Quantitative detection of trace small-sized nanoplastics(<100 nm)remains a significant challenge in surface-enhanced Raman scattering(SERS).To tackle this issue,we developed a hydrophobic CuO@Ag nanowire substrate ...Quantitative detection of trace small-sized nanoplastics(<100 nm)remains a significant challenge in surface-enhanced Raman scattering(SERS).To tackle this issue,we developed a hydrophobic CuO@Ag nanowire substrate and introduced a multiplex-feature analysis strategy based on the coffee ring effect.This substrate not only offers high Raman enhancement but also exhibits a high probability of detection(POD),enabling rapid and accurate identification of 50 nm polystyrene nanoplastics over a broad concentration range(1–10−10 wt%).Importantly,experimental results reveal a strong correlation between the coffee ring formation and the concentration of nanoplastic dispersion.By incorporating Raman signal intensity,coffee ring diameter,and POD as combined features,we established a machine learning-based mapping between nanoplastic concentration and coffee ring characteristics,allowing precise predictions of dispersion concentration.The mean squared error of these predictions is remarkably low,ranging from 0.21 to 0.54,representing a 19 fold improvement in accuracy compared to traditional linear regression-based methods.This strategy effectively integrates SERS with wettability modification techniques,ensuring high sensitivity and fingerprinting capabilities,while addressing the limitations of Raman signal intensity in accurately reflecting concentration changes at ultra-low levels,providing a new idea for precise SERS measurements of nanoplastics.展开更多
Antifungal resistance is the leading cause of antifungal treatment failure in invasive candidiasis.Metabolic rewiring could become a new insight to account for antifungal resistance as to find innovative clinical ther...Antifungal resistance is the leading cause of antifungal treatment failure in invasive candidiasis.Metabolic rewiring could become a new insight to account for antifungal resistance as to find innovative clinical therapies.Here,we show that dynamic surface-enhanced Raman spectroscopy is a promising tool to identify the metabolic differences between fluconazole(Diflucan)-resistant and fluconazole(Diflucan)-sensitive Candida albicans through the signatures of biochemical components and complemented with machine learning algorithms and two-dimensional correlation spectroscopy,an underlying resistance mechanism,that is,the change of purine metabolites induced the resistance of Candida albicans has been clarified yet never reported anywhere.We hope the integrated methodology introduced in this work could be beneficial for the interpretation of cellular regulation,propelling the development of targeted antifungal therapies and diagnostic tools for more efficient management of severe antifungal resistance.展开更多
Revealing the factors that affect the vibrational frequency of Stark probe at interface is a pre-requirement for evaluating the absolute interfacial electric field.Here using surface-enhanced infrared absorption(SEIRA...Revealing the factors that affect the vibrational frequency of Stark probe at interface is a pre-requirement for evaluating the absolute interfacial electric field.Here using surface-enhanced infrared absorption(SEIRA)spectroscopy,attenuated total reflection(ATR)spectroscopy and molecular dynamics(MD),we reveal the assembled C≡N at gold nanofilm exhibits a reduced Stark tuning rate(STR)referring to the vibrational frequency shift in response to electric field comparing with the bulk which was regulated by the electron transfer between S and Au.These findings lead to a deeper understanding of the vibrational Stark effect at the interface and provide guidance for improving the interface electric field theory.展开更多
This paper presents a polymer-brush-guided templating strategy for fabricating ordered gold plasmonic architectures.The synthesized nanostructures featuring densely packed Au nanoparticles(NPs)exhibited strong surface...This paper presents a polymer-brush-guided templating strategy for fabricating ordered gold plasmonic architectures.The synthesized nanostructures featuring densely packed Au nanoparticles(NPs)exhibited strong surface-enhanced Raman scattering(SERS)activity.Using a simple mechanical transfer technique,these assemblies were integrated into flexible polydimethylsiloxane(PDMS)films.Polymer encapsulation during synthesis ensures structural integrity during processing,resulting in a mechanically robust SERS substrate with exceptional analytical performance.This platform achieved 4-mercaptobenzoic acid(4-MBA)detection at 100 pmol/L(10-10 mol/L)with high reproducibility(RSD=6.8%).Environmental and mechanical stability tests demonstrated 95%signal retention over 30 days and sustained functionality after 100 bending/twisting cycles.Combined with a non-destructive adhesion-transfer protocol,the substrate enabled on-site thiram detection on apple surfaces(1μmol/L limit).This study provides a scalable approach for developing flexible SERS devices for food safety monitoring and environmental analysis.展开更多
Rational design of porous metal oxide films that serve as not only the scaffolds for light absorbers but also the transfer layer of photo generated charges is essential for fabricating highly efficient photoanodes for...Rational design of porous metal oxide films that serve as not only the scaffolds for light absorbers but also the transfer layer of photo generated charges is essential for fabricating highly efficient photoanodes for photoelectrochemical(PEC)hydrogen generation.In this work,w report a facile one-step pyrolysis method which can convert Zn-based MOF to porous ZnO(m-ZnO)with rough surface and abundant oxygen vacancies(O_(v)).When incorporating core-shell quantum dots(QDs)as the light absorbers,the obtained photoanodes(m-ZnO@QDs)achieved outstanding PEC performance for hydrogen generation,exhibiting 1.6 times and 5.8 times higher saturated photocurrent density(J_(sc))than thos of conventional TiO_(2)@QDs and ZnO@QDs photoanodes,respectively.Comprehensive optical and electrochemical measurements reveal tha the rough surface of m-ZnO can significantly improve the light-harvesting capacity of corresponding photoanodes through surface-enhanced light scattering.Moreover,the O_(v)in m-ZnO facilitate the interfacial transfer of photogenerated electrons.Our findings indicate that the MOF are valuable precursors for the preparation of porous films,offering a promising route to develop high-performance QDs-based PEC devices.展开更多
