Efficient and accurate prediction of ocean surface latent heat fluxes is essential for understanding and modeling climate dynamics.Conventional estimation methods have low resolution and lack accuracy.The transformer ...Efficient and accurate prediction of ocean surface latent heat fluxes is essential for understanding and modeling climate dynamics.Conventional estimation methods have low resolution and lack accuracy.The transformer model,with its self-attention mechanism,effectively captures long-range dependencies,leading to a degradation of accuracy over time.Due to the non-linearity and uncertainty of physical processes,the transformer model encounters the problem of error accumulation,leading to a degradation of accuracy over time.To solve this problem,we combine the Data Assimilation(DA)technique with the transformer model and continuously modify the model state to make it closer to the actual observations.In this paper,we propose a deep learning model called TransNetDA,which integrates transformer,convolutional neural network and DA methods.By combining data-driven and DA methods for spatiotemporal prediction,TransNetDA effectively extracts multi-scale spatial features and significantly improves prediction accuracy.The experimental results indicate that the TransNetDA method surpasses traditional techniques in terms of root mean square error and R2 metrics,showcasing its superior performance in predicting latent heat fluxes at the ocean surface.展开更多
As an important physical process at the air-sea interface, wave movement and breaking have a significant effect on the ocean surface mixed layer (OSML). When breaking waves occur at the ocean surface, turbulent kineti...As an important physical process at the air-sea interface, wave movement and breaking have a significant effect on the ocean surface mixed layer (OSML). When breaking waves occur at the ocean surface, turbulent kinetic energy (TKE) is input downwards, and a sublayer is formed near the surface and turbulence vertical mixing is intensively enhanced. A one-dimensional ocean model including the Mellor-Yamada level 2.5 turbulence closure equations was employed in our research on variations in turbulent energy budget within OSML. The influence of wave breaking could be introduced into the model by modifying an existing surface boundary condition of the TKE equation and specifying its input. The vertical diffusion and dissipation of TKE were effectively enhanced in the sublayer when wave breaking was considered. Turbulent energy dissipated in the sublayer was about 92.0% of the total depth-integrated dissipated TKE, which is twice higher than that of non-wave breaking. The shear production of TKE decreased by 3.5% because the mean flow fields tended to be uniform due to wave-enhanced turbulent mixing. As a result, a new local equilibrium between diffusion and dissipation of TKE was reached in the wave-enhanced layer. Below the sublayer, the local equilibrium between shear production and dissipation of TKE agreed with the conclusion drawn from the classical law-of-the-wall (Craig and Banner, 1994).展开更多
A new method is proposed to produce gas from oceanic gas hydrate reservoir by combining the ocean surface warm water flooding with depressurization which can efficiently utilize the synthetic effects of thermal, salt ...A new method is proposed to produce gas from oceanic gas hydrate reservoir by combining the ocean surface warm water flooding with depressurization which can efficiently utilize the synthetic effects of thermal, salt and depressurization on gas hydrate dissociation. The method has the advantage of high efficiency, low cost and enhanced safety. Based on the proposed conceptual method, the physical and mathematical models are established, in which the effects of the flow of multiphase fluid, the kinetic process of hydrate dissociation, the endothermic process of hydrate dissociation, ice-water phase equilibrium, salt inhibition, dispersion, convection and conduction on the hydrate disso- ciation and gas and water production are considered. The gas and water rates, formation pressure for the combination method are compared with that of the single depressurization, which is referred to the method in which only depres- surization is used. The results show that the combination method can remedy the deficiency of individual producing methods. It has the advantage of longer stable period of high gas rate than the single depressurization. It can also reduce the geologic hazard caused by the formation defor- mation due to the maintaining of the formation pressure by injected ocean warm water.展开更多
This study uses a large eddy simulation (LES) model to investigate the turbulence processes in the ocean surface boundary layer at Zhangzi Island offshore. Field measurements at Zhangzi Island (39°N, 122°...This study uses a large eddy simulation (LES) model to investigate the turbulence processes in the ocean surface boundary layer at Zhangzi Island offshore. Field measurements at Zhangzi Island (39°N, 122°E) during July 2009 are used to drive the LES model. The LES results capture a clear diurnal cycle in the oceanic turbulence boundary layer. The process of the heat penetration and heat distribution characteristics are analyzed through the heat flux results from the LES and their differences between two diurnal cycles are discussed as well. Energy balance and other dynamics are investigated which show that the tide-induced shear production is the main source of the turbulence energy that balanced dissipation. Momentum flux near the surface shows better agreement with atmospheric data computed by the eddy correlation method than those computed by bulk formula.展开更多
The inflow angle of tropical cyclones (TC) is generally neglected in numerical studies of ocean surface waves induced by TC. In this study, the impacts of TC inflow angle on ocean surface waves were investigated usi...The inflow angle of tropical cyclones (TC) is generally neglected in numerical studies of ocean surface waves induced by TC. In this study, the impacts of TC inflow angle on ocean surface waves were investigated using a high-resolution wave model. Six numerical experiments were conducted to examine, in detail, thc effects of inflow angle on mean wave parameters and the spectrum of wave directions. A comparison of the waves simulated in these experiments shows that inflow angle significantly modifies TC-induced ocean surface waves. As the inflow angle increases, the asymmetric axis of the significant wave height (SWH) field shifts 30° clockwise, and the maximum SWH moves from the front-right to the rear-right quadrant. Inflow angle also affects other mean wave parameters, especially in the rear-left quadrant, such as the mean wave direction, the mean wavelength, and the peak direction. Inflow angle is a key factor in wave models for the reproduction of double-peak or multi-peak patterns in the spectrum of wave directions. Sensitivity experiments also show that the simulation with a 40° inflow angle is the closest to that of the NOAA statistical SLOSH inflow angle. This suggests that 40° can be used as the inflow angle in future TC-induced ocean surface wave simulations when SLOSH or observed inflow angles are not available.展开更多
