Fluorosurfactants play a crucial role in ensuring the stability and uniformity of droplet microreactors,which significantly broaden their applications in chemical and biological research.This review covers structure d...Fluorosurfactants play a crucial role in ensuring the stability and uniformity of droplet microreactors,which significantly broaden their applications in chemical and biological research.This review covers structure diversity and functional versatility of fluorosurfactants.Fluorosurfactants can be divided into two basic types according to their structure,linear and dendritic types,which both provides individual advantages.Linear fluorosurfactants are easily synthesized and commercially available,whereas dendritic fluorosurfactants have a branched structure that greatly reduces molecular cross-talk between droplets.Based on the application point of view,fluorosurfactants can be further classified into two categories:reactive and responsive fluorosurfactants.The hydrophilic head of reactive fluorosurfactants contains a reactive functional group,making them very useful in other applications,such as microcapsule preparation or protein crystallization.In contrast,responsive fluorosurfactants would change their properties with respect to external stimuli,such as temperature or light,making them perfect candidates for the on-demand control of droplet behavior.Development of these new classes of fluorosurfactants has expanded the capabilities and applications of droplet microreactors that enables interdisciplinary challenges to be solved.展开更多
The overuse of surfactants has made them well-known environmental pollutants.So far,it is still a challenge to simultaneously distinguish cationic,anionic,zwitterionic,nonionic surfactants and surfactants with similar...The overuse of surfactants has made them well-known environmental pollutants.So far,it is still a challenge to simultaneously distinguish cationic,anionic,zwitterionic,nonionic surfactants and surfactants with similar structures based on traditional analytical techniques.We developed a high-throughput method for distinguishing various surfactants based on the adaptive emission profile as fingerprints(AEPF).The fluorescence response of the sensor was based on the interaction between surfactants and 1,3-diacetylpyrene(o-DAP)probe.The interaction affected the reversible conversion of free molecules and two aggregates in the solution,thereby changing the relative abundance and the fluorescence intensity ratio of two aggregates emitting different fluorescence.The o-DAP sensor can distinguish four types of surfactants(16 surfactants),especially surfactants of the same type with similar structures.The o-DAP sensor sensitively determined the critical micelle concentration(CMC)of 16 surfactants based on the interaction between o-DAP and surfactants.Additionally,the o-DAP sensor can detect and distinguish artificial vesicles made from different surfactants.展开更多
By investigating the performance characteristics of the bio-based surfactant 8901A,a composite decontamination and injection system was developed using 8901A as the primary agent,tailored for application in low-permea...By investigating the performance characteristics of the bio-based surfactant 8901A,a composite decontamination and injection system was developed using 8901A as the primary agent,tailored for application in low-permeability and heavy oil reservoirs under varying temperature conditions.The results demonstrate that this system effectively reduces oil–water interfacial tension,achieving an ultra-low interfacial tension state.The static oil washing efficiency of oil sands exceeds 85%,the average pressure reduction rate reaches 21.55%,and the oil recovery rate improves by 13.54%.These enhancements significantly increase the system’s ability to dissolve oilbased blockages,thereby lowering water injection pressure caused by organic fouling,increasing the injection volume of injection wells,and ultimately improving oil recovery efficiency.展开更多
In order to explore the mechanism of improving the surface wettability of low-energy polytetrafluoroethylene(PTFE)by new extended surfactants,five kinds of extended anionic surfactants with different numbers of oxypro...In order to explore the mechanism of improving the surface wettability of low-energy polytetrafluoroethylene(PTFE)by new extended surfactants,five kinds of extended anionic surfactants with different numbers of oxypropylene(PO)and oxyethylene(EO),octadecyl-(PO)_(m)-(EO)_(n)-sodium carboxylate(C_(18)PO_(m)EO_(n)C,m=5,10,15,n=5,10,15),were studied.The surface tension and contact angle of C_(18)PO_(m)EO_(n)C solution with different concentrations were measured,and the adhesion tension,PTFE-water interfacial tension,and adhesion work were calculated.It was found that the extended surfactant molecules adsorb on the surface of the solution and the PTFE-liquid interface simultaneously when the concentration is lower than the critical micelle concentration(cmc),and there was a linear relationship between surface tension and adhesion tension.The adsorption amount of C_(18)PO_(m)EO_(n)C at the PTFE-water interface was significantly lower than that on the surface of the solution.As the concentration increases above cmc,semi-micelle aggregates on the surface of PTFE are formed by C_(18)PO_(m)EO_(n)C molecules through hydrophobic interaction,and the hydrophilic group faces the solution to modify the surface of PTFE with high efficiency.展开更多
This paper summarizes the mechanisms and environmental effects of interactions between microplastics and surfactants: surfactants adsorb onto microplastics surfaces through hydrophobic interactions and electrostatic f...This paper summarizes the mechanisms and environmental effects of interactions between microplastics and surfactants: surfactants adsorb onto microplastics surfaces through hydrophobic interactions and electrostatic forces, changing their surface properties and transport behavior. In addition, microplastics act as carriers influencing surfactant distribution. Environmental factors (pH, ionic strength, etc. ) significantly regulate this process. Current research still has limitations in areas such as desorption kinetics and combined pollution effects, necessitating in-depth studies under environmentally relevant conditions to provide a basis for risk assessment.展开更多