An optical biosensor is a specialized analytical device that utilizes the principles of optics and light in bimolecular processes.Localized surface plasmon resonance(LSPR)is a phenomenon in the realm of nanophotonics ...An optical biosensor is a specialized analytical device that utilizes the principles of optics and light in bimolecular processes.Localized surface plasmon resonance(LSPR)is a phenomenon in the realm of nanophotonics that occurs when metallic nanoparticles(NPs)or nanostructures interact with incident light.Conversely,surface-enhanced Raman spectroscopy(SERS)is an influential analytical technique based on Raman scattering,wherein it amplifies the Raman signals of molecules when they are situated near specific and specially designed nanostructures.A detailed exploration of the recent groundbreaking developments in optical biosensors employing LSPR and SERS technologies has been thoroughly discussed along with their underlying principles and the working mechanisms.A biosensor chip has been created,featuring a high-density deposition of gold nanoparticles(AuNPs)under varying ligand concentration and reaction duration on the substrate.An ordinary description,along with a visual illustration,has been thoroughly provided for concepts such as a sensogram,refractive index shift,surface plasmon resonance(SPR),and the evanescent field,Rayleigh scattering,Raman scattering,as well as the electromagnetic enhancement and chemical enhancement.LSPR and SERS both have advantages and disadvantages,but widely used SERS has some advantages over LSPR,like chemical specificity,high sensitivity,multiplexing,and versatility in different fields.This review confirms and elucidates the significance of different disease biomarker identification.LSPR and SERS both play a vital role in the detection of various types of cancer,such as cervical cancer,ovarian cancer,endometrial cancer,prostate cancer,colorectal cancer,and brain tumors.This proposed optical biosensor offers potential applications for early diagnosis and monitoring of viral disease,bacterial infectious diseases,fungal diseases,diabetes,and cardiac disease biosensing.LSPR and SERS provide a new direction for environmental monitoring,food safety,refining impurities from water samples,and lead detection.The understanding of these biosensors is still limited and challenging.展开更多
Glioblastoma multiforme(GBM)is the most common malignant primary brain tumor in adults.The precise identification and distinction of GBM heterogeneity from surrounding brain parenchyma at the cellular level and even a...Glioblastoma multiforme(GBM)is the most common malignant primary brain tumor in adults.The precise identification and distinction of GBM heterogeneity from surrounding brain parenchyma at the cellular level and even at the tissue level are important for GBM therapy.In this study,GBM cells are distinguished from normal astrocytes and non-central nervous system(CNS)tumor cells by surface-enhanced Raman scattering(SERS)based on gold nanoshell(SiO_(2)@Au)particles and support vector machine(SVM)algorithm.In addition,the gold nanoisland(AuNI)SERS substrates are further developed and explored for accurate detection of GBM at the tissue level.The distinction between glioma and trauma tissues,identification of different tumor grades,and IDH mutation are realized with the assistance of orthogonal partial least squares discriminant analysis(OPLS-DA)in a rapid,non-invasive,and convenient method.The results show that the developed SERS-based analytical method has the potential for practical application for the detection of GBM at the single-cell and tissue levels and even for real-time intraoperative diagnosis.展开更多
Surface-enhanced Raman scattering(SERS)spectroscopy has emerged as a powerful analytical technique for detecting and identifying trace chemical and biological molecules.In this review,we present an indepth discussion ...Surface-enhanced Raman scattering(SERS)spectroscopy has emerged as a powerful analytical technique for detecting and identifying trace chemical and biological molecules.In this review,we present an indepth discussion of recent advances in the field of crystal phase manipulation to achieve exceptional SERS performance.Focusing on transition metal dichalcogenides,(hydr)oxides,and carbides as exemplary materials,we illustrate the pivotal role of crystal phase regulation in enhancing SERS signals.By exploring the correlation between crystal phases and SERS responses,we uncover the underlying principles behind these strategies,thereby shedding light on their potential for future SERS applications.By addressing the current challenges and limitations,we also propose the prospects of the crystal phase strategy to facilitate the development of cutting-edge SERS-based sensing technologies.展开更多
Electrocatalysis offers a promising approach towards chemical synthesis driven by renewable energy.Molecular level understanding of the electrochemical interface remains challenging due to its compositional and struct...Electrocatalysis offers a promising approach towards chemical synthesis driven by renewable energy.Molecular level understanding of the electrochemical interface remains challenging due to its compositional and structural complexity.In situ interfacial specific characterization techniques could help uncover structure-function relationships and reaction mechanism.To this end,electrochemical surface-enhanced Raman spectroscopy(SERS)and surface-enhanced infrared absorption spectroscopy(SEIRAS)thrive as powerful techniques to provide fingerprint information of interfacial species at reaction conditions.In this review,we first introduce the fundamentals of SERS and SEIRAS,followed by discussion regarding the technical challenges and potential solutions.Finally,we highlight future directions for further development of surface-enhanced spectroscopic techniques for electrocatalytic studies.展开更多
The structure, electrostatic properties, and Raman spectra of aflatoxin B1 (AFB1) and AFB1-Ag complex are studied by density functional theory with B3LYP/6- 311G(d,p)/Lan12dz basis set. The results show that the s...The structure, electrostatic properties, and Raman spectra of aflatoxin B1 (AFB1) and AFB1-Ag complex are studied by density functional theory with B3LYP/6- 311G(d,p)/Lan12dz basis set. The results show that the surface-enhanced Raman scattering (SERS) and pre-resonance Raman spectra of AFB1-Ag complex strongly depend on the adsorption site and the excitation wavelength found to enhance 102-103 order compared to of the incident light. The SERS factors are normal Raman spectrum of AFB1 molecule due to the larger static polarizabilities of the AFB1-Ag complex, which directly results in the stronger chemical enhancement in SERS spectra. The pre-resonance Raman spectra of AFB1-Ag complex are explored at 266, 482, 785, and 1064 nm incident light wavelength, in which the enhancement factors are about 10^2-10^4, mainly caused by the charge-transfer excitation resonance. The vibrational modes are analyzed to explain the relationship between the vibrational direction and the enhanced Raman intensities.展开更多