To investigate the annual and interaunual variability of ocean surface wind over the South China Sea (SCS), the vector empirical orthogonal function (VEOF) method and the Hilbert-Huang transform (HHT) method wer...To investigate the annual and interaunual variability of ocean surface wind over the South China Sea (SCS), the vector empirical orthogonal function (VEOF) method and the Hilbert-Huang transform (HHT) method were employed to analyze a set of combined satellite scatterometer wind data during the period from December 1992 to October 2009. The merged wind data were generated from European Remote Sensing Satellite (ERS)-1/2 Scatterometer, NASA Scatterometer (NSCAT) and NASA's Quick Scatterometer (QuikSCAT) wind products. The first VEOF mode corresponds to a winter-summer mode which accounts for 87.3% of the total variance and represents the East Asian monsoon features. The second mode of VEOF corresponds to a spring-autumn oscil- lation which accounts for 8.3% of the total variance. To analyze the interannual variability, the annual signal was removed from the wind data set and the VEOFs of the residuals were calculated. The temporal mode of the ftrst intcrannual VEOF is correlated with the Southern Oscillation Index (SOI) with a four-month lag. The second temporal interannual VEOF mode is correlated with the SOI with no time lag. The time series of the two interannual VEOFs were decomposed using the HI-IT method and the results also show a correlation between the interannual variability and El Nino-Southern Oscillation (ENSO) events.展开更多
The Northeast China cold vortex(NCCV)during late summer(from July to August)is identified and classified into three types in terms of its movement path using machine learning.The relationships of the three types of NC...The Northeast China cold vortex(NCCV)during late summer(from July to August)is identified and classified into three types in terms of its movement path using machine learning.The relationships of the three types of NCCV intensity with atmospheric circulations in late summer,the sea surface temperature(SST),and Arctic sea ice concentration(SIC)in the preceding months,are analyzed.The sensitivity tests by the Community Atmosphere Model version 5.3(CAM5.3)are used to verify the statistical results.The results show that the coordination pattern of East Asia-Pacific(EAP)and Lake Baikal high pressure forced by SST anomalies in the North Indian Ocean dipole mode(NIOD)during the preceding April and SIC anomalies in the Nansen Basin during the preceding June results in an intensity anomaly for the first type of NCCV.While the pattern of high pressure over the Urals and Okhotsk Sea and low pressure over Lake Baikal during late summer-which is forced by SST anomalies in the South Indian Ocean dipole mode(SIOD)in the preceding June and SIC anomalies in the Barents Sea in the preceding April-causes the intensity anomaly of the second type.The third type is atypical and is not analyzed in detail.Sensitivity tests,jointly forced by the SST and SIC in the preceding period,can well reproduce the observations.In contrast,the results forced separately by the SST and SIC are poor,indicating that the NCCV during late summer is likely influenced by the coordinated effects of both SST and SIC in the preceding months.展开更多
Using the monthly summer (June to August) precipitation data over China from 1979 to 1998,and the SST data in Indian Ocean of the overlapping periods,we have analyzed the spatial patterns as well as their temporal evo...Using the monthly summer (June to August) precipitation data over China from 1979 to 1998,and the SST data in Indian Ocean of the overlapping periods,we have analyzed the spatial patterns as well as their temporal evolution of the summer precipitation,along with the relationships between the precipitation over China and the SST in Indian Ocean,with the EOF and SVD methods respectively.The important results are:several canonical anomalous summer precipitation patterns have been identified.The summer SST in Indian Ocean is positively correlated with the simultaneous precipitation in the Yangtze River and Huai River Basin,while negatively with that in other parts of China.展开更多
Ocean surface waves are strongly forced by high wind conditions associated with winter storms in the Sea of Japan. They are also modulated by tides and storm surges. The effects of the variability in surface wind forc...Ocean surface waves are strongly forced by high wind conditions associated with winter storms in the Sea of Japan. They are also modulated by tides and storm surges. The effects of the variability in surface wind forcing, tides and storm surges on the waves are investigated using a wave model, a high-resolution atmospheric mesoscale model and a hydrodynamic ocean circulation model. Five month-long wave model simulations are inducted to examine the sensitivity of ocean waves to various wind forcing fields, tides and storm surges during January 1997. Compared with observed mean wave parameters, results indicate that the high frequency variability in the surface wind filed has very great effect on wave simulation. Tides and storm surges have a significant impact on the waves in nearshores of the Tsushima-kaihyS, but not for other regions in the Sea of Japan. High spatial and temporal resolution and good quality surface wind products will be crucial for the prediction of surface waves in the JES and other marginal seas, especially near the coastal regions.展开更多
This study assesses the reproducibility of 31 historical simulations from 1850 to 2014 in the Coupled Model Intercomparison Project phase 6(CMIP6) for the subsurface(Sub-IOD) and surface Indian Ocean Dipole(IOD) and t...This study assesses the reproducibility of 31 historical simulations from 1850 to 2014 in the Coupled Model Intercomparison Project phase 6(CMIP6) for the subsurface(Sub-IOD) and surface Indian Ocean Dipole(IOD) and their association with El Ni?o-Southern Oscillation(ENSO). Most CMIP6 models can reproduce the leading east-west dipole oscillation mode of heat content anomalies in the tropical Indian Ocean(TIO) but largely overestimate the amplitude and the dominant period of the Sub-IOD. Associated with the much steeper west-to-east thermocline tilt of the TIO, the vertical coupling between the Sub-IOD and IOD is overly strong in most CMIP6 models compared to that in the Ocean Reanalysis System 4(ORAS4). Related to this, most models also show a much tighter association of Sub-IOD and IOD events with the canonical ENSO than observations. This explains the more(less) regular Sub-IOD and IOD events in autumn in those models with stronger(weaker) surface-subsurface coupling in TIO. Though all model simulations feature a consistently low bias regarding the percentage of the winter–spring Sub-IOD events co-occurring with a Central Pacific(CP) ENSO, the linkage between a westward-centered CP-ENSO and the Sub-IOD that occurs in winter–spring, independent of the IOD, is well reproduced.展开更多