During oil displacement,surfactants often encounter challenges such as emulsion instability and channeling,which can compromise their efficiency.To address these issues,polymer microspheres were synthesized via revers...During oil displacement,surfactants often encounter challenges such as emulsion instability and channeling,which can compromise their efficiency.To address these issues,polymer microspheres were synthesized via reverse microemulsion polymerization using acrylamide,2-methyl-2-acrylamidopropane sulfonic acid,and stearyl methacrylate as monomers,with N,N-methylenebisacrylamide as the crosslinker.The microspheres were then combined with sodium alkyl alcohol polyoxyethylene ether carboxylate to enhance emulsion stability and expand the swept volume of surfactant.A stable reverse microemulsion system was prepared using the maximum water solubilization rate as the indicator,and microspheres were synthesized based on this system.The ability of the microspheres to enhance emulsion stability was systematically evaluated.The plugging performance and enhanced oil recovery(EOR)efficiency of the microsphere/surfactant composite system were assessed through core seepage and oil displacement experiments.The experimental results demonstrated that microspheres were successfully prepared in a water-in-oil reverse microemulsion system with a solubilization rate of 42%.The emulsion stability was evaluated under an oil-to-water ratio of 7:3,a temperature of 80℃,and a salinity of 44,592 mg/L,by manually shaking the test tube five times.It was observed that the complete phase separation time of the emulsion increased from 10 to 120 min after the addition of microspheres.Under different permeability conditions(100×10^(-3),300×10^(-3),500×10^(-3)μm^(2)),the recovery efficiency of the composite system increased by 4.5%,8.3%,and 4.8%,respectively,compared to a single surfactant system.The microspheres developed in this study enhanced emulsion stability and increased the swept volume of surfactant within the formation,significantly boosting its oil recovery efficiency.展开更多
While newer,more efficient Lithium-ion batteries(LIBs)and extinguishing agents have been developed to reduce the occurrence of thermal runaway accidents,there is still a scarcity of research focused on the application...While newer,more efficient Lithium-ion batteries(LIBs)and extinguishing agents have been developed to reduce the occurrence of thermal runaway accidents,there is still a scarcity of research focused on the application of surfactants in different LIBs extinguishing agents,particularly in terms of patented technologies.The aim of this review paper is to provide an overview of the technological progress of LIBs and LIBs extinguishing agents in terms of patents in Korea,Japan,Europe,the United States,China,etc.The initial part of this review paper is sort out LIBs technology development in different regions.In addition,to compare LIBs extinguishing agent progress and challenges of liquid,solid,combination of multiple,and microencapsulated.The subsequent section of this review focuses on an in-depth analysis dedicated to the efficiency and challenges faced by the surfactants corresponding design principles of LIBs extinguishing agents,such as nonionic and anionic surfactants.A total of 451,760 LIBs-related patent and 20 LIBs-fire-extinguishing agent-related patent were included in the analyses.The extinguishing effect,cooling performance,and anti-recombustion on different agents have been highlighted.After a comprehensive comparison of these agents,this review suggests that temperature-sensitive hydrogel extinguishing agent is ideal for the effective control of LIBs fire.The progress and challenges of surfactants have been extensively examined,focusing on key factors such as surface activity,thermal stability,foaming properties,environmental friendliness,and electrical conductivity.Moreover,it is crucial to emphasize that the selection of a suitable surfactant must align with the extinguishing strategy of the extinguishing agent for optimal firefighting effectiveness.展开更多
Rosin,a renewable and abundant resource,has been extensively processed and chemically modified to endow it with special properties,especially in the surfactant industry.In this study,four rosin-based quaternary ammoni...Rosin,a renewable and abundant resource,has been extensively processed and chemically modified to endow it with special properties,especially in the surfactant industry.In this study,four rosin-based quaternary ammonium asymmetric gemini surfactants(RGS-2-n)with different alkyl chain lengths(n=12,14,16,18)were synthesized using a simple two-step method based on dehydroabietylamine as the raw material.The feasibility of these surfactants for cleaning purposes was comprehensively evaluated,suggesting that the surfactants own high surface activity and good cleaning performance.Furthermore,by successfully introducing the amine group of dehydroabietylamine into the hydrophilic group of the surfactants,we avoided its potential harm to the environment and water pollution.Density functional theory proves rosin-based gemini surfactants with asymmetric structure can further improve cleaning efficiency.Overall,our findings suggests that RGS-2-n surfactants are promising and sustainable candidates for cleaning electric plates,and provide new opportunities for rosin application in the electric industry.展开更多
The conservation of rheological and filtration properties of drilling fluids is essential during drilling operations.However,high-pressure and high-temperature conditions may affect drilling fluid additives,leading to...The conservation of rheological and filtration properties of drilling fluids is essential during drilling operations.However,high-pressure and high-temperature conditions may affect drilling fluid additives,leading to their degradation and reduced performance during operation.Hence,the main objective of this study is to formulate and evaluate a viscoelastic surfactant(VES)to design water-based drilling nanofluids(DNF).Silica nanomaterials are also incorporated into fluids to improve their main functional characteristics under harsh conditions.The investigation included:i)synthesis and characterization of VES through zeta potential,thermogravimetric analysis(TGA),Fourier transform infrared spectroscopy(FTIR),atomic force microscopy(AFM),and rheological behavior;ii)the effect of the presence of VES combined with silica nanoparticles on the rheological,filtration,thermal,and structural properties by steady and dynamic shear rheological,filter press,thermal aging assays,and SEM(SEM)assays,respectively;and iii)evaluation of filtration properties at the pore scale through a microfluidic approach.The rheological results showed that water-based muds(WBMs)in the presence of VES exhibited shearthinning and viscoelastic behavior slightly higher than that of WBMs with xanthan gum(XGD).Furthermore,the filtration and thermal properties of the drilling fluid improved in the presence of VES and silica nanoparticles at 0.1 wt%.Compared to the WBMs based on XGD,the 30-min filtrate volume for DNF was reduced by 75%.Moreover,the Herschel-Bulkley model was employed to represent the rheological behavior of fluids with an R2of approximately 0.99.According to SEM,laminar and spherical microstructures were observed for the WBMs based on VES and XGD,respectively.A uniform distribution of the nanoparticles was observed in the WBMs.The results obtained from microfluidic experiments indicated low dynamic filtration for fluids containing VES and silica nanoparticles.Specifically,the filtrate volume of fluids containing VES and VES with silica nanoparticles at 281 min was 0.35 and 0.04 m L,respectively.The differences in the rheological,filtration,thermal,and structural results were mainly associated with the morphological structure of VES or XGD and surface interactions with other WBMs additives.展开更多