Environmental pollution, a major problem worldwide, poses considerable threat to human health and ecological environment. Efficient and reliable detection technologies, which focus on the appearance of emerging enviro...Environmental pollution, a major problem worldwide, poses considerable threat to human health and ecological environment. Efficient and reliable detection technologies, which focus on the appearance of emerging environmental and trace pollutants, are urgently needed. Surface-enhanced Raman scattering(SERS) has become an attractive analytical tool for sensing trace targets in environmental field because of its inherent molecular fingerprint specificity and high sensitivity. In this review, we focused on the recent developments in the integration of magnetic nanoparticles(MNPs) with SERS for facilitating sensitive detection of environmental pollutants. An overview and classification of different types of MNPs for SERS detection were initially provided, enabling us to categorize the huge amount of literature that was available in the interdisciplinary research field of MNPs based SERS technology. Then, the basic working principles and applications of MNPs in SERS detection were presented. Subsequently, the detection technologies integrating MNPs with SERS that eventually were used for the detection of various environmental pollutions were reviewed. Finally, the advantages of MNP-basedSERS detection technology for environmental pollutants were concluded, and the current challenges and future outlook of this technology in practical applications were highlighted. The application of the MNPsbasedSERS techniques for environmental analysis will be significantly advanced with the great progresses of the nanotechnologies, optics, and materials.展开更多
Surface-enhanced Raman scattering (SERS) and surface-enhanced resonance Raman scattering (SERRS) spectra of the 1,4-benzenedithiol molecule in the junction of two Au3 clusters have been calculated using density fu...Surface-enhanced Raman scattering (SERS) and surface-enhanced resonance Raman scattering (SERRS) spectra of the 1,4-benzenedithiol molecule in the junction of two Au3 clusters have been calculated using density functional theory (DFT) and time-dependent DFT method. In order to investigate the contribution of charge transfer (CT) enhancement, the wavelengths of incident light are chosen to be at resonance with four representative excited states, which correspond to CT in four different forms. Compared with SERS spectrum, SERRS spectra are enhanced enormously with distinct enhancement factors, which can be attributed to CT resonance in different forms.展开更多
The limited penetration of photons in biological tissue restricts the deep-tissue detection and imaging application.The micro-scale spatially offset Raman spectroscopy(micro-SORS)with an optical fiber probe,colleting ...The limited penetration of photons in biological tissue restricts the deep-tissue detection and imaging application.The micro-scale spatially offset Raman spectroscopy(micro-SORS)with an optical fiber probe,colleting photons from deeper regions by offsetting the position of laser excitation from the collection optics in a range of hundreds of microns,shows great potential to be integrated with endoscopy for inside-body noninvasive detection by circumventing this restric-tion,particularly with the combination of surface-enhanced Raman spectroscopy(SERS).However,a detailed tissue penetration study of micro-SORS in combination with SERS is still lacking.Herein,we compared the signal decay of enhanced Raman nanotags through the tissue phantom of agarose gel and the biological tissue of porcine muscle in the near-infrared(NIR)region using a portable Raman spectrometer with a micro-SORS probe(2.1 mm in diameter)and a conventional hand-held probe(9.7mm in diameter).Two kinds of Raman nanotags were prepared from gold nanorods decorated with the nonresonant(4-nitrobenzenethiol)or resonant Raman reporter molecules(IR-780 iodide).The SERS measurements show that the penetration depths of two Raman nanotags are both over 2 cm in agarose gel and 3 mm in porcine muscle.The depth could be improved to over 4 cm in agarose gel and 5 mm in porcine tissue when using the micro-SORS system.This demonstrates the superiority of optical-fiber micro-SORS system over the conventional Raman detection for the detection of nanotags in deeper layers in the turbid medium and biological tissue,offering the possibility of combining the micro-SORS technique with SERS for noninvasive in vivo endoscopy-integrated clinical application.展开更多
In this study,a convenient method of preparing the substrate is proposed with one-pot synthesis of silver colloid under body heat,and the SERS detection uses the fresh substrate to avoid the drawback of substrates’sh...In this study,a convenient method of preparing the substrate is proposed with one-pot synthesis of silver colloid under body heat,and the SERS detection uses the fresh substrate to avoid the drawback of substrates’short life of use.The synthesis of silver colloid is carried out in a 10 mL vial by using ascorbic acid as a reductant and trisodium citrate as a stabilizer.The vial is grasped with the palm of the experimenter for several minutes without shaking.The proposed method is simple,rapid,green energy and cost-effective.By adjusting the concentration of trisodium citrate,not only the particle size can be controlled from about 110 nm to 50 nm but also the homogeneity of nanoparticles can be improved.As a SERS substrate,the silver colloid has high batch reproducibility and showed good SERS activity.The relative standard deviation between different manufacturers is 5.51%when the substrate of silver colloid is used for the detection of rhodamine 6 G.Using the substrate,the lowest detection concentrations of rhodamine 6 G,crystal violet,enrofloxacin,melamine and leucomalachite green are 1.0×10-8,6.1×10-8,1.4×10-6,7.1×10-5 and 5.1×10-8 mol/L,respectively.Results demonstrate that the developed method has the advantage of convenience and high efficiency in the field preparation of reliable SERS substrate.展开更多
Docetaxel-based chemotherapy,as the first-line treatment for metastatic castration-resistant prostate cancer(mCRPC),has succeeded in helping quite a number of patients to improve quality of life and prolong survival t...Docetaxel-based chemotherapy,as the first-line treatment for metastatic castration-resistant prostate cancer(mCRPC),has succeeded in helping quite a number of patients to improve quality of life and prolong survival time.However,almost half of mCRPC patients are not sensitive to docetaxel chemotherapy initially.This study aimed to establish models to predict sensitivity to docetaxel chemotherapy in patients with mCRPC by using serum surface-enhanced Raman spectroscopy(SERS).A total of 32 mCPRC patients who underwent docetaxel chemo-therapy at our center from July 2016 to March 2018 were included in this study.Patients were dichotomized in prostate-specific antigen(PSA)response group(n=17)versus PSA failure group(n=15)according to the response to docetaxel.In total 64 matched spectra from 32 mCRPC patients were obtained by using SERS of serum at baseline(q0)and after 1 cycle of docetaxel chemotherapy(ql).Comparing Raman peaks of serum samples at baseline(q0)be-tween two groups,significant differences revealed at the peaks of 638,810,890(p<0.05)and 1136cm^(-1)(p<0.01).The prediction models of peak 1363 cm^(-1)and principal component anal-ysis and linear discriminant analysis(PCA-LDA)based on Raman data were established,re-spectively.The sensitivity and specificity of the prediction models were 71%,80%and 69%,78%through the way of leave-one-out cross-validation.According to the results of five-cross-valida-tion,the PCA-LDA model revealed an accuracy of 0.73 and AUC of 0.83.展开更多