Internal solitary waves(ISW),characterized by large amplitude and long propagation distance,are widespread in global oceans.While remote sensing images have played an essential role in studying ISWs,they mainly exploi...Internal solitary waves(ISW),characterized by large amplitude and long propagation distance,are widespread in global oceans.While remote sensing images have played an essential role in studying ISWs,they mainly exploit two-dimensional image information.However,with the launch of the surface water ocean topography(SWOT)satellite on December 16,2022,a unique opportunity has emerged to capture wide-swath three-dimensional ISW-induced sea surface information.In this study,we examine ISWs in the Andaman Sea using data from the Ka-band Radar Interferometer(KaRIN),a crucial sensor onboard SWOT.KaRIN not only provides backscattering satellite images but also employs synthetic aperture interferometry techniques to retrieve wide-swath two-dimensional sea surface height measurements.Our observations in the Andaman Sea revealed the presence of ISWs characterized by dark-bright strips and surface elevation solitons.The surface soliton has an amplitude of 0.32 m,resulting in an estimation of ISW amplitude of approximately 60 m.In contrast to traditional two-dimensional satellite images or nadir-looking altimetry data,the SWOT mission’s capability to capture threedimensional sea surface information represents a significant advancement.This breakthrough holds substantial promise for ISW studies,particularly in the context of ISW amplitude inversion.展开更多
A coupled atmosphere-ocean model developed at the Institute for Space Studies at NASA Goddard Space Flight Center (Russell et al., 1995) was used to verify the validity of Haney-type surface thermal boundary condition...A coupled atmosphere-ocean model developed at the Institute for Space Studies at NASA Goddard Space Flight Center (Russell et al., 1995) was used to verify the validity of Haney-type surface thermal boundary condition, which linearly connects net downward surface heat fluxQ to air/sea temperature difference ΔT by a relaxation coefficientk. The model was initiated from the National Centers for Environmental Prediction (NCEP) atmospheric observations for 1 December 1977, and from the National Ocean Data Center (NODC) global climatological mean December temperature and salinity fields at 1°x 1° resolution. The time step is 7.5 minutes. We integrated the model for 450 days and obtained a complete model-generated global data set of daily mean downward net surface fluxQ, surface air temperatureT A, and sea surface temperatureT O. Then, we calculated the cross-correlation coefficients (CCC) betweenQ and ΔT. The ensemble mean CCC fields show (a) no correlation betweenQ and ΔT in the equatiorial regions, and (b) evident correlation (CCC≥0.7) betweenQ and ΔT in the middle and high latitudes. Additionally, we did the variance analysis and found that whenk=120 W m?2K?1, the two standard deviations, σQ and σκδT , are quite close in the middle and high latitudes. These results agree quite well with a previous research (Chu et al., 1998) on analyzing the NCEP re-analyzed surface data, except that a smaller value ofk (80 W m?2K?1) was found in the previous study. Key words Air-sea coupled system - Ocean surface fluxes - Surface thermal boundary condition展开更多
In the Northwest Pacific Ocean, the squid jigging fisheries from China, Japan and other countries and regions have targeted the west winter-spring cohort of neon flying squid(Ommastrephes bartramii) from August to N...In the Northwest Pacific Ocean, the squid jigging fisheries from China, Japan and other countries and regions have targeted the west winter-spring cohort of neon flying squid(Ommastrephes bartramii) from August to November since the 1970 s. This squid is a short-lived ecological opportunist with a life-span of about one year,and its population is labile and recruitment variability is driven by the environment or climate change. This variability provides a challenge for ones to forecast the key habitats affected by climate change. The catch data of O. bartramii from Chinese squid jigging fishery and the satellite-derived sea surface temperature(SST) data are used in the Northwest Pacific Ocean from August to November of 1998 to 2004, the SST preferences of O.bartramii corresponding to high values of catch per fishing day(CPUE) are determined and monthly potential habitats are predicted using a histogram analysis of the SST data. The possible changes in the potential habitats of O. bartramii in the Northwest Pacific Ocean are estimated under four climate change scenarios based on the Fourth Assessment Report(AR4) of the Intergovernmental Panel on Climate Change, i.e., 0.5, 1, 2 and 4°C increases in the SST because of the climate change. The results reveal an obvious poleward shift of the potential habitats of O. bartramii in the Northwest Pacific Ocean.展开更多
A new wave modeling method and a level of detail (LOD) scheme are proposed for ocean surface simulation in this paper.The modeling method describes ocean wave by modifying the sine wave,and gets wave direction at any ...A new wave modeling method and a level of detail (LOD) scheme are proposed for ocean surface simulation in this paper.The modeling method describes ocean wave by modifying the sine wave,and gets wave direction at any position of ocean surface under any ocean floor conditions using wave num decomposition.LOD scheme is proposed based on quad-tree block,which simplifies the ocean surface regular mesh and realizes the real-time rendering of large-scale ocean surface.Experimental results show that these methods can get realistic effect and fast rendering speed,which are appropriated to the applications of 3D games and battlefield simulation.展开更多
This paper reports a case study of atmospheric stability effect on dimethyl sulfide(DMS) concentration in the air. Investigation includes model simulation and field measurements over the Pacific Ocean. DMS concentrati...This paper reports a case study of atmospheric stability effect on dimethyl sulfide(DMS) concentration in the air. Investigation includes model simulation and field measurements over the Pacific Ocean. DMS concentration in surface sea water and in the air were measured during a research cruise from Hawaii to Tahiti. The diurnal variation of air temperature over the sea surface differed from the diurnal cycle of sea surface temperature because of the high heat capacity of sea water. The diurnal cycle of average DMS concentration in the air was studied in relation to the atmospheric stability parameter and surface heat flux. All these parameters had minima at noon and maxima in the early morning. The correlation coefficient of the air DMS concentration with wind speed (at 15 m high) was 0. 64. The observed concentrations of DMS in the equatorial marine surface layer and their diurnal variability agree well with model simulations. The simulated results indicate that the amplitude of the cycle and the mean concentration of DMS are dependent on the atmospheric stratifications and wind speed.展开更多
Understanding the sea surface scattering process is very important in the development of models to detect the target above or under the surface. In this paper, both the analytical and the numerical methods applied in ...Understanding the sea surface scattering process is very important in the development of models to detect the target above or under the surface. In this paper, both the analytical and the numerical methods applied in sea surface scattering are summarized. Some important problems concerned in this field are discussed. For numerical study, edge effect brings artificial nonrealistic scattering and therefore must be suppressed. Different edge treatment methods are compared in this paper. Scattering of breaking wave surface at very low grazing angle always needs more attentions than other scattering problems. Some numerical results show the existence of the special phenomena at very low grazing angle, for example, the "sea spikes" and the Doppler splitting.展开更多