A simple, sensitive, and rapid analytical method is reported for the determination of surfactants. This is based on the use of an oppositely charged dye as the ion pair to form an ionic associate with the surfactant i...A simple, sensitive, and rapid analytical method is reported for the determination of surfactants. This is based on the use of an oppositely charged dye as the ion pair to form an ionic associate with the surfactant in a vessel, thus affording ion-associated adhesion on the inner wall of the vessel. After the adhesion, the remaining solution in the vessel is removed, and the ionic associate is dissolved in a suitable solvent. The absorbance of the resulting solution is measured spectrophotometrically to determine the concentration of the surfactant. Further, the mechanism of adhesion is elucidated.展开更多
A series of spontaneous imbibition(SI)tests of tight oil were performed,together with oil distribution scans by computed tomography(CT)and nuclear magnetic resonance(NMR).Thus,the best surfactants to optimize the SI e...A series of spontaneous imbibition(SI)tests of tight oil were performed,together with oil distribution scans by computed tomography(CT)and nuclear magnetic resonance(NMR).Thus,the best surfactants to optimize the SI effect were obtained,the basic requirements to surfactants for efficient SI were determined,and the oil mobilization by SI revealed.The results show that anionic surfactants significantly outperform non-ionic,cationic,and zwitterionic ones in SI process.Excellent systems can be further obtained by mixing anionic surfactants with others(e.g.1:1 mixtures of AES:EHSB).The requirements to interfacial properties of surfactants for achieving efficient SI at permeabilities of 0.05,0.5,and 5.0 mD are as follows:10~0 mN/m,<40°;10-1-10~0 mN/m,<55°;and 10-1-10~0 mN/m,<70°,respectively.Although a high oil recovery of 38.5%by SI was achieved in small cylindrical cores(φ2.5 cm×3.0 cm),the joint SI and CT tests in larger,cube-shaped cores(5.0 cm×5.0 cm×5.0 cm)showed that the SI process could only remove the oil from the outermost few millimeters of the cores with permeabilities of 0.05 and 0.1 mD,indicating the great difficulty encountered for their development.The NMR showed that the SI treatment preferentially removed oil from smaller pores rather than medium or large pores.展开更多
Surfactants are extensively employed in the cold production of heavy oil.However,producing heavy oil emulsions using conventional surfactants poses a challenge to spontaneous demulsification,necessitating the addition...Surfactants are extensively employed in the cold production of heavy oil.However,producing heavy oil emulsions using conventional surfactants poses a challenge to spontaneous demulsification,necessitating the addition of demulsifiers for oil-water separation.This inevitably increases the exploitation cost and environmental pollution risk.Switchable surfactants have garnered much attention due to their dual capabilities of underground heavy oil emulsification and surface demulsification.This study focuses on the fundamental working principles and classification of novel switchable surfactants for oil displacement developed in recent years.It offers a comprehensive overview of the latest advances in the applications of switchable surfactants in the fields of enhanced oil recovery(EOR),oil sand washing,and oil-water separation.Furthermore,it highlights the existing challenges and future development directions of switchable surfactants for heavy oil recovery.展开更多
Gemini quaternary ammonium salt surfactants, butane-a, co-bis(dimethyl dodeculammonium bromide) (BDDA) ethane-a, fl-bis(dimethyl dodeculammonium bromide) (EDDA) were adopted to comparatively study the flotatio...Gemini quaternary ammonium salt surfactants, butane-a, co-bis(dimethyl dodeculammonium bromide) (BDDA) ethane-a, fl-bis(dimethyl dodeculammonium bromide) (EDDA) were adopted to comparatively study the flotation behaviors of kaolinite, pyrophyllite and illite. It was found that three silicate minerals all exhibited good floatability with Gemini cationic surfactants as collectors over a wide pH range, while BDDA showed a stronger collecting power than EDDA. FTIR spectra and zeta potential analysis indicated that the mechanism of adsorption of Gemini collector molecules on three silicate minerals surfaces was almost identical for the electronic attraction and hydrogen bonds effect. The theoretically obtained results of density functional theory (DFT) at B3LYP/6-31G (d) level demonstrated the stronger collecting power of BDDA presented in the floatation test and zeta potential measurement.展开更多
In order to solve the problem of limited makeup removal ability of a single surfactant of Peg-20 glyceryl triisostearate in makeup remover,an efficient system was prepared which contained PEG-20 glyceryl triisostearat...In order to solve the problem of limited makeup removal ability of a single surfactant of Peg-20 glyceryl triisostearate in makeup remover,an efficient system was prepared which contained PEG-20 glyceryl triisostearate and a combination of Sorbeth-30 tetraoleate and Peg-5 glyceryl triisostearate.Leather test,skin colorimeter test and consumer self-evaluation were used to assess the makeup removal ability,rinsing performance and softness skin feel of the efficient makeup remover base.The results showed that a 7%combination of Sorbeth-30 tetraoleate and PEG-5 glyceryl triisostearate could significantly improve the comprehensive performance of single PEG-20 glyceryl triisostearate makeup remover system,furthermore,they performed best at the ratio of 6:1.We hope the findings can have guiding significance for the development of makeup remover products.展开更多
A series of heterogemini imidazolium surfactants with two-methylene spacer groups ([Cm- 2-Cnim]Br2, m, n=8, 10, 12, 14, 16; m≠n) have been synthesized and characterized by 1H NMR and ESI-MS spectroscopy. The effect...A series of heterogemini imidazolium surfactants with two-methylene spacer groups ([Cm- 2-Cnim]Br2, m, n=8, 10, 12, 14, 16; m≠n) have been synthesized and characterized by 1H NMR and ESI-MS spectroscopy. The effects of various reaction parameters, including stoichiometry, reaction temperature and time, were investigated. In addition, the surface activity study about heterogemini imidazolium surfactants was carried out and the influences of dissymmetric degree on the surface properties were also discussed.展开更多