As an effective and universal acaricide, amitraz is widely used on beehives against varroasis caused by the mite Varroa jacobsoni. Its residues in honey pose a great danger to human health. In this study, a sensitive,...As an effective and universal acaricide, amitraz is widely used on beehives against varroasis caused by the mite Varroa jacobsoni. Its residues in honey pose a great danger to human health. In this study, a sensitive, rapid, and environmentally friendly surface-enhanced Raman spectroscopy method (SERS) was developed for the determination of trace amount of amitraz in honey with the use of silver nanorod (AgNR) array substrate. The AgNR array substrate fabricated by an oblique angle deposition technique exhibited an excellent SERS activity with an enhancement factor of -10^7. Density function theory was employed to assign the characteristic peak of amitraz. The detection of amitraz was further explored and amitraz in honey at concentrations as low as 0.08 mg/kg can be identified. Specifically, partial least square regression analysis was employed to correlate the SERS spectra in full-wavelength with Camitraz to afford a multiple-quantitative amitraz predicting model. Preliminary results show that the predicted concentrations of amitraz in honey samples are in good agreement with their real concentrations. Compared with the conventional univariate quantitative model based on single peak’s intensity, the proposed multiple-quantitative predicting model integrates all the characteristic peaks of amitraz, thus offering an improved detecting accuracy and anti-interference ability.展开更多
Androgens play a central role in prostate cancer pathogenesis, and hence most of the patients respond to androgen deprivation therapies. However, patients tend to relapse with aggressive prostate cancer, which has bee...Androgens play a central role in prostate cancer pathogenesis, and hence most of the patients respond to androgen deprivation therapies. However, patients tend to relapse with aggressive prostate cancer, which has been termed as hormone refractory. To identify the proteins that mediate progression to the hormone-refractory state, we used protein-chip technology for mass profiling of patients' sera. This study included 16 patients with metastatic hormone-refractory prostate cancer who were initially treated with androgen deprivation therapy. Serum samples were collected from each patient at five time points: point A, pre-treatment; point B, at the nadir of the prostate- specific antigen (PSA) level; point C, PSA failure; point D, the early hormone-refractory phase; and point E, the late hormone-refractory phase. Using surface-enhanced laser desorption/ionization time-of-flight mass spectrometry, we performed protein mass profiling of the patients' sera and identified a 6 640-Da peak that increased with disease progression. Target proteins were partially purified, and by amino acid sequencing the peak was identified as a fragment of apolipoprotein C-I (ApoC-I). Serum ApoC-I protein levels increased with disease progression. On immunohistochemical analysis, the ApoC-i protein was found localized to the cytoplasm of the hormone-refractory cancer cells. In this study, we showed an increase in serum ApoC-I protein levels in prostate cancer patients during their progression to the hormone-refractory state, which suggests that ApoC-I protein is related to progression of prostate cancer. However, as the exact role of ApoC-I in prostate cancer pathogenesis is unclear, further research is required.展开更多
Exosomal micro RNA(mi RNA) is an ideal candidate of noninvasive biomarker for the early diagnosis of cancer. Sensitive and accurate sensing of abnormal exosomal mi RNA plays essential role for clinical promotion due t...Exosomal micro RNA(mi RNA) is an ideal candidate of noninvasive biomarker for the early diagnosis of cancer. Sensitive and accurate sensing of abnormal exosomal mi RNA plays essential role for clinical promotion due to its close correlation with tumor proliferation and progression. Herein, a microfluidic surface-enhanced Raman scattering(SERS) sensor was proposed for an on-line detection of exosomal mi RNA based on rolling circle amplification(RCA) and tyramine signal amplification(TSA) strategy. The microfluidic chip consists of a magnetic enrichment chamber, a serpentine fluidic mixer and a plasmonic SERS substrate functionalized with capture probes. The released mi RNA activates the capture probe, triggers RCA reaction, and generates a large number of single-stranded DNA products to drive the catalysis of nanotags deposition via TSA, producing numerous “hot spots” to enhance the SERS signals. In merit of the microfluidics chip and nucleic acid-tyramine cascade amplification, the developed SERS sensor significantly improves the sensitivity for the exosomal mi RNA assay, resulting in a limit of detection(LOD) as low as 1 pmol/L and can be successfully applied in the analysis of exosomes secreted from breast tumor cells, which demonstrates the potential utility in practical applications.展开更多
Rapid and simple detections of two kinds of prohibited fish drugs, crystal violet (CV) and malachite green (MG), were accomplished by surface-enhanced Raman scattering (SERS). Based on the optimized Au/cicada wi...Rapid and simple detections of two kinds of prohibited fish drugs, crystal violet (CV) and malachite green (MG), were accomplished by surface-enhanced Raman scattering (SERS). Based on the optimized Au/cicada wing, the detectable concentration of CV/MG can reach 10-7 M, and the linear logarithmic quantitative relationship curves between log/and logC allows for the determination of the unknown concentration of CV/MG solution. The detection of these two analytes in real environment was also achieved, demonstrating the application potential of SERS in the fast screening of the prohibited fish drugs, which is of great benefit for food safety and environmental monitoring.展开更多
Proteins and peptides perform a vital role in living systems, however it remains a challenge for accurate description of proteins at the molecular level. Despite that surface-enhanced Raman spectroscopy (SERS) can pro...Proteins and peptides perform a vital role in living systems, however it remains a challenge for accurate description of proteins at the molecular level. Despite that surface-enhanced Raman spectroscopy (SERS) can provide the intrinsic fingerprint information of samples with ultrahigh sensitivity, it suffers from the poor reproducibility and reliability. Herein, we demonstrate that the silver nanorod array fabricated by an oblique angle deposition method is a powerful substrate for SERS to probe the protein secondary structures without exogenous labels. With this method, the SERS signals of two typical proteins (lysozyme and cytochrome c) are successfully obtained. Additionally, by analyzing the spectral signals of the amide Ⅲ of protein backbone, the influence of concentration on the folding status of proteins has been elucidated. With the concentration increasing, the components of α-helix and β-sheet structures of lysozyme increase while the secondary structures of cytochrome c almost keep constant. The SERS method in this work offers an effective optical marker to characterize the structures of proteins.展开更多
基金the National Natural Science Foundation of China(No.12174229 and 22375117)Natural Science Foundation of Shandong Province(No.ZR2022YQ02 and ZR2023MB149)Taishan Scholars Program of Shandong Province(No.tsqn202306152)for financial support.
