We report measurement of heating rates of 40 Ca+ ions confined in our home-made microscopic surface-electrode trap by a Doppler recooling method. The ions are trapped with approximately 800 μm above the surface, and...We report measurement of heating rates of 40 Ca+ ions confined in our home-made microscopic surface-electrode trap by a Doppler recooling method. The ions are trapped with approximately 800 μm above the surface, and are subjected to heating due to various noises in the trap. There are 3-5 ions involved to measure the heating rates precisely and efficiently. We show the heating rates in variance with the number and the position of the ions as well as the radio-frequency power, which are helpful for understanding the trap imperfection.展开更多
In this paper we report the optimal design and fabrication of a gold-on-silica linear segmented surface-electrode ion trap. By optimizing the thickness and width of the electrodes, we improved the trapping ability and...In this paper we report the optimal design and fabrication of a gold-on-silica linear segmented surface-electrode ion trap. By optimizing the thickness and width of the electrodes, we improved the trapping ability and trap scalability. By using some practical experimental operation methods, we successfully minimized the trap heating rate. Consequently, we could trap a string of up to 38 ions, and a zigzag structure with 24 ions, and transport two trapped ions to different zones. We also studied the influences of the ion chip surface on the ion lifetime. The excellent trapping ability and flexibility of operation of the planar ion trap shows that it has high feasibility for application in the development a practical quantum information processor or quantum simulator.展开更多
基金Supported by the National Natural Science Foundation of China under Grant Nos Y5Z2111001,91421111 and 11674360
文摘We report measurement of heating rates of 40 Ca+ ions confined in our home-made microscopic surface-electrode trap by a Doppler recooling method. The ions are trapped with approximately 800 μm above the surface, and are subjected to heating due to various noises in the trap. There are 3-5 ions involved to measure the heating rates precisely and efficiently. We show the heating rates in variance with the number and the position of the ions as well as the radio-frequency power, which are helpful for understanding the trap imperfection.
基金supported by the National Basic Research Program of China(Grant No.2016YFA0301903)the National Natural Science Foundation of China(Grant Nos.11174370,11304387 and 61205108)the Research Plan Project of National University of Defense Technology(Grant No.ZK16-03-04)
文摘In this paper we report the optimal design and fabrication of a gold-on-silica linear segmented surface-electrode ion trap. By optimizing the thickness and width of the electrodes, we improved the trapping ability and trap scalability. By using some practical experimental operation methods, we successfully minimized the trap heating rate. Consequently, we could trap a string of up to 38 ions, and a zigzag structure with 24 ions, and transport two trapped ions to different zones. We also studied the influences of the ion chip surface on the ion lifetime. The excellent trapping ability and flexibility of operation of the planar ion trap shows that it has high feasibility for application in the development a practical quantum information processor or quantum simulator.