Biological and synthetic surfactants were compared in terms of their ability to reduce interfacial tension, change the thermodynamic characteristics of a pre-conditioned surface, and to modify the rheological properti...Biological and synthetic surfactants were compared in terms of their ability to reduce interfacial tension, change the thermodynamic characteristics of a pre-conditioned surface, and to modify the rheological properties of their respective formulations at two different temperatures. Both classes of suffactants were able to reduce the inteffacial tension of their formulations to a similar level. However, the biosurfactants were more effective than the synthetics surfactants. Biosurfactants also altered the surface properties of stainless steel, rendering it hydrophilic. Microbial adhesion to stainless steel conditioned with biosurfactants was found to be thermodynamically unfavorable for all microbial strains tested. A linear relationship between shear stress and shear rate was obtained across a range of experimental conditions for all surfactant mixtures, indicating that all formulations behaved as Newtonian fluids.展开更多
Waste cooking oils and non-edible vegetable oils are abundant and renewable resources for bio-based materials which have showed great potential applications in many industries.In this study,five fatty acids commonly f...Waste cooking oils and non-edible vegetable oils are abundant and renewable resources for bio-based materials which have showed great potential applications in many industries.In this study,five fatty acids commonly found in non-edible vegetable oils,including palmitic acid,stearic acid,linoleic acid,linolenic acid,ricinoleic acid,and their mixtures,were used to produce bio-based zwitterionic surfactants through a facile and high-yield chemical modification.These surfactants demonstrated excellent surface/interfacial properties with the minimum surface tensions ranging from 28.4 mN/m to 32.8 mN/m in aqueous solutions.The interfacial tensions between crude oil and surfactant solutions were remarkably reduced to lower values ranging from 0.0028 mN/m to 0.1983 mN/m without the aid of extra alkali,which particularly implied a great potential application in enhanced oil recovery.Meanwhile,these bio-based surfactants also showed good wetting properties(contact angles of~51°comparing with that of double distilled water,92.04°)and appropriate predicted biodegradability(degradation order of“weeks”for bio-based surfactants synthesized from saturated fatty acids,and“months”for those synthesized from unsaturated fatty acids).Bio-based surfactants synthesized from unsaturated fatty acids showed better interfacial properties in reducing interfacial tension between crude oil and formation water.The bio-based surfactants presented in this study are alternative substitutes for traditional petroleum-based surfactants in various surfactant application fields.展开更多
The effect of reducing agents and surfactants on controlling the silver nanoplates was studied. Two reducing agents, trisodium citrate dehydrate (TSC) and potassium tartrate, were used to reduce the AgNO3 solution. In...The effect of reducing agents and surfactants on controlling the silver nanoplates was studied. Two reducing agents, trisodium citrate dehydrate (TSC) and potassium tartrate, were used to reduce the AgNO3 solution. In this redox system, polyvinylpyrrolidone (PVP), sodium dodecyl sulfate (SDS) and arabic gum were served as surfactants. The results showed that reducing agents and surfactants both act as the capping agent adhering to the certain facets of silver seeds to block this surface to grow. The relative intensity of reducing agents also takes an active part in influencing the growth rate and direction of silver seeds. It was also found that halides can accelerate the speed of Ostwald ripening by adding Cl?, Br? and I?into the aqueous and have some effects on the morphology of the nanoplates.展开更多
[Objective]The aim of this paper was to provide theoretical basis for study on enhancement of surfactants to desorption of PCBs from soil. [Method]The desorption effects of surfactants SDBs,Tween 80,HTAB on PCBs were ...[Objective]The aim of this paper was to provide theoretical basis for study on enhancement of surfactants to desorption of PCBs from soil. [Method]The desorption effects of surfactants SDBs,Tween 80,HTAB on PCBs were studied as well as their distribution in water and soil. Effects of rationing on desorption of PCBs were also analyzed. [Result]The potential of single surfactant to enhance the desorption of PCBs from soil in order was Tween 80 SDBS HTAB. Three surfactants were largely adsorbed on soil and the sorption followed HTABTween 80SDBS. The desorption of PCBs increased significantly and linearly with the increase of aqueous micelle concentration of surfactants. [Conclusion]Enhancing effect of three surfactants on PCBs desorption were obtained,which will provide theoretical basis for further analyzing.展开更多
A coagulation-flocculation process is typically employed to treat the industrial wastewater generated by the consumer products industry manufacturing detergents, soaps, and others. The expenditure of chemicals includi...A coagulation-flocculation process is typically employed to treat the industrial wastewater generated by the consumer products industry manufacturing detergents, soaps, and others. The expenditure of chemicals including coagulants and chemicals for pH adjustment is costly for treating this wastewater. The objective of this study was to evaluate the feasibility of reusing the aluminum sulfate (alum) sludge as a coagulant or as a coagulation aid so that the fresh alum dosage can be minimized or the removal efficiency can be enhanced. The experiments were conducted in a jar-test apparatus simulating the coagulation-flocculation process for simultaneous removals of organic matters, anionic surfactants, suspended solids, and turbidity. At the optimum initial pH value of 10 and the fresh alum concentration of 400 mg/L, the total suspended solids (TSS), total chemical oxygen demand (TCOD), total anionic surfactants, and turbidity removal efficiencies were 71.5%, 76.4%, 95.4%, and 98.2%, respectively. The addition of alum sludge as a coagulant alone without any fresh alum addition could significantly remove the turbidity, TCOD, and anionic surfactants. The TSS was left in the supernatants after the settling period, but would subsequently be removed by adding the fresh alum. The TSS, TCOD, and turbidity removal efficiencies were also enhanced when both the alum sludge and the fresh alum were employed. The TCOD removal efficiency over 80% has been accomplished, which has never fulfilled by using the fresh alum alone. It is concluded that the alum sludge could be reused for the treatment of industrial wastewater generated by the consumer products industry.展开更多
基金support of the National Key Research and Development Program of China(2021YFC2104300)the National Natural Science Foundation of China(T2322011,22308146,22278214)the support of the State Key Laboratory of Materials-Oriented Chemical Engineering(SKL-MCE-22A06,KL20-02).
