基金National Science Funds for Distinguished Young Scholars ( No60625302)Major state Basic Research Program ofChina (973Program) (No2002CB312200) +1 种基金the 863 Hi-Tech Research and Development Programof China (No20060104Z1081)Science and Research Program of Shanghai Educational Committee (No06DZ030)
文摘Based on immune network regulatory mechanism, a new adaptive immune evolutionary algorithm (AIEA) is proposed to improve the performance of genetic algorithms (GA) in this paper. AIEA adopts novel selection operation according to the stimulation level of each antibody. A memory base for good antibodies is devised simultaneously to raise the convergent rapidity of the algorithm and adaptive adjusting strategy of antibody population is used for preventing the loss of the population adversity. The experiments show AIEA has better convergence performance than standard genetic algorithm and is capable of maintaining the adversity of the population and solving function optimization problems in an efficient and reliable way.
文摘Evolutionary computation is a kind of adaptive non--numerical computation method which is designed tosimulate evolution of nature. In this paper, evolutionary algorithm behavior is described in terms of theconstruction and evolution of the sampling distributions over the space of candidate solutions. Iterativeconstruction of the sampling distributions is based on the idea of the global random search of generationalmethods. Under this frame, propontional selection is characterized as a gobal search operator, and recombination is characerized as the search process that exploits similarities. It is shown-that by properly constraining the search breadth of recombination operators, weak convergence of evolutionary algorithms to aglobal optimum can be ensured.
基金Supported by the National Natural Science Foundation of China(60133010,70071042,60073043)
文摘Multi-objective Evolutionary Algorithm (MOEA) is becoming a hot research area and quite a few aspects of MOEAs have been studied and discussed. However there are still few literatures discussing the roles of search and selection operators in MOEAs. This paper studied their roles by solving a case of discrete Multi-objective Optimization Problem (MOP): Multi-objective TSP with a new MOEA. In the new MOEA, We adopt an efficient search operator, which has the properties of both crossover and mutation, to generate the new individuals and chose two selection operators: Family Competition and Population Competition with probabilities to realize selection. The simulation experiments showed that this new MOEA could get good uniform solutions representing the Pareto Front and outperformed SPEA in almost every simulation run on this problem. Furthermore, we analyzed its convergence property using finite Markov chain and proved that it could converge to Pareto Front with probability 1. We also find that the convergence property of MOEAs has much relationship with search and selection operators.
文摘Multi-objective evolutionary algorithms(MOEAs) are typically used to optimize two or three objectives in the accelerator field and perform well. However, the performance of these algorithms may severely deteriorate when the optimization objectives for an accelerator are equal to or greater than four. Recently, many-objective evolutionary algorithms(MaOEAs)that can solve problems with four or more optimization objectives have received extensive attention. In this study, two diffraction-limited storage ring(DLSR) lattices of the Extremely Brilliant Source(ESRF-EBS) type with different energies were designed and optimized using three MaOEAs and a widely used MOEA. The initial population was found to have a significant impact on the performance of the algorithms and was carefully studied. The performances of the four algorithms were compared, and the results demonstrated that the grid-based evolutionary algorithm(GrEA) had the best performance.Ma OEAs were applied in many-objective optimization of DLSR lattices for the first time, and lattices with natural emittances of 116 and 23 pm·rad were obtained at energies of 2 and 6 GeV, respectively, both with reasonable dynamic aperture and local momentum aperture(LMA). This work provides a valuable reference for future many-objective optimization of DLSRs.
基金The authors would like to thank the Deanship of Scientific Research at Umm Al-Qura University for supporting this work by Grant Code:(22UQUyouracademicnumberDSRxx).
文摘Technical debt(TD)happens when project teams carry out technical decisions in favor of a short-term goal(s)in their projects,whether deliberately or unknowingly.TD must be properly managed to guarantee that its negative implications do not outweigh its advantages.A lot of research has been conducted to show that TD has evolved into a common problem with considerable financial burden.Test technical debt is the technical debt aspect of testing(or test debt).Test debt is a relatively new concept that has piqued the curiosity of the software industry in recent years.In this article,we assume that the organization selects the testing artifacts at the start of every sprint.Implementing the latest features in consideration of expected business value and repaying technical debt are among candidate tasks in terms of the testing process(test cases increments).To gain the maximum benefit for the organization in terms of software testing optimization,there is a need to select the artifacts(i.e.,test cases)with maximum feature coverage within the available resources.The management of testing optimization for large projects is complicated and can also be treated as a multi-objective problem that entails a trade-off between the agile software’s short-term and long-term value.In this article,we implement a multi-objective indicatorbased evolutionary algorithm(IBEA)for fixing such optimization issues.The capability of the algorithm is evidenced by adding it to a real case study of a university registration process.
文摘The study of optimization methods for reliability–redundancy allocation problems is a constantly changing field.New algorithms are continually being designed on the basis of observations of nature,wildlife,and humanity.In this paper,we review eight major evolutionary algorithms that emulate the behavior of civilization,ants,bees,fishes,and birds(i.e.,genetic algorithms,bee colony optimization,simulated annealing,particle swarm optimization,biogeography-based optimization,artificial immune system optimization,cuckoo algorithm and imperialist competitive algorithm).We evaluate the mathematical formulations and pseudo-codes of each algorithm and discuss how these apply to reliability–redundancy allocation problems.Results from a literature survey show the best results found for series,series–parallel,bridge,and applied case problems(e.g.,overspeeding gas turbine benchmark).Review of literature from recent years indicates an extensive improvement in the algorithm reliability performance.However,this improvement has been difficult to achieve for high-reliability applications.Insights and future challenges in reliability–redundancy allocation problems optimization are also discussed in this paper.
文摘In this paper, the authors show that the general linear second order ordinary Differential Equation can be formulated as an optimization problem and that evolutionary algorithms for solving optimization problems can also be adapted for solving the formulated problem. The authors propose a polynomial based scheme for achieving the above objectives. The coefficients of the proposed scheme are approximated by an evolutionary algorithm known as Differential Evolution (DE). Numerical examples with good results show the accuracy of the proposed method compared with some existing methods.
文摘A software defined networking(SDN) system has a logically centralized control plane that maintains a global network view and enables network-wide management, optimization, and innovation. Network-wide management and optimization problems are typicallyvery complex with a huge solution space, large number of variables, and multiple objectives. Heuristic algorithms can solve theseproblems in an acceptable time but are usually limited to some particular problem circumstances. On the other hand, evolutionaryalgorithms(EAs), which are general stochastic algorithms inspired by the natural biological evolution and/or social behavior of species, can theoretically be used to solve any complex optimization problems including those found in SDNs. This paper reviewsfour types of EAs that are widely applied in current SDNs: Genetic Algorithms(GAs), Particle Swarm Optimization(PSO), Ant Colony Optimization(ACO), and Simulated Annealing(SA) by discussing their techniques, summarizing their representative applications, and highlighting their issues and future works. To the best of our knowledge, our work is the first that compares the tech-niques and categorizes the applications of these four EAs in SDNs.