By incorporating the wave-induced Coriolis-Stokes forcing into the classical Ekman layer,the wave-modifi ed ocean surface currents in the northwestern Pacifi c Ocean were estimated.Thus,the ocean surface currents are ...By incorporating the wave-induced Coriolis-Stokes forcing into the classical Ekman layer,the wave-modifi ed ocean surface currents in the northwestern Pacifi c Ocean were estimated.Thus,the ocean surface currents are the combination of classical Ekman current from the cross-calibrated multi-platform(CCMP)wind speed,geostrophic current from the mean absolute dynamic topography(MADT),and wave-induced current based on the European Centre for Medium-Range Weather Forecasts(ECMWF)Interim Re-Analysis(ERA-Interim)surface wave datasets.Weight functions are introduced in the Ekman current formulation as well.Comparisons with in-situ data from Lagrangian drifters in the study area and Kuroshio Extension Observatory(KEO)observations at 32.3°N,144.6°E,and 15-m depth indicate that wave-modifi ed ocean surface currents provide accurate time means of zonal and meridional currents in the northwestern Pacifi c Ocean.Result shows that the wave-modifi ed currents are quite consistent with the Lagrangian drifter observations for the period 1993-2017 in the deep ocean.The correlation(root mean square error,RMSE)is 0.96(1.45 cm/s)for the zonal component and 0.90(1.07 cm/s)for the meridional component.However,wave-modifi ed currents underestimate the Lagrangian drifter velocity in strong current and some off shore regions,especially in the regions along the Japan coast and the southeastern Mindanao.What’s more,the wave-modifi ed currents overestimate the pure Eulerian KEO current which does not consider the impact of waves,and the zonal(meridional)correlation and RMSE are 0.95(0.90)and 11.25 cm/s(12.05 cm/s)respectively.These comparisons demonstrate that our wave-modifi ed ocean surface currents have high precision and can describe the real-world ocean in the northwestern Pacifi c Ocean accurately and intuitively,which can provide important routes to calculate ocean surface currents on large spatial scales.展开更多
The ocean surface wind(OSW)data retrieved from microwave scatterometers have high spatial accuracy and represent the only wind data assimilated by global numerical models on the ocean surface,thus playing an important...The ocean surface wind(OSW)data retrieved from microwave scatterometers have high spatial accuracy and represent the only wind data assimilated by global numerical models on the ocean surface,thus playing an important role in improving the forecast skills of global medium-range weather prediction models.To improve the forecast skills of the Global/Regional Assimilation and Prediction System Global Forecast System(GRAPES_GFS),the HY-2B OSW data is assimilated into the GRAPES_GFS four-dimensional variational assimilation(4DVAR)system.Then,the impacts of the HY-2B OSW data assimilation on the analyses and forecasts of GRAPES_GFS are analyzed based on one-month assimilation cycle experiments.The results show that after assimilating the HY-2B OSW data,the analysis errors of the wind fields in the lower-middle troposphere(1000-600 hPa)of the tropics and the southern hemisphere(SH)are significantly reduced by an average rate of about 5%.The impacts of the HY-2B OSW data assimilation on the analysis fields of wind,geopotential height,and temperature are not solely limited to the boundary layer but also extend throughout the entire troposphere after about two days of cycling assimilation.Furthermore,assimilating the HY-2B OSW data can significantly improve the forecast skill of wind,geopotential height,and temperature in the troposphere of the tropics and SH.展开更多
This paper proposes a multifunction radar that can not only measure sea currents but also perform sea-surface imaging.The fundamental aspect of the proposed radar comprises transmitting time-shifted up-and-down contin...This paper proposes a multifunction radar that can not only measure sea currents but also perform sea-surface imaging.The fundamental aspect of the proposed radar comprises transmitting time-shifted up-and-down continuous wave linear frequency modulated signals that allow for the offset of two one-dimensional range images of the sea surface that respectively correspond to the upward linear frequency modulated(LFM)signal and the downward LFM signal.Owing to the Doppler frequency shift from the sea surface,a range offset,which is proportional to the radial velocity of the sea surface,occurs between the upward and downward LFM signals.By using the least-squares linear fitting method in the transformed domain,the range offset can be measured and the current velocity can be retrieved.Finally,we verify the accuracy of current measurement with simulation results.展开更多
Currently,numerical models based on idealized assumptions,complex algorithms and high computational costs are unsatisfactory for ocean surface current prediction.Moreover,the complex temporal and spatial variability o...Currently,numerical models based on idealized assumptions,complex algorithms and high computational costs are unsatisfactory for ocean surface current prediction.Moreover,the complex temporal and spatial variability of ocean currents also makes the prediction methods based on time series data challenging.The deep network model can automatically learn and extract complex features hidden in large amount of complex data,so it is a promising method for high quality prediction of ocean currents.In this paper,we propose a spatiotemporal coupled attention deep network model STCANet that can extract abundant temporal and spatial coupling information on the behavior characteristics of ocean currents for improving the prediction accuracy.Firstly,Spatial Module is designed and implemented to extract the spatiotemporal coupling characteristics of ocean currents,and meanwhile the spatial correlations and dependencies among adjacent sea areas are obtained through Spatial Channel Attention Module(SCAM).Secondly,we use the GatedRecurrent-Unit(GRU)to extract temporal relationships of ocean currents,and design and implement the nearest neighbor time attention module to extract the interdependences of ocean currents between adjacent times,which can further improve the accuracy of ocean current prediction.Finally,a series of comparative experiments on the MediSea_Dataset and EastSea_Dataset showed that the prediction quality of our model greatly outperforms those of other benchmark models such as History Average(HA),Autoregressive Integrated Moving Average Model(ARIMA),Long Short-term Memory(LSTM),Gate Recurrent Unit(GRU)and CNN_GRU.展开更多
基金The National Natural Science Foundation of China under contract Nos 42176011 and 61931025the Fundamental Research Funds for the Central Universities of China under contract No.24CX03001A.