文摘Quantitative detection of trace small-sized nanoplastics(<100 nm)remains a significant challenge in surface-enhanced Raman scattering(SERS).To tackle this issue,we developed a hydrophobic CuO@Ag nanowire substrate and introduced a multiplex-feature analysis strategy based on the coffee ring effect.This substrate not only offers high Raman enhancement but also exhibits a high probability of detection(POD),enabling rapid and accurate identification of 50 nm polystyrene nanoplastics over a broad concentration range(1–10−10 wt%).Importantly,experimental results reveal a strong correlation between the coffee ring formation and the concentration of nanoplastic dispersion.By incorporating Raman signal intensity,coffee ring diameter,and POD as combined features,we established a machine learning-based mapping between nanoplastic concentration and coffee ring characteristics,allowing precise predictions of dispersion concentration.The mean squared error of these predictions is remarkably low,ranging from 0.21 to 0.54,representing a 19 fold improvement in accuracy compared to traditional linear regression-based methods.This strategy effectively integrates SERS with wettability modification techniques,ensuring high sensitivity and fingerprinting capabilities,while addressing the limitations of Raman signal intensity in accurately reflecting concentration changes at ultra-low levels,providing a new idea for precise SERS measurements of nanoplastics.
基金supported by grants from the National Natural Science Foundation of China(Nos.22074015 and 82074428)Youth Talent Cultivation Initiation Fund of Zhongda Hospital,Southeast University(No.CZXM-GSP-RC110)to Hao Li+1 种基金Evidence-Based Capacity Building for TCM Specialty Therapies for Skin Diseases of National Administration of TCMInnovative Team Projects of Shanghai Municipal Commission of Health(No.2022CX011)to Fulun Li.
文摘Antifungal resistance is the leading cause of antifungal treatment failure in invasive candidiasis.Metabolic rewiring could become a new insight to account for antifungal resistance as to find innovative clinical therapies.Here,we show that dynamic surface-enhanced Raman spectroscopy is a promising tool to identify the metabolic differences between fluconazole(Diflucan)-resistant and fluconazole(Diflucan)-sensitive Candida albicans through the signatures of biochemical components and complemented with machine learning algorithms and two-dimensional correlation spectroscopy,an underlying resistance mechanism,that is,the change of purine metabolites induced the resistance of Candida albicans has been clarified yet never reported anywhere.We hope the integrated methodology introduced in this work could be beneficial for the interpretation of cellular regulation,propelling the development of targeted antifungal therapies and diagnostic tools for more efficient management of severe antifungal resistance.
基金The National Key R&D Program of China(No.2022YFE0113000)the National Science Fund for Distinguished Young Scholars(No.22025406)+1 种基金the National Natural Science Foundation of China(Nos.22074138,12174457)the Youth Innovation Promotion Association of CAS(No.2020233)for financial support。
文摘Revealing the factors that affect the vibrational frequency of Stark probe at interface is a pre-requirement for evaluating the absolute interfacial electric field.Here using surface-enhanced infrared absorption(SEIRA)spectroscopy,attenuated total reflection(ATR)spectroscopy and molecular dynamics(MD),we reveal the assembled C≡N at gold nanofilm exhibits a reduced Stark tuning rate(STR)referring to the vibrational frequency shift in response to electric field comparing with the bulk which was regulated by the electron transfer between S and Au.These findings lead to a deeper understanding of the vibrational Stark effect at the interface and provide guidance for improving the interface electric field theory.
基金supported by the National Natural Science Foundation of China(Nos.22401045,22301037)Natural Science Foundation of Guangdong Province(No.2022A1515110867).
文摘This paper presents a polymer-brush-guided templating strategy for fabricating ordered gold plasmonic architectures.The synthesized nanostructures featuring densely packed Au nanoparticles(NPs)exhibited strong surface-enhanced Raman scattering(SERS)activity.Using a simple mechanical transfer technique,these assemblies were integrated into flexible polydimethylsiloxane(PDMS)films.Polymer encapsulation during synthesis ensures structural integrity during processing,resulting in a mechanically robust SERS substrate with exceptional analytical performance.This platform achieved 4-mercaptobenzoic acid(4-MBA)detection at 100 pmol/L(10-10 mol/L)with high reproducibility(RSD=6.8%).Environmental and mechanical stability tests demonstrated 95%signal retention over 30 days and sustained functionality after 100 bending/twisting cycles.Combined with a non-destructive adhesion-transfer protocol,the substrate enabled on-site thiram detection on apple surfaces(1μmol/L limit).This study provides a scalable approach for developing flexible SERS devices for food safety monitoring and environmental analysis.
基金supported by the National Natural Science Foundation of China(Grant No.12275190,12105201)Jiangsu Funding Program for Excellent Postdoctoral Talent(Grant No.2024ZB723)。
文摘Rational design of porous metal oxide films that serve as not only the scaffolds for light absorbers but also the transfer layer of photo generated charges is essential for fabricating highly efficient photoanodes for photoelectrochemical(PEC)hydrogen generation.In this work,w report a facile one-step pyrolysis method which can convert Zn-based MOF to porous ZnO(m-ZnO)with rough surface and abundant oxygen vacancies(O_(v)).When incorporating core-shell quantum dots(QDs)as the light absorbers,the obtained photoanodes(m-ZnO@QDs)achieved outstanding PEC performance for hydrogen generation,exhibiting 1.6 times and 5.8 times higher saturated photocurrent density(J_(sc))than thos of conventional TiO_(2)@QDs and ZnO@QDs photoanodes,respectively.Comprehensive optical and electrochemical measurements reveal tha the rough surface of m-ZnO can significantly improve the light-harvesting capacity of corresponding photoanodes through surface-enhanced light scattering.Moreover,the O_(v)in m-ZnO facilitate the interfacial transfer of photogenerated electrons.Our findings indicate that the MOF are valuable precursors for the preparation of porous films,offering a promising route to develop high-performance QDs-based PEC devices.