文摘Fluorosurfactants play a crucial role in ensuring the stability and uniformity of droplet microreactors,which significantly broaden their applications in chemical and biological research.This review covers structure diversity and functional versatility of fluorosurfactants.Fluorosurfactants can be divided into two basic types according to their structure,linear and dendritic types,which both provides individual advantages.Linear fluorosurfactants are easily synthesized and commercially available,whereas dendritic fluorosurfactants have a branched structure that greatly reduces molecular cross-talk between droplets.Based on the application point of view,fluorosurfactants can be further classified into two categories:reactive and responsive fluorosurfactants.The hydrophilic head of reactive fluorosurfactants contains a reactive functional group,making them very useful in other applications,such as microcapsule preparation or protein crystallization.In contrast,responsive fluorosurfactants would change their properties with respect to external stimuli,such as temperature or light,making them perfect candidates for the on-demand control of droplet behavior.Development of these new classes of fluorosurfactants has expanded the capabilities and applications of droplet microreactors that enables interdisciplinary challenges to be solved.
基金supported by the National Natural Science Foundation of China(Nos.22225806,22078314,22278394,22378385)Dalian Institute of Chemical Physics(Nos.DICPI202142,DICPI202436).
文摘The overuse of surfactants has made them well-known environmental pollutants.So far,it is still a challenge to simultaneously distinguish cationic,anionic,zwitterionic,nonionic surfactants and surfactants with similar structures based on traditional analytical techniques.We developed a high-throughput method for distinguishing various surfactants based on the adaptive emission profile as fingerprints(AEPF).The fluorescence response of the sensor was based on the interaction between surfactants and 1,3-diacetylpyrene(o-DAP)probe.The interaction affected the reversible conversion of free molecules and two aggregates in the solution,thereby changing the relative abundance and the fluorescence intensity ratio of two aggregates emitting different fluorescence.The o-DAP sensor can distinguish four types of surfactants(16 surfactants),especially surfactants of the same type with similar structures.The o-DAP sensor sensitively determined the critical micelle concentration(CMC)of 16 surfactants based on the interaction between o-DAP and surfactants.Additionally,the o-DAP sensor can detect and distinguish artificial vesicles made from different surfactants.
文摘By investigating the performance characteristics of the bio-based surfactant 8901A,a composite decontamination and injection system was developed using 8901A as the primary agent,tailored for application in low-permeability and heavy oil reservoirs under varying temperature conditions.The results demonstrate that this system effectively reduces oil–water interfacial tension,achieving an ultra-low interfacial tension state.The static oil washing efficiency of oil sands exceeds 85%,the average pressure reduction rate reaches 21.55%,and the oil recovery rate improves by 13.54%.These enhancements significantly increase the system’s ability to dissolve oilbased blockages,thereby lowering water injection pressure caused by organic fouling,increasing the injection volume of injection wells,and ultimately improving oil recovery efficiency.
文摘In order to explore the mechanism of improving the surface wettability of low-energy polytetrafluoroethylene(PTFE)by new extended surfactants,five kinds of extended anionic surfactants with different numbers of oxypropylene(PO)and oxyethylene(EO),octadecyl-(PO)_(m)-(EO)_(n)-sodium carboxylate(C_(18)PO_(m)EO_(n)C,m=5,10,15,n=5,10,15),were studied.The surface tension and contact angle of C_(18)PO_(m)EO_(n)C solution with different concentrations were measured,and the adhesion tension,PTFE-water interfacial tension,and adhesion work were calculated.It was found that the extended surfactant molecules adsorb on the surface of the solution and the PTFE-liquid interface simultaneously when the concentration is lower than the critical micelle concentration(cmc),and there was a linear relationship between surface tension and adhesion tension.The adsorption amount of C_(18)PO_(m)EO_(n)C at the PTFE-water interface was significantly lower than that on the surface of the solution.As the concentration increases above cmc,semi-micelle aggregates on the surface of PTFE are formed by C_(18)PO_(m)EO_(n)C molecules through hydrophobic interaction,and the hydrophilic group faces the solution to modify the surface of PTFE with high efficiency.
基金Supported by Zhaoqing University Innovation and Entrepreneurship Training Program for College Students (X202410580130).
文摘This paper summarizes the mechanisms and environmental effects of interactions between microplastics and surfactants: surfactants adsorb onto microplastics surfaces through hydrophobic interactions and electrostatic forces, changing their surface properties and transport behavior. In addition, microplastics act as carriers influencing surfactant distribution. Environmental factors (pH, ionic strength, etc. ) significantly regulate this process. Current research still has limitations in areas such as desorption kinetics and combined pollution effects, necessitating in-depth studies under environmentally relevant conditions to provide a basis for risk assessment.