文摘Efficient and accurate prediction of ocean surface latent heat fluxes is essential for understanding and modeling climate dynamics.Conventional estimation methods have low resolution and lack accuracy.The transformer model,with its self-attention mechanism,effectively captures long-range dependencies,leading to a degradation of accuracy over time.Due to the non-linearity and uncertainty of physical processes,the transformer model encounters the problem of error accumulation,leading to a degradation of accuracy over time.To solve this problem,we combine the Data Assimilation(DA)technique with the transformer model and continuously modify the model state to make it closer to the actual observations.In this paper,we propose a deep learning model called TransNetDA,which integrates transformer,convolutional neural network and DA methods.By combining data-driven and DA methods for spatiotemporal prediction,TransNetDA effectively extracts multi-scale spatial features and significantly improves prediction accuracy.The experimental results indicate that the TransNetDA method surpasses traditional techniques in terms of root mean square error and R2 metrics,showcasing its superior performance in predicting latent heat fluxes at the ocean surface.
基金Supported by the NSFC (No. 40476008)Knowledge Innovation Programs of the Chinese Academy of Sciences (No. KZCX3-SW-222)the NSFDYS (No. 40425015)
文摘As an important physical process at the air-sea interface, wave movement and breaking have a significant effect on the ocean surface mixed layer (OSML). When breaking waves occur at the ocean surface, turbulent kinetic energy (TKE) is input downwards, and a sublayer is formed near the surface and turbulence vertical mixing is intensively enhanced. A one-dimensional ocean model including the Mellor-Yamada level 2.5 turbulence closure equations was employed in our research on variations in turbulent energy budget within OSML. The influence of wave breaking could be introduced into the model by modifying an existing surface boundary condition of the TKE equation and specifying its input. The vertical diffusion and dissipation of TKE were effectively enhanced in the sublayer when wave breaking was considered. Turbulent energy dissipated in the sublayer was about 92.0% of the total depth-integrated dissipated TKE, which is twice higher than that of non-wave breaking. The shear production of TKE decreased by 3.5% because the mean flow fields tended to be uniform due to wave-enhanced turbulent mixing. As a result, a new local equilibrium between diffusion and dissipation of TKE was reached in the wave-enhanced layer. Below the sublayer, the local equilibrium between shear production and dissipation of TKE agreed with the conclusion drawn from the classical law-of-the-wall (Craig and Banner, 1994).
文摘A new method is proposed to produce gas from oceanic gas hydrate reservoir by combining the ocean surface warm water flooding with depressurization which can efficiently utilize the synthetic effects of thermal, salt and depressurization on gas hydrate dissociation. The method has the advantage of high efficiency, low cost and enhanced safety. Based on the proposed conceptual method, the physical and mathematical models are established, in which the effects of the flow of multiphase fluid, the kinetic process of hydrate dissociation, the endothermic process of hydrate dissociation, ice-water phase equilibrium, salt inhibition, dispersion, convection and conduction on the hydrate disso- ciation and gas and water production are considered. The gas and water rates, formation pressure for the combination method are compared with that of the single depressurization, which is referred to the method in which only depres- surization is used. The results show that the combination method can remedy the deficiency of individual producing methods. It has the advantage of longer stable period of high gas rate than the single depressurization. It can also reduce the geologic hazard caused by the formation defor- mation due to the maintaining of the formation pressure by injected ocean warm water.
基金The National Basic Research Program of China under contract Nos 201 1CB403501 and 2012CB417402the Fund for Creative Research Groups by the National Natural Science Foundation of China under contract No.41121064+1 种基金the National Natural Science Foundation of China under contract Nos 41206015 and 41176016the Open Research Foundation for the State Key Laboratory of Satellite Ocean Environment Dynamics,Second Institute of Oceanography,State Oceanic Administration under contract No.SOED1210
文摘This study uses a large eddy simulation (LES) model to investigate the turbulence processes in the ocean surface boundary layer at Zhangzi Island offshore. Field measurements at Zhangzi Island (39°N, 122°E) during July 2009 are used to drive the LES model. The LES results capture a clear diurnal cycle in the oceanic turbulence boundary layer. The process of the heat penetration and heat distribution characteristics are analyzed through the heat flux results from the LES and their differences between two diurnal cycles are discussed as well. Energy balance and other dynamics are investigated which show that the tide-induced shear production is the main source of the turbulence energy that balanced dissipation. Momentum flux near the surface shows better agreement with atmospheric data computed by the eddy correlation method than those computed by bulk formula.
基金Supported by the National Natural Science Foundation of China(No. 40706008)the Open Research Program of the Chinese Academy Sciences Key Laboratory of Tropical Marine Environmental Dynamics (No. LED0606)+1 种基金the Shandong Province Natural Science Foundation (No. Z2008E02)the National High Technology Research and Development Program of China (863 Program) (No.2008AA09A402)
文摘The inflow angle of tropical cyclones (TC) is generally neglected in numerical studies of ocean surface waves induced by TC. In this study, the impacts of TC inflow angle on ocean surface waves were investigated using a high-resolution wave model. Six numerical experiments were conducted to examine, in detail, thc effects of inflow angle on mean wave parameters and the spectrum of wave directions. A comparison of the waves simulated in these experiments shows that inflow angle significantly modifies TC-induced ocean surface waves. As the inflow angle increases, the asymmetric axis of the significant wave height (SWH) field shifts 30° clockwise, and the maximum SWH moves from the front-right to the rear-right quadrant. Inflow angle also affects other mean wave parameters, especially in the rear-left quadrant, such as the mean wave direction, the mean wavelength, and the peak direction. Inflow angle is a key factor in wave models for the reproduction of double-peak or multi-peak patterns in the spectrum of wave directions. Sensitivity experiments also show that the simulation with a 40° inflow angle is the closest to that of the NOAA statistical SLOSH inflow angle. This suggests that 40° can be used as the inflow angle in future TC-induced ocean surface wave simulations when SLOSH or observed inflow angles are not available.