文摘An optical biosensor is a specialized analytical device that utilizes the principles of optics and light in bimolecular processes.Localized surface plasmon resonance(LSPR)is a phenomenon in the realm of nanophotonics that occurs when metallic nanoparticles(NPs)or nanostructures interact with incident light.Conversely,surface-enhanced Raman spectroscopy(SERS)is an influential analytical technique based on Raman scattering,wherein it amplifies the Raman signals of molecules when they are situated near specific and specially designed nanostructures.A detailed exploration of the recent groundbreaking developments in optical biosensors employing LSPR and SERS technologies has been thoroughly discussed along with their underlying principles and the working mechanisms.A biosensor chip has been created,featuring a high-density deposition of gold nanoparticles(AuNPs)under varying ligand concentration and reaction duration on the substrate.An ordinary description,along with a visual illustration,has been thoroughly provided for concepts such as a sensogram,refractive index shift,surface plasmon resonance(SPR),and the evanescent field,Rayleigh scattering,Raman scattering,as well as the electromagnetic enhancement and chemical enhancement.LSPR and SERS both have advantages and disadvantages,but widely used SERS has some advantages over LSPR,like chemical specificity,high sensitivity,multiplexing,and versatility in different fields.This review confirms and elucidates the significance of different disease biomarker identification.LSPR and SERS both play a vital role in the detection of various types of cancer,such as cervical cancer,ovarian cancer,endometrial cancer,prostate cancer,colorectal cancer,and brain tumors.This proposed optical biosensor offers potential applications for early diagnosis and monitoring of viral disease,bacterial infectious diseases,fungal diseases,diabetes,and cardiac disease biosensing.LSPR and SERS provide a new direction for environmental monitoring,food safety,refining impurities from water samples,and lead detection.The understanding of these biosensors is still limited and challenging.
基金supported by Key Research and Development Program:Social Development Project(No.BE2021653)Natural Science Foundation of Jiangsu Province(No.BK20201172)+1 种基金Key Program of Health Commission of Jiangsu Province(No.ZBD2020016)Zhejiang Provincial Natural Science Foundation of China(No.LR19H180001)。
文摘Glioblastoma multiforme(GBM)is the most common malignant primary brain tumor in adults.The precise identification and distinction of GBM heterogeneity from surrounding brain parenchyma at the cellular level and even at the tissue level are important for GBM therapy.In this study,GBM cells are distinguished from normal astrocytes and non-central nervous system(CNS)tumor cells by surface-enhanced Raman scattering(SERS)based on gold nanoshell(SiO_(2)@Au)particles and support vector machine(SVM)algorithm.In addition,the gold nanoisland(AuNI)SERS substrates are further developed and explored for accurate detection of GBM at the tissue level.The distinction between glioma and trauma tissues,identification of different tumor grades,and IDH mutation are realized with the assistance of orthogonal partial least squares discriminant analysis(OPLS-DA)in a rapid,non-invasive,and convenient method.The results show that the developed SERS-based analytical method has the potential for practical application for the detection of GBM at the single-cell and tissue levels and even for real-time intraoperative diagnosis.
基金financial support from the National Natural Science Foundation of China(Nos.21871065 and 22071038)Heilongjiang Touyan Team(No.HITTY-20190033)Interdisciplinary Research Foundation of HIT(No.IR2021205)。
文摘Surface-enhanced Raman scattering(SERS)spectroscopy has emerged as a powerful analytical technique for detecting and identifying trace chemical and biological molecules.In this review,we present an indepth discussion of recent advances in the field of crystal phase manipulation to achieve exceptional SERS performance.Focusing on transition metal dichalcogenides,(hydr)oxides,and carbides as exemplary materials,we illustrate the pivotal role of crystal phase regulation in enhancing SERS signals.By exploring the correlation between crystal phases and SERS responses,we uncover the underlying principles behind these strategies,thereby shedding light on their potential for future SERS applications.By addressing the current challenges and limitations,we also propose the prospects of the crystal phase strategy to facilitate the development of cutting-edge SERS-based sensing technologies.
文摘Electrocatalysis offers a promising approach towards chemical synthesis driven by renewable energy.Molecular level understanding of the electrochemical interface remains challenging due to its compositional and structural complexity.In situ interfacial specific characterization techniques could help uncover structure-function relationships and reaction mechanism.To this end,electrochemical surface-enhanced Raman spectroscopy(SERS)and surface-enhanced infrared absorption spectroscopy(SEIRAS)thrive as powerful techniques to provide fingerprint information of interfacial species at reaction conditions.In this review,we first introduce the fundamentals of SERS and SEIRAS,followed by discussion regarding the technical challenges and potential solutions.Finally,we highlight future directions for further development of surface-enhanced spectroscopic techniques for electrocatalytic studies.
基金ACKNOWLEDGMENTS This work was supported by the National Natural Science Foundation of China (No.11174237), the National Basic Rcsearch Program of China (No.2013CB328904), and the Application Basic program of Sichuan Province (No.2013JY0035).
文摘The structure, electrostatic properties, and Raman spectra of aflatoxin B1 (AFB1) and AFB1-Ag complex are studied by density functional theory with B3LYP/6- 311G(d,p)/Lan12dz basis set. The results show that the surface-enhanced Raman scattering (SERS) and pre-resonance Raman spectra of AFB1-Ag complex strongly depend on the adsorption site and the excitation wavelength found to enhance 102-103 order compared to of the incident light. The SERS factors are normal Raman spectrum of AFB1 molecule due to the larger static polarizabilities of the AFB1-Ag complex, which directly results in the stronger chemical enhancement in SERS spectra. The pre-resonance Raman spectra of AFB1-Ag complex are explored at 266, 482, 785, and 1064 nm incident light wavelength, in which the enhancement factors are about 10^2-10^4, mainly caused by the charge-transfer excitation resonance. The vibrational modes are analyzed to explain the relationship between the vibrational direction and the enhanced Raman intensities.
基金financially supported by the National Natural Science Foundation of China (Nos. 21675171, 21277173)the National Instrument Major Project of China (No. 2012YQ3011105)+2 种基金the Fundamental Research Funds for the Central Universitiesthe Research Funds of Renmin University of China (No. 15XNLD04)the Special Fund of State Key Joint Laboratory of Environment Simulation and Pollution Control (No. 17K06ESPCT)
文摘Environmental pollution, a major problem worldwide, poses considerable threat to human health and ecological environment. Efficient and reliable detection technologies, which focus on the appearance of emerging environmental and trace pollutants, are urgently needed. Surface-enhanced Raman scattering(SERS) has become an attractive analytical tool for sensing trace targets in environmental field because of its inherent molecular fingerprint specificity and high sensitivity. In this review, we focused on the recent developments in the integration of magnetic nanoparticles(MNPs) with SERS for facilitating sensitive detection of environmental pollutants. An overview and classification of different types of MNPs for SERS detection were initially provided, enabling us to categorize the huge amount of literature that was available in the interdisciplinary research field of MNPs based SERS technology. Then, the basic working principles and applications of MNPs in SERS detection were presented. Subsequently, the detection technologies integrating MNPs with SERS that eventually were used for the detection of various environmental pollutions were reviewed. Finally, the advantages of MNP-basedSERS detection technology for environmental pollutants were concluded, and the current challenges and future outlook of this technology in practical applications were highlighted. The application of the MNPsbasedSERS techniques for environmental analysis will be significantly advanced with the great progresses of the nanotechnologies, optics, and materials.
