Lithium-rich manganese-based cathodes(LRMs)have garnered significant attention as promising candidates for highenergy-density batteries due to their exceptional specific capacity exceeding 300 mAh/g,achieved through s...Lithium-rich manganese-based cathodes(LRMs)have garnered significant attention as promising candidates for highenergy-density batteries due to their exceptional specific capacity exceeding 300 mAh/g,achieved through synergistic anionic and cationic redox reactions.However,these materials face challenges including oxygen release-induced structural degradation and consequent capacity fading.To address these issues,strategies such as surface modification and bulk phase engineering have been explored.In this study,we developed a facile and cost-effective quenching approach that simultaneously modifies both surface and bulk characteristics.Multi-scale characterization and computational analysis reveal that rapid cooling partially preserves the high-temperature disordered phase in the bulk structure,thereby enhancing the structural stability.Concurrently,Li^(+)/H^(+)exchange at the surface forms a robust rock-salt/spinel passivation layer,effectively suppressing oxygen evolution and mitigating interfacial side reactions.This dual modification strategy demonstrates a synergistic stabilization effect.The enhanced oxygen redox activity coexists with the improved structural integrity,leading to superior electrochemical performance.The optimized cathode delivers an initial discharge capacity approaching 307.14 mAh/g at 0.1 C and remarkable cycling stability with 94.12%capacity retention after 200 cycles at 1 C.This study presents a straightforward and economical strategy for concurrent surface–bulk modification,offering valuable insights for designing high-capacity LRM cathodes with extended cycle life.展开更多
基金supported by the National Key Research and Development Program of China(Grant No.2022YFB2502200)the National Natural Science Foundation of China(Grant Nos.52325207,22239003,and 22393904).
文摘Lithium-rich manganese-based cathodes(LRMs)have garnered significant attention as promising candidates for highenergy-density batteries due to their exceptional specific capacity exceeding 300 mAh/g,achieved through synergistic anionic and cationic redox reactions.However,these materials face challenges including oxygen release-induced structural degradation and consequent capacity fading.To address these issues,strategies such as surface modification and bulk phase engineering have been explored.In this study,we developed a facile and cost-effective quenching approach that simultaneously modifies both surface and bulk characteristics.Multi-scale characterization and computational analysis reveal that rapid cooling partially preserves the high-temperature disordered phase in the bulk structure,thereby enhancing the structural stability.Concurrently,Li^(+)/H^(+)exchange at the surface forms a robust rock-salt/spinel passivation layer,effectively suppressing oxygen evolution and mitigating interfacial side reactions.This dual modification strategy demonstrates a synergistic stabilization effect.The enhanced oxygen redox activity coexists with the improved structural integrity,leading to superior electrochemical performance.The optimized cathode delivers an initial discharge capacity approaching 307.14 mAh/g at 0.1 C and remarkable cycling stability with 94.12%capacity retention after 200 cycles at 1 C.This study presents a straightforward and economical strategy for concurrent surface–bulk modification,offering valuable insights for designing high-capacity LRM cathodes with extended cycle life.