基金supported by the National Natural Science Foundation of China through G41006108the Open Research Fund of the Shandong Provincial Key Laboratory of Marine Ecology and Environment & Disaster Prevention and Mitigation through G2011001+1 种基金the Laboratory of Data Analysis and Application, State Oceanic Administration through LDAA-2013-02the State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering through G2009586812
文摘To investigate the annual and interaunual variability of ocean surface wind over the South China Sea (SCS), the vector empirical orthogonal function (VEOF) method and the Hilbert-Huang transform (HHT) method were employed to analyze a set of combined satellite scatterometer wind data during the period from December 1992 to October 2009. The merged wind data were generated from European Remote Sensing Satellite (ERS)-1/2 Scatterometer, NASA Scatterometer (NSCAT) and NASA's Quick Scatterometer (QuikSCAT) wind products. The first VEOF mode corresponds to a winter-summer mode which accounts for 87.3% of the total variance and represents the East Asian monsoon features. The second mode of VEOF corresponds to a spring-autumn oscil- lation which accounts for 8.3% of the total variance. To analyze the interannual variability, the annual signal was removed from the wind data set and the VEOFs of the residuals were calculated. The temporal mode of the ftrst intcrannual VEOF is correlated with the Southern Oscillation Index (SOI) with a four-month lag. The second temporal interannual VEOF mode is correlated with the SOI with no time lag. The time series of the two interannual VEOFs were decomposed using the HI-IT method and the results also show a correlation between the interannual variability and El Nino-Southern Oscillation (ENSO) events.
基金jointly supported by the National Natural Science Foundation of China (Grant No. 42005037)Special Project of Innovative Development, CMA (CXFZ2021J022, CXFZ2022J008, and CXFZ2021J028)+1 种基金Liaoning Provincial Natural Science Foundation Project (Ph.D. Start-up Research Fund 2019-BS214)Research Project of the Institute of Atmospheric Environment, CMA (2021SYIAEKFMS08, 2020SYIAE08 and 2021SYIAEKFMS09)
文摘The Northeast China cold vortex(NCCV)during late summer(from July to August)is identified and classified into three types in terms of its movement path using machine learning.The relationships of the three types of NCCV intensity with atmospheric circulations in late summer,the sea surface temperature(SST),and Arctic sea ice concentration(SIC)in the preceding months,are analyzed.The sensitivity tests by the Community Atmosphere Model version 5.3(CAM5.3)are used to verify the statistical results.The results show that the coordination pattern of East Asia-Pacific(EAP)and Lake Baikal high pressure forced by SST anomalies in the North Indian Ocean dipole mode(NIOD)during the preceding April and SIC anomalies in the Nansen Basin during the preceding June results in an intensity anomaly for the first type of NCCV.While the pattern of high pressure over the Urals and Okhotsk Sea and low pressure over Lake Baikal during late summer-which is forced by SST anomalies in the South Indian Ocean dipole mode(SIOD)in the preceding June and SIC anomalies in the Barents Sea in the preceding April-causes the intensity anomaly of the second type.The third type is atypical and is not analyzed in detail.Sensitivity tests,jointly forced by the SST and SIC in the preceding period,can well reproduce the observations.In contrast,the results forced separately by the SST and SIC are poor,indicating that the NCCV during late summer is likely influenced by the coordinated effects of both SST and SIC in the preceding months.
文摘Using the monthly summer (June to August) precipitation data over China from 1979 to 1998,and the SST data in Indian Ocean of the overlapping periods,we have analyzed the spatial patterns as well as their temporal evolution of the summer precipitation,along with the relationships between the precipitation over China and the SST in Indian Ocean,with the EOF and SVD methods respectively.The important results are:several canonical anomalous summer precipitation patterns have been identified.The summer SST in Indian Ocean is positively correlated with the simultaneous precipitation in the Yangtze River and Huai River Basin,while negatively with that in other parts of China.
基金This research was supported by a grant from the 0ffice of Naval Research of United States under the Sea of Japan Departmental Research Initiatite of N00014-98-1-0236a project from the National Natural Science Foundation of China under contract No.40506006.
文摘Ocean surface waves are strongly forced by high wind conditions associated with winter storms in the Sea of Japan. They are also modulated by tides and storm surges. The effects of the variability in surface wind forcing, tides and storm surges on the waves are investigated using a wave model, a high-resolution atmospheric mesoscale model and a hydrodynamic ocean circulation model. Five month-long wave model simulations are inducted to examine the sensitivity of ocean waves to various wind forcing fields, tides and storm surges during January 1997. Compared with observed mean wave parameters, results indicate that the high frequency variability in the surface wind filed has very great effect on wave simulation. Tides and storm surges have a significant impact on the waves in nearshores of the Tsushima-kaihyS, but not for other regions in the Sea of Japan. High spatial and temporal resolution and good quality surface wind products will be crucial for the prediction of surface waves in the JES and other marginal seas, especially near the coastal regions.
基金supported by the National Key R&D Program of China (Grant No. 2019YFA0606701)the Guangdong Major Project of Basic and Applied Basic Research (Grant No. 2020B0301030004)。
文摘This study assesses the reproducibility of 31 historical simulations from 1850 to 2014 in the Coupled Model Intercomparison Project phase 6(CMIP6) for the subsurface(Sub-IOD) and surface Indian Ocean Dipole(IOD) and their association with El Ni?o-Southern Oscillation(ENSO). Most CMIP6 models can reproduce the leading east-west dipole oscillation mode of heat content anomalies in the tropical Indian Ocean(TIO) but largely overestimate the amplitude and the dominant period of the Sub-IOD. Associated with the much steeper west-to-east thermocline tilt of the TIO, the vertical coupling between the Sub-IOD and IOD is overly strong in most CMIP6 models compared to that in the Ocean Reanalysis System 4(ORAS4). Related to this, most models also show a much tighter association of Sub-IOD and IOD events with the canonical ENSO than observations. This explains the more(less) regular Sub-IOD and IOD events in autumn in those models with stronger(weaker) surface-subsurface coupling in TIO. Though all model simulations feature a consistently low bias regarding the percentage of the winter–spring Sub-IOD events co-occurring with a Central Pacific(CP) ENSO, the linkage between a westward-centered CP-ENSO and the Sub-IOD that occurs in winter–spring, independent of the IOD, is well reproduced.