基金supported by the Natural Science Foundation of Shandong Province(ZR2021ME007)the National Natural Science Foundation in China(51574267)the Key Projects of China National Key Research and Development Plan(2019YFA0708703)。
文摘During oil displacement,surfactants often encounter challenges such as emulsion instability and channeling,which can compromise their efficiency.To address these issues,polymer microspheres were synthesized via reverse microemulsion polymerization using acrylamide,2-methyl-2-acrylamidopropane sulfonic acid,and stearyl methacrylate as monomers,with N,N-methylenebisacrylamide as the crosslinker.The microspheres were then combined with sodium alkyl alcohol polyoxyethylene ether carboxylate to enhance emulsion stability and expand the swept volume of surfactant.A stable reverse microemulsion system was prepared using the maximum water solubilization rate as the indicator,and microspheres were synthesized based on this system.The ability of the microspheres to enhance emulsion stability was systematically evaluated.The plugging performance and enhanced oil recovery(EOR)efficiency of the microsphere/surfactant composite system were assessed through core seepage and oil displacement experiments.The experimental results demonstrated that microspheres were successfully prepared in a water-in-oil reverse microemulsion system with a solubilization rate of 42%.The emulsion stability was evaluated under an oil-to-water ratio of 7:3,a temperature of 80℃,and a salinity of 44,592 mg/L,by manually shaking the test tube five times.It was observed that the complete phase separation time of the emulsion increased from 10 to 120 min after the addition of microspheres.Under different permeability conditions(100×10^(-3),300×10^(-3),500×10^(-3)μm^(2)),the recovery efficiency of the composite system increased by 4.5%,8.3%,and 4.8%,respectively,compared to a single surfactant system.The microspheres developed in this study enhanced emulsion stability and increased the swept volume of surfactant within the formation,significantly boosting its oil recovery efficiency.
基金supported by the National Key Research and Development Program of China (No.2017YFC0804700)the Opening Project of State Key Laboratory of Explosion Science and Technology,Beijing Institute of Technology (No.KFJJ23-23M)。
文摘While newer,more efficient Lithium-ion batteries(LIBs)and extinguishing agents have been developed to reduce the occurrence of thermal runaway accidents,there is still a scarcity of research focused on the application of surfactants in different LIBs extinguishing agents,particularly in terms of patented technologies.The aim of this review paper is to provide an overview of the technological progress of LIBs and LIBs extinguishing agents in terms of patents in Korea,Japan,Europe,the United States,China,etc.The initial part of this review paper is sort out LIBs technology development in different regions.In addition,to compare LIBs extinguishing agent progress and challenges of liquid,solid,combination of multiple,and microencapsulated.The subsequent section of this review focuses on an in-depth analysis dedicated to the efficiency and challenges faced by the surfactants corresponding design principles of LIBs extinguishing agents,such as nonionic and anionic surfactants.A total of 451,760 LIBs-related patent and 20 LIBs-fire-extinguishing agent-related patent were included in the analyses.The extinguishing effect,cooling performance,and anti-recombustion on different agents have been highlighted.After a comprehensive comparison of these agents,this review suggests that temperature-sensitive hydrogel extinguishing agent is ideal for the effective control of LIBs fire.The progress and challenges of surfactants have been extensively examined,focusing on key factors such as surface activity,thermal stability,foaming properties,environmental friendliness,and electrical conductivity.Moreover,it is crucial to emphasize that the selection of a suitable surfactant must align with the extinguishing strategy of the extinguishing agent for optimal firefighting effectiveness.
基金supported by National Natural Science Foundation of China(U21A200313)Key Program of Qingyuan Innovation Laboratory(00221003)‘111’program of Fuzhou University.
文摘Rosin,a renewable and abundant resource,has been extensively processed and chemically modified to endow it with special properties,especially in the surfactant industry.In this study,four rosin-based quaternary ammonium asymmetric gemini surfactants(RGS-2-n)with different alkyl chain lengths(n=12,14,16,18)were synthesized using a simple two-step method based on dehydroabietylamine as the raw material.The feasibility of these surfactants for cleaning purposes was comprehensively evaluated,suggesting that the surfactants own high surface activity and good cleaning performance.Furthermore,by successfully introducing the amine group of dehydroabietylamine into the hydrophilic group of the surfactants,we avoided its potential harm to the environment and water pollution.Density functional theory proves rosin-based gemini surfactants with asymmetric structure can further improve cleaning efficiency.Overall,our findings suggests that RGS-2-n surfactants are promising and sustainable candidates for cleaning electric plates,and provide new opportunities for rosin application in the electric industry.
基金funded by Fondo Francisco Jose de Caldas,MINCIENCIAS and Agencia Nacional de hidrocarburos(ANH)through contract No.112721-282-2023(Project 1118-1035-9300)with Universidad Nacional de Colombia-Sede Medellin and PAREX RESOURCES COLOMBIA AG SUCURSAL。
文摘The conservation of rheological and filtration properties of drilling fluids is essential during drilling operations.However,high-pressure and high-temperature conditions may affect drilling fluid additives,leading to their degradation and reduced performance during operation.Hence,the main objective of this study is to formulate and evaluate a viscoelastic surfactant(VES)to design water-based drilling nanofluids(DNF).Silica nanomaterials are also incorporated into fluids to improve their main functional characteristics under harsh conditions.The investigation included:i)synthesis and characterization of VES through zeta potential,thermogravimetric analysis(TGA),Fourier transform infrared spectroscopy(FTIR),atomic force microscopy(AFM),and rheological behavior;ii)the effect of the presence of VES combined with silica nanoparticles on the rheological,filtration,thermal,and structural properties by steady and dynamic shear rheological,filter press,thermal aging assays,and SEM(SEM)assays,respectively;and iii)evaluation of filtration properties at the pore scale through a microfluidic approach.The rheological results showed that water-based muds(WBMs)in the presence of VES exhibited shearthinning and viscoelastic behavior slightly higher than that of WBMs with xanthan gum(XGD).Furthermore,the filtration and thermal properties of the drilling fluid improved in the presence of VES and silica nanoparticles at 0.1 wt%.Compared to the WBMs based on XGD,the 30-min filtrate volume for DNF was reduced by 75%.Moreover,the Herschel-Bulkley model was employed to represent the rheological behavior of fluids with an R2of approximately 0.99.According to SEM,laminar and spherical microstructures were observed for the WBMs based on VES and XGD,respectively.A uniform distribution of the nanoparticles was observed in the WBMs.The results obtained from microfluidic experiments indicated low dynamic filtration for fluids containing VES and silica nanoparticles.Specifically,the filtrate volume of fluids containing VES and VES with silica nanoparticles at 281 min was 0.35 and 0.04 m L,respectively.The differences in the rheological,filtration,thermal,and structural results were mainly associated with the morphological structure of VES or XGD and surface interactions with other WBMs additives.