基金This work was supported by the National Natural Science Foundation of China (No.10604012, No.10974023, No.10874234, No.20703064, No.90923003), the National Basic Research Project of China (No.2009CB930Y01), and the Fundamental Research Funds for the Central Universities (No.DUT10LK03).
文摘Surface-enhanced Raman scattering (SERS) and surface-enhanced resonance Raman scattering (SERRS) spectra of the 1,4-benzenedithiol molecule in the junction of two Au3 clusters have been calculated using density functional theory (DFT) and time-dependent DFT method. In order to investigate the contribution of charge transfer (CT) enhancement, the wavelengths of incident light are chosen to be at resonance with four representative excited states, which correspond to CT in four different forms. Compared with SERS spectrum, SERRS spectra are enhanced enormously with distinct enhancement factors, which can be attributed to CT resonance in different forms.
基金This work was financially supported by National Natural Science Foundation of China(Nos.81871401 and 81901786)China Postdoctoral Science Foundation(Nos.2018M640395 and 2019T120343)+3 种基金the Science and Technology Commission of Shanghai Municipality(No.19441905300)Innovation Research Plan supported by Shanghai Municipal Education Commission(No.ZXWF082101)Shanghai Jiao Tong University(Nos.YG2017MS54 and YG2019QNA28)the Shanghai Key Laboratory of Gynecologic Oncology.
文摘The limited penetration of photons in biological tissue restricts the deep-tissue detection and imaging application.The micro-scale spatially offset Raman spectroscopy(micro-SORS)with an optical fiber probe,colleting photons from deeper regions by offsetting the position of laser excitation from the collection optics in a range of hundreds of microns,shows great potential to be integrated with endoscopy for inside-body noninvasive detection by circumventing this restric-tion,particularly with the combination of surface-enhanced Raman spectroscopy(SERS).However,a detailed tissue penetration study of micro-SORS in combination with SERS is still lacking.Herein,we compared the signal decay of enhanced Raman nanotags through the tissue phantom of agarose gel and the biological tissue of porcine muscle in the near-infrared(NIR)region using a portable Raman spectrometer with a micro-SORS probe(2.1 mm in diameter)and a conventional hand-held probe(9.7mm in diameter).Two kinds of Raman nanotags were prepared from gold nanorods decorated with the nonresonant(4-nitrobenzenethiol)or resonant Raman reporter molecules(IR-780 iodide).The SERS measurements show that the penetration depths of two Raman nanotags are both over 2 cm in agarose gel and 3 mm in porcine muscle.The depth could be improved to over 4 cm in agarose gel and 5 mm in porcine tissue when using the micro-SORS system.This demonstrates the superiority of optical-fiber micro-SORS system over the conventional Raman detection for the detection of nanotags in deeper layers in the turbid medium and biological tissue,offering the possibility of combining the micro-SORS technique with SERS for noninvasive in vivo endoscopy-integrated clinical application.
文摘In this study,a convenient method of preparing the substrate is proposed with one-pot synthesis of silver colloid under body heat,and the SERS detection uses the fresh substrate to avoid the drawback of substrates’short life of use.The synthesis of silver colloid is carried out in a 10 mL vial by using ascorbic acid as a reductant and trisodium citrate as a stabilizer.The vial is grasped with the palm of the experimenter for several minutes without shaking.The proposed method is simple,rapid,green energy and cost-effective.By adjusting the concentration of trisodium citrate,not only the particle size can be controlled from about 110 nm to 50 nm but also the homogeneity of nanoparticles can be improved.As a SERS substrate,the silver colloid has high batch reproducibility and showed good SERS activity.The relative standard deviation between different manufacturers is 5.51%when the substrate of silver colloid is used for the detection of rhodamine 6 G.Using the substrate,the lowest detection concentrations of rhodamine 6 G,crystal violet,enrofloxacin,melamine and leucomalachite green are 1.0×10-8,6.1×10-8,1.4×10-6,7.1×10-5 and 5.1×10-8 mol/L,respectively.Results demonstrate that the developed method has the advantage of convenience and high efficiency in the field preparation of reliable SERS substrate.
基金The study was supported by Clinical Research Plan of SHDC(No.SHDC2020CR3014A)National Natural Science Foundation of China(Grant No.82003148).
文摘Docetaxel-based chemotherapy,as the first-line treatment for metastatic castration-resistant prostate cancer(mCRPC),has succeeded in helping quite a number of patients to improve quality of life and prolong survival time.However,almost half of mCRPC patients are not sensitive to docetaxel chemotherapy initially.This study aimed to establish models to predict sensitivity to docetaxel chemotherapy in patients with mCRPC by using serum surface-enhanced Raman spectroscopy(SERS).A total of 32 mCPRC patients who underwent docetaxel chemo-therapy at our center from July 2016 to March 2018 were included in this study.Patients were dichotomized in prostate-specific antigen(PSA)response group(n=17)versus PSA failure group(n=15)according to the response to docetaxel.In total 64 matched spectra from 32 mCRPC patients were obtained by using SERS of serum at baseline(q0)and after 1 cycle of docetaxel chemotherapy(ql).Comparing Raman peaks of serum samples at baseline(q0)be-tween two groups,significant differences revealed at the peaks of 638,810,890(p<0.05)and 1136cm^(-1)(p<0.01).The prediction models of peak 1363 cm^(-1)and principal component anal-ysis and linear discriminant analysis(PCA-LDA)based on Raman data were established,re-spectively.The sensitivity and specificity of the prediction models were 71%,80%and 69%,78%through the way of leave-one-out cross-validation.According to the results of five-cross-valida-tion,the PCA-LDA model revealed an accuracy of 0.73 and AUC of 0.83.