基金Supported by the National Key Research and Development Program of China(No.2022YFE0204600)the National Natural Science Foundation for Young Scientists of China(No.41906157)。
文摘Internal solitary waves(ISW),characterized by large amplitude and long propagation distance,are widespread in global oceans.While remote sensing images have played an essential role in studying ISWs,they mainly exploit two-dimensional image information.However,with the launch of the surface water ocean topography(SWOT)satellite on December 16,2022,a unique opportunity has emerged to capture wide-swath three-dimensional ISW-induced sea surface information.In this study,we examine ISWs in the Andaman Sea using data from the Ka-band Radar Interferometer(KaRIN),a crucial sensor onboard SWOT.KaRIN not only provides backscattering satellite images but also employs synthetic aperture interferometry techniques to retrieve wide-swath two-dimensional sea surface height measurements.Our observations in the Andaman Sea revealed the presence of ISWs characterized by dark-bright strips and surface elevation solitons.The surface soliton has an amplitude of 0.32 m,resulting in an estimation of ISW amplitude of approximately 60 m.In contrast to traditional two-dimensional satellite images or nadir-looking altimetry data,the SWOT mission’s capability to capture threedimensional sea surface information represents a significant advancement.This breakthrough holds substantial promise for ISW studies,particularly in the context of ISW amplitude inversion.
文摘A coupled atmosphere-ocean model developed at the Institute for Space Studies at NASA Goddard Space Flight Center (Russell et al., 1995) was used to verify the validity of Haney-type surface thermal boundary condition, which linearly connects net downward surface heat fluxQ to air/sea temperature difference ΔT by a relaxation coefficientk. The model was initiated from the National Centers for Environmental Prediction (NCEP) atmospheric observations for 1 December 1977, and from the National Ocean Data Center (NODC) global climatological mean December temperature and salinity fields at 1°x 1° resolution. The time step is 7.5 minutes. We integrated the model for 450 days and obtained a complete model-generated global data set of daily mean downward net surface fluxQ, surface air temperatureT A, and sea surface temperatureT O. Then, we calculated the cross-correlation coefficients (CCC) betweenQ and ΔT. The ensemble mean CCC fields show (a) no correlation betweenQ and ΔT in the equatiorial regions, and (b) evident correlation (CCC≥0.7) betweenQ and ΔT in the middle and high latitudes. Additionally, we did the variance analysis and found that whenk=120 W m?2K?1, the two standard deviations, σQ and σκδT , are quite close in the middle and high latitudes. These results agree quite well with a previous research (Chu et al., 1998) on analyzing the NCEP re-analyzed surface data, except that a smaller value ofk (80 W m?2K?1) was found in the previous study. Key words Air-sea coupled system - Ocean surface fluxes - Surface thermal boundary condition
基金The National Key Technologies Research and Development Program of China under contract No.2013BAD13B00the Public Science and Technology Research Funds Project of Ocean under contract No.20155014the Shanghai Universities First-class Disciplines Project(Fisheries)
文摘In the Northwest Pacific Ocean, the squid jigging fisheries from China, Japan and other countries and regions have targeted the west winter-spring cohort of neon flying squid(Ommastrephes bartramii) from August to November since the 1970 s. This squid is a short-lived ecological opportunist with a life-span of about one year,and its population is labile and recruitment variability is driven by the environment or climate change. This variability provides a challenge for ones to forecast the key habitats affected by climate change. The catch data of O. bartramii from Chinese squid jigging fishery and the satellite-derived sea surface temperature(SST) data are used in the Northwest Pacific Ocean from August to November of 1998 to 2004, the SST preferences of O.bartramii corresponding to high values of catch per fishing day(CPUE) are determined and monthly potential habitats are predicted using a histogram analysis of the SST data. The possible changes in the potential habitats of O. bartramii in the Northwest Pacific Ocean are estimated under four climate change scenarios based on the Fourth Assessment Report(AR4) of the Intergovernmental Panel on Climate Change, i.e., 0.5, 1, 2 and 4°C increases in the SST because of the climate change. The results reveal an obvious poleward shift of the potential habitats of O. bartramii in the Northwest Pacific Ocean.
文摘A new wave modeling method and a level of detail (LOD) scheme are proposed for ocean surface simulation in this paper.The modeling method describes ocean wave by modifying the sine wave,and gets wave direction at any position of ocean surface under any ocean floor conditions using wave num decomposition.LOD scheme is proposed based on quad-tree block,which simplifies the ocean surface regular mesh and realizes the real-time rendering of large-scale ocean surface.Experimental results show that these methods can get realistic effect and fast rendering speed,which are appropriated to the applications of 3D games and battlefield simulation.
文摘This paper reports a case study of atmospheric stability effect on dimethyl sulfide(DMS) concentration in the air. Investigation includes model simulation and field measurements over the Pacific Ocean. DMS concentration in surface sea water and in the air were measured during a research cruise from Hawaii to Tahiti. The diurnal variation of air temperature over the sea surface differed from the diurnal cycle of sea surface temperature because of the high heat capacity of sea water. The diurnal cycle of average DMS concentration in the air was studied in relation to the atmospheric stability parameter and surface heat flux. All these parameters had minima at noon and maxima in the early morning. The correlation coefficient of the air DMS concentration with wind speed (at 15 m high) was 0. 64. The observed concentrations of DMS in the equatorial marine surface layer and their diurnal variability agree well with model simulations. The simulated results indicate that the amplitude of the cycle and the mean concentration of DMS are dependent on the atmospheric stratifications and wind speed.
文摘Understanding the sea surface scattering process is very important in the development of models to detect the target above or under the surface. In this paper, both the analytical and the numerical methods applied in sea surface scattering are summarized. Some important problems concerned in this field are discussed. For numerical study, edge effect brings artificial nonrealistic scattering and therefore must be suppressed. Different edge treatment methods are compared in this paper. Scattering of breaking wave surface at very low grazing angle always needs more attentions than other scattering problems. Some numerical results show the existence of the special phenomena at very low grazing angle, for example, the "sea spikes" and the Doppler splitting.