文摘A simple, sensitive, and rapid analytical method is reported for the determination of surfactants. This is based on the use of an oppositely charged dye as the ion pair to form an ionic associate with the surfactant in a vessel, thus affording ion-associated adhesion on the inner wall of the vessel. After the adhesion, the remaining solution in the vessel is removed, and the ionic associate is dissolved in a suitable solvent. The absorbance of the resulting solution is measured spectrophotometrically to determine the concentration of the surfactant. Further, the mechanism of adhesion is elucidated.
基金the National Natural Science Foundation of China(Grant No.52474071)for their financial support。
文摘A series of spontaneous imbibition(SI)tests of tight oil were performed,together with oil distribution scans by computed tomography(CT)and nuclear magnetic resonance(NMR).Thus,the best surfactants to optimize the SI effect were obtained,the basic requirements to surfactants for efficient SI were determined,and the oil mobilization by SI revealed.The results show that anionic surfactants significantly outperform non-ionic,cationic,and zwitterionic ones in SI process.Excellent systems can be further obtained by mixing anionic surfactants with others(e.g.1:1 mixtures of AES:EHSB).The requirements to interfacial properties of surfactants for achieving efficient SI at permeabilities of 0.05,0.5,and 5.0 mD are as follows:10~0 mN/m,<40°;10-1-10~0 mN/m,<55°;and 10-1-10~0 mN/m,<70°,respectively.Although a high oil recovery of 38.5%by SI was achieved in small cylindrical cores(φ2.5 cm×3.0 cm),the joint SI and CT tests in larger,cube-shaped cores(5.0 cm×5.0 cm×5.0 cm)showed that the SI process could only remove the oil from the outermost few millimeters of the cores with permeabilities of 0.05 and 0.1 mD,indicating the great difficulty encountered for their development.The NMR showed that the SI treatment preferentially removed oil from smaller pores rather than medium or large pores.
基金supported by a key project of the National Natural Science Foundation of China(No 21938003)the Postdoctoral Foundation of the PetroChina Dagang Oilfield Company(No.2023BO59).
文摘Surfactants are extensively employed in the cold production of heavy oil.However,producing heavy oil emulsions using conventional surfactants poses a challenge to spontaneous demulsification,necessitating the addition of demulsifiers for oil-water separation.This inevitably increases the exploitation cost and environmental pollution risk.Switchable surfactants have garnered much attention due to their dual capabilities of underground heavy oil emulsification and surface demulsification.This study focuses on the fundamental working principles and classification of novel switchable surfactants for oil displacement developed in recent years.It offers a comprehensive overview of the latest advances in the applications of switchable surfactants in the fields of enhanced oil recovery(EOR),oil sand washing,and oil-water separation.Furthermore,it highlights the existing challenges and future development directions of switchable surfactants for heavy oil recovery.
基金Project(2013AA064102)supported by the High-tech Research and Development Program of ChinaProject(51004114)supported by the National Natural Science Foundation of China+1 种基金Project(2007B52)supported by the Foundation for the Author of National Excellent Doctoral Dissertation of ChinaProject(NCEP-08-0568)supported by the Program for New Century Excellent Talents in Chinese University
文摘Gemini quaternary ammonium salt surfactants, butane-a, co-bis(dimethyl dodeculammonium bromide) (BDDA) ethane-a, fl-bis(dimethyl dodeculammonium bromide) (EDDA) were adopted to comparatively study the flotation behaviors of kaolinite, pyrophyllite and illite. It was found that three silicate minerals all exhibited good floatability with Gemini cationic surfactants as collectors over a wide pH range, while BDDA showed a stronger collecting power than EDDA. FTIR spectra and zeta potential analysis indicated that the mechanism of adsorption of Gemini collector molecules on three silicate minerals surfaces was almost identical for the electronic attraction and hydrogen bonds effect. The theoretically obtained results of density functional theory (DFT) at B3LYP/6-31G (d) level demonstrated the stronger collecting power of BDDA presented in the floatation test and zeta potential measurement.
文摘In order to solve the problem of limited makeup removal ability of a single surfactant of Peg-20 glyceryl triisostearate in makeup remover,an efficient system was prepared which contained PEG-20 glyceryl triisostearate and a combination of Sorbeth-30 tetraoleate and Peg-5 glyceryl triisostearate.Leather test,skin colorimeter test and consumer self-evaluation were used to assess the makeup removal ability,rinsing performance and softness skin feel of the efficient makeup remover base.The results showed that a 7%combination of Sorbeth-30 tetraoleate and PEG-5 glyceryl triisostearate could significantly improve the comprehensive performance of single PEG-20 glyceryl triisostearate makeup remover system,furthermore,they performed best at the ratio of 6:1.We hope the findings can have guiding significance for the development of makeup remover products.