基金supported by the Natural Science Foundation of the Higher Education Institutions of Jiangsu Province (No.16KJB510009 and No.17KJB510017)Jiangsu Province Natural Science Foundation of China (BK20150228)
文摘As an effective and universal acaricide, amitraz is widely used on beehives against varroasis caused by the mite Varroa jacobsoni. Its residues in honey pose a great danger to human health. In this study, a sensitive, rapid, and environmentally friendly surface-enhanced Raman spectroscopy method (SERS) was developed for the determination of trace amount of amitraz in honey with the use of silver nanorod (AgNR) array substrate. The AgNR array substrate fabricated by an oblique angle deposition technique exhibited an excellent SERS activity with an enhancement factor of -10^7. Density function theory was employed to assign the characteristic peak of amitraz. The detection of amitraz was further explored and amitraz in honey at concentrations as low as 0.08 mg/kg can be identified. Specifically, partial least square regression analysis was employed to correlate the SERS spectra in full-wavelength with Camitraz to afford a multiple-quantitative amitraz predicting model. Preliminary results show that the predicted concentrations of amitraz in honey samples are in good agreement with their real concentrations. Compared with the conventional univariate quantitative model based on single peak’s intensity, the proposed multiple-quantitative predicting model integrates all the characteristic peaks of amitraz, thus offering an improved detecting accuracy and anti-interference ability.
文摘Androgens play a central role in prostate cancer pathogenesis, and hence most of the patients respond to androgen deprivation therapies. However, patients tend to relapse with aggressive prostate cancer, which has been termed as hormone refractory. To identify the proteins that mediate progression to the hormone-refractory state, we used protein-chip technology for mass profiling of patients' sera. This study included 16 patients with metastatic hormone-refractory prostate cancer who were initially treated with androgen deprivation therapy. Serum samples were collected from each patient at five time points: point A, pre-treatment; point B, at the nadir of the prostate- specific antigen (PSA) level; point C, PSA failure; point D, the early hormone-refractory phase; and point E, the late hormone-refractory phase. Using surface-enhanced laser desorption/ionization time-of-flight mass spectrometry, we performed protein mass profiling of the patients' sera and identified a 6 640-Da peak that increased with disease progression. Target proteins were partially purified, and by amino acid sequencing the peak was identified as a fragment of apolipoprotein C-I (ApoC-I). Serum ApoC-I protein levels increased with disease progression. On immunohistochemical analysis, the ApoC-i protein was found localized to the cytoplasm of the hormone-refractory cancer cells. In this study, we showed an increase in serum ApoC-I protein levels in prostate cancer patients during their progression to the hormone-refractory state, which suggests that ApoC-I protein is related to progression of prostate cancer. However, as the exact role of ApoC-I in prostate cancer pathogenesis is unclear, further research is required.
基金supported by the National Natural Science Foundation of China (Nos. 31671013, 22004096, 21874105and 21705124)the China Postdoctoral Science Foundation (Nos.2019M663658 and 2020T130096ZX)+2 种基金the Natural Science Basic Research Program of Shaanxi (Nos. 2020JQ-020, 2020JQ-021 and2018JC-001)the Fundamental Research Funds for the Central Universities (No. xzy012020034)“Young Talent Support Plan” of Xi’an Jiaotong University。
文摘Exosomal micro RNA(mi RNA) is an ideal candidate of noninvasive biomarker for the early diagnosis of cancer. Sensitive and accurate sensing of abnormal exosomal mi RNA plays essential role for clinical promotion due to its close correlation with tumor proliferation and progression. Herein, a microfluidic surface-enhanced Raman scattering(SERS) sensor was proposed for an on-line detection of exosomal mi RNA based on rolling circle amplification(RCA) and tyramine signal amplification(TSA) strategy. The microfluidic chip consists of a magnetic enrichment chamber, a serpentine fluidic mixer and a plasmonic SERS substrate functionalized with capture probes. The released mi RNA activates the capture probe, triggers RCA reaction, and generates a large number of single-stranded DNA products to drive the catalysis of nanotags deposition via TSA, producing numerous “hot spots” to enhance the SERS signals. In merit of the microfluidics chip and nucleic acid-tyramine cascade amplification, the developed SERS sensor significantly improves the sensitivity for the exosomal mi RNA assay, resulting in a limit of detection(LOD) as low as 1 pmol/L and can be successfully applied in the analysis of exosomes secreted from breast tumor cells, which demonstrates the potential utility in practical applications.
基金Project supported by the National Basic Research Program of China(Grant No.2014CB745100)the National Natural Science Foundation of China(Grant Nos.21390202 and 21676015)the Beijing Higher Education Young Elite Teacher Project
文摘Rapid and simple detections of two kinds of prohibited fish drugs, crystal violet (CV) and malachite green (MG), were accomplished by surface-enhanced Raman scattering (SERS). Based on the optimized Au/cicada wing, the detectable concentration of CV/MG can reach 10-7 M, and the linear logarithmic quantitative relationship curves between log/and logC allows for the determination of the unknown concentration of CV/MG solution. The detection of these two analytes in real environment was also achieved, demonstrating the application potential of SERS in the fast screening of the prohibited fish drugs, which is of great benefit for food safety and environmental monitoring.
基金the National Natural Science Foundation of China (No.61805109 and No.61575087)the Natural Science Foundation of Jiangsu Province (No.BK20170229)+1 种基金the Natural Science Foundation of the Higher Education Institutions of Jiangsu Province (No.18KJB180004 and No.16KJB510009)the Natural Science Foundation of Jiangsu Normal University (No.16XLR021).
文摘Proteins and peptides perform a vital role in living systems, however it remains a challenge for accurate description of proteins at the molecular level. Despite that surface-enhanced Raman spectroscopy (SERS) can provide the intrinsic fingerprint information of samples with ultrahigh sensitivity, it suffers from the poor reproducibility and reliability. Herein, we demonstrate that the silver nanorod array fabricated by an oblique angle deposition method is a powerful substrate for SERS to probe the protein secondary structures without exogenous labels. With this method, the SERS signals of two typical proteins (lysozyme and cytochrome c) are successfully obtained. Additionally, by analyzing the spectral signals of the amide Ⅲ of protein backbone, the influence of concentration on the folding status of proteins has been elucidated. With the concentration increasing, the components of α-helix and β-sheet structures of lysozyme increase while the secondary structures of cytochrome c almost keep constant. The SERS method in this work offers an effective optical marker to characterize the structures of proteins.