基金Supported by the National Natural Science Foundation of China(No.42106034)the Laboratory for Regional Oceanography and Numerical Modeling,Pilot National Laboratory for Marine Science and Technology(Qingdao)(No.2019A02)+1 种基金the Basic Scientifi c Fund for National Public Research Institutes of China(No.2020Q05)the National Natural Science Foundation of China(Nos.41706034,41706225,41906003)。
文摘By incorporating the wave-induced Coriolis-Stokes forcing into the classical Ekman layer,the wave-modifi ed ocean surface currents in the northwestern Pacifi c Ocean were estimated.Thus,the ocean surface currents are the combination of classical Ekman current from the cross-calibrated multi-platform(CCMP)wind speed,geostrophic current from the mean absolute dynamic topography(MADT),and wave-induced current based on the European Centre for Medium-Range Weather Forecasts(ECMWF)Interim Re-Analysis(ERA-Interim)surface wave datasets.Weight functions are introduced in the Ekman current formulation as well.Comparisons with in-situ data from Lagrangian drifters in the study area and Kuroshio Extension Observatory(KEO)observations at 32.3°N,144.6°E,and 15-m depth indicate that wave-modifi ed ocean surface currents provide accurate time means of zonal and meridional currents in the northwestern Pacifi c Ocean.Result shows that the wave-modifi ed currents are quite consistent with the Lagrangian drifter observations for the period 1993-2017 in the deep ocean.The correlation(root mean square error,RMSE)is 0.96(1.45 cm/s)for the zonal component and 0.90(1.07 cm/s)for the meridional component.However,wave-modifi ed currents underestimate the Lagrangian drifter velocity in strong current and some off shore regions,especially in the regions along the Japan coast and the southeastern Mindanao.What’s more,the wave-modifi ed currents overestimate the pure Eulerian KEO current which does not consider the impact of waves,and the zonal(meridional)correlation and RMSE are 0.95(0.90)and 11.25 cm/s(12.05 cm/s)respectively.These comparisons demonstrate that our wave-modifi ed ocean surface currents have high precision and can describe the real-world ocean in the northwestern Pacifi c Ocean accurately and intuitively,which can provide important routes to calculate ocean surface currents on large spatial scales.
基金supported by the Key Special Project for the Introduced Talents Team of Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou) (Grant No. GML2019ZD0302)the National Key R&D Program of China (Grant No. 2018YFC1506205)
文摘The ocean surface wind(OSW)data retrieved from microwave scatterometers have high spatial accuracy and represent the only wind data assimilated by global numerical models on the ocean surface,thus playing an important role in improving the forecast skills of global medium-range weather prediction models.To improve the forecast skills of the Global/Regional Assimilation and Prediction System Global Forecast System(GRAPES_GFS),the HY-2B OSW data is assimilated into the GRAPES_GFS four-dimensional variational assimilation(4DVAR)system.Then,the impacts of the HY-2B OSW data assimilation on the analyses and forecasts of GRAPES_GFS are analyzed based on one-month assimilation cycle experiments.The results show that after assimilating the HY-2B OSW data,the analysis errors of the wind fields in the lower-middle troposphere(1000-600 hPa)of the tropics and the southern hemisphere(SH)are significantly reduced by an average rate of about 5%.The impacts of the HY-2B OSW data assimilation on the analysis fields of wind,geopotential height,and temperature are not solely limited to the boundary layer but also extend throughout the entire troposphere after about two days of cycling assimilation.Furthermore,assimilating the HY-2B OSW data can significantly improve the forecast skill of wind,geopotential height,and temperature in the troposphere of the tropics and SH.
基金The National Key Research and Development Program under contract No.2016YFC1401002the National Natural Science Foundation of China under contract Nos 41606201,41576173,41620104003 and 41706202.
文摘This paper proposes a multifunction radar that can not only measure sea currents but also perform sea-surface imaging.The fundamental aspect of the proposed radar comprises transmitting time-shifted up-and-down continuous wave linear frequency modulated signals that allow for the offset of two one-dimensional range images of the sea surface that respectively correspond to the upward linear frequency modulated(LFM)signal and the downward LFM signal.Owing to the Doppler frequency shift from the sea surface,a range offset,which is proportional to the radial velocity of the sea surface,occurs between the upward and downward LFM signals.By using the least-squares linear fitting method in the transformed domain,the range offset can be measured and the current velocity can be retrieved.Finally,we verify the accuracy of current measurement with simulation results.
基金The authors would like to thank the financial support from the National Key Research and Development Program of China(Nos.2020YFE0201200,2019YFC1509100)the partial support by the Youth Program of Natural Science Foundation of China(No.41706010)the Fundamental Research Funds for the Central Universities(No.202264002).
文摘Currently,numerical models based on idealized assumptions,complex algorithms and high computational costs are unsatisfactory for ocean surface current prediction.Moreover,the complex temporal and spatial variability of ocean currents also makes the prediction methods based on time series data challenging.The deep network model can automatically learn and extract complex features hidden in large amount of complex data,so it is a promising method for high quality prediction of ocean currents.In this paper,we propose a spatiotemporal coupled attention deep network model STCANet that can extract abundant temporal and spatial coupling information on the behavior characteristics of ocean currents for improving the prediction accuracy.Firstly,Spatial Module is designed and implemented to extract the spatiotemporal coupling characteristics of ocean currents,and meanwhile the spatial correlations and dependencies among adjacent sea areas are obtained through Spatial Channel Attention Module(SCAM).Secondly,we use the GatedRecurrent-Unit(GRU)to extract temporal relationships of ocean currents,and design and implement the nearest neighbor time attention module to extract the interdependences of ocean currents between adjacent times,which can further improve the accuracy of ocean current prediction.Finally,a series of comparative experiments on the MediSea_Dataset and EastSea_Dataset showed that the prediction quality of our model greatly outperforms those of other benchmark models such as History Average(HA),Autoregressive Integrated Moving Average Model(ARIMA),Long Short-term Memory(LSTM),Gate Recurrent Unit(GRU)and CNN_GRU.