文摘A series of heterogemini imidazolium surfactants with two-methylene spacer groups ([Cm- 2-Cnim]Br2, m, n=8, 10, 12, 14, 16; m≠n) have been synthesized and characterized by 1H NMR and ESI-MS spectroscopy. The effects of various reaction parameters, including stoichiometry, reaction temperature and time, were investigated. In addition, the surface activity study about heterogemini imidazolium surfactants was carried out and the influences of dissymmetric degree on the surface properties were also discussed.
文摘Biological and synthetic surfactants were compared in terms of their ability to reduce interfacial tension, change the thermodynamic characteristics of a pre-conditioned surface, and to modify the rheological properties of their respective formulations at two different temperatures. Both classes of suffactants were able to reduce the inteffacial tension of their formulations to a similar level. However, the biosurfactants were more effective than the synthetics surfactants. Biosurfactants also altered the surface properties of stainless steel, rendering it hydrophilic. Microbial adhesion to stainless steel conditioned with biosurfactants was found to be thermodynamically unfavorable for all microbial strains tested. A linear relationship between shear stress and shear rate was obtained across a range of experimental conditions for all surfactant mixtures, indicating that all formulations behaved as Newtonian fluids.
基金supported by the National Key Research and Development Program of China(No.2017YFB0308900)National Natural Science Foundation of China(Grant No.51574125)+1 种基金the Fundamental Research Funds for the Central Universities of China(No.50321101917017)the Research Program of State Key Laboratory of Bioreactor Engineering.
文摘Waste cooking oils and non-edible vegetable oils are abundant and renewable resources for bio-based materials which have showed great potential applications in many industries.In this study,five fatty acids commonly found in non-edible vegetable oils,including palmitic acid,stearic acid,linoleic acid,linolenic acid,ricinoleic acid,and their mixtures,were used to produce bio-based zwitterionic surfactants through a facile and high-yield chemical modification.These surfactants demonstrated excellent surface/interfacial properties with the minimum surface tensions ranging from 28.4 mN/m to 32.8 mN/m in aqueous solutions.The interfacial tensions between crude oil and surfactant solutions were remarkably reduced to lower values ranging from 0.0028 mN/m to 0.1983 mN/m without the aid of extra alkali,which particularly implied a great potential application in enhanced oil recovery.Meanwhile,these bio-based surfactants also showed good wetting properties(contact angles of~51°comparing with that of double distilled water,92.04°)and appropriate predicted biodegradability(degradation order of“weeks”for bio-based surfactants synthesized from saturated fatty acids,and“months”for those synthesized from unsaturated fatty acids).Bio-based surfactants synthesized from unsaturated fatty acids showed better interfacial properties in reducing interfacial tension between crude oil and formation water.The bio-based surfactants presented in this study are alternative substitutes for traditional petroleum-based surfactants in various surfactant application fields.
基金Project(51373097)supported by The National Natural Science Foundation of China
文摘The effect of reducing agents and surfactants on controlling the silver nanoplates was studied. Two reducing agents, trisodium citrate dehydrate (TSC) and potassium tartrate, were used to reduce the AgNO3 solution. In this redox system, polyvinylpyrrolidone (PVP), sodium dodecyl sulfate (SDS) and arabic gum were served as surfactants. The results showed that reducing agents and surfactants both act as the capping agent adhering to the certain facets of silver seeds to block this surface to grow. The relative intensity of reducing agents also takes an active part in influencing the growth rate and direction of silver seeds. It was also found that halides can accelerate the speed of Ostwald ripening by adding Cl?, Br? and I?into the aqueous and have some effects on the morphology of the nanoplates.
基金Supported by the National Natural Science Fund (20947003)~~
文摘[Objective]The aim of this paper was to provide theoretical basis for study on enhancement of surfactants to desorption of PCBs from soil. [Method]The desorption effects of surfactants SDBs,Tween 80,HTAB on PCBs were studied as well as their distribution in water and soil. Effects of rationing on desorption of PCBs were also analyzed. [Result]The potential of single surfactant to enhance the desorption of PCBs from soil in order was Tween 80 SDBS HTAB. Three surfactants were largely adsorbed on soil and the sorption followed HTABTween 80SDBS. The desorption of PCBs increased significantly and linearly with the increase of aqueous micelle concentration of surfactants. [Conclusion]Enhancing effect of three surfactants on PCBs desorption were obtained,which will provide theoretical basis for further analyzing.
基金the Research and Development Fund of the Faculty of Engineering,Burapha University(No.70/2551)for financial supports
文摘A coagulation-flocculation process is typically employed to treat the industrial wastewater generated by the consumer products industry manufacturing detergents, soaps, and others. The expenditure of chemicals including coagulants and chemicals for pH adjustment is costly for treating this wastewater. The objective of this study was to evaluate the feasibility of reusing the aluminum sulfate (alum) sludge as a coagulant or as a coagulation aid so that the fresh alum dosage can be minimized or the removal efficiency can be enhanced. The experiments were conducted in a jar-test apparatus simulating the coagulation-flocculation process for simultaneous removals of organic matters, anionic surfactants, suspended solids, and turbidity. At the optimum initial pH value of 10 and the fresh alum concentration of 400 mg/L, the total suspended solids (TSS), total chemical oxygen demand (TCOD), total anionic surfactants, and turbidity removal efficiencies were 71.5%, 76.4%, 95.4%, and 98.2%, respectively. The addition of alum sludge as a coagulant alone without any fresh alum addition could significantly remove the turbidity, TCOD, and anionic surfactants. The TSS was left in the supernatants after the settling period, but would subsequently be removed by adding the fresh alum. The TSS, TCOD, and turbidity removal efficiencies were also enhanced when both the alum sludge and the fresh alum were employed. The TCOD removal efficiency over 80% has been accomplished, which has never fulfilled by using the fresh alum alone. It is concluded that the alum sludge could be reused for the treatment of industrial wastewater generated by the consumer products industry.