Infections associated with titanium(Ti)-based implants present significant challenges in clinical treatments,especially when biofilms already form on the implant surface.Many antimicrobial agents,including antibiotics...Infections associated with titanium(Ti)-based implants present significant challenges in clinical treatments,especially when biofilms already form on the implant surface.Many antimicrobial agents,including antibiotics,metallic nanoparticles and antimicrobial peptides,have been extensively used to deal with Ti implant infections.However,these chemical approaches suffer from potential toxicity,antibiotic resistance and poor long-term antibacterial performance.Hence,physical antibacterial surfaces on Ti-based implants have attracted increasing attention.The antibacterial behavior of different surfaces on Ti-based biomaterials against various bacteria only by physical properties of the implants themselves(e.g.,nanotopography)or exogenous physical stimulus(e.g.,photocatalysis)was reviewed,as well as parameters influencing the physical antibacterial processes,such as size,shape and density of the surface nanotextures,and bacterial growth phases.Besides,mechanisms of different fabrication techniques for the physical antibacterial surfaces on Ti-based biomaterials were also summarized.展开更多
Additive manufacturing(AM)has revolutionized the production of metal bone implants,enabling unprecedented levels of customization and functionality.Recent advancements in surface-modification technologies have been cr...Additive manufacturing(AM)has revolutionized the production of metal bone implants,enabling unprecedented levels of customization and functionality.Recent advancements in surface-modification technologies have been crucial in enhancing the performance and biocompatibility of implants.Through leveraging the versatility of AM techniques,particularly powder bed fusion,a range of metallic biomaterials,including stainless steel,titanium,and biodegradable alloys,can be utilized to fabricate implants tailored for craniofacial,trunk,and limb bone reconstructions.However,the potential of AM is contingent on addressing intrinsic defects that may hinder implant performance.Techniques such as sandblasting,chemical treatment,electropolishing,heat treatment,and laser technology effectively remove residual powder and improve the surface roughness of these implants.The development of functional coatings,applied via both dry and wet methods,represents a significant advancement in surface modification research.These coatings not only improve mechanical and biological interactions at the implant-bone interface but also facilitate controlled drug release and enhance antimicrobial properties.Addition-ally,micro-and nanoscale surface modifications using chemical and laser techniques can precisely sculpt implant surfaces to promote the desired cellular responses.This detailed exploration of surface engineering offers a wealth of opportunities for creating next-generation implants that are not only biocompatible but also bioactive,laying the foundation for more effective solutions in bone reconstruction.展开更多
Biodegradable metals have garnered considerable interest owing to their capacity for self-degradation following the repair of damaged tissues.This review commences with their historical development and clarifies the e...Biodegradable metals have garnered considerable interest owing to their capacity for self-degradation following the repair of damaged tissues.This review commences with their historical development and clarifies the essential prerequisites for their successful clinical translation.Subsequently,a detailed review of magnesium-based materials is presented from five critical areas of alloying,fabrication techniques,purification,surface modification,and structural design,systematically addressing their progress in biodegradation rate retardation,mechanical reinforcement,and biocompatibility enhancement.Furthermore,recent breakthroughs in vivo animal experiments and clinical translation of magnesium alloys are summarized.Finally,this review concludes with a critical assessment of the achievements and challenges encountered in the clinical application of these materials,and proposes practical strategies to address current limitations and guide future research perspectives.展开更多
Four types of submicron Ag-coated Cu particles with different Ag contents were prepared as sintering paste fillers,and the Ag contents of the particles were measured to be 10,20,30,and 40 wt.%.Four types of particles(...Four types of submicron Ag-coated Cu particles with different Ag contents were prepared as sintering paste fillers,and the Ag contents of the particles were measured to be 10,20,30,and 40 wt.%.Four types of particles(in order of increasing Ag content:A10,A20,A30,and A40)were surface-modified with stearic acid,to suppress the Ag shell dewetting and improve sinterability.The surface-modified particles were mixed with a polyol-based solvent to fabricate a resin-free paste.Subsequently,the pastes were screen-printed onto a slide glass and sintered at 250°C in a nitrogen atmosphere for 1-10 min to form an electrode.The electrical resistivity of the sintered film as a function of sintering time was measured using a four-point probe.All the four surface-modified Cu@Ag particles with different Ag contents exhibited decreased electrical resistivity.Particularly,the largest difference in values after and before the surface modification was observed for A40 with the highest Ag content;the electrical resistivities of the initial and surface-modified particles were 1.51×10^(-4) and 6.67×10^(-5)Ω·cm,respectively,after sintering for 10 min.The findings of this study confirmed that the surface modification using stearic acid effectively suppressed the dewetting of the Ag shell and improved the sinterability of the submicron Cu@Ag particles.展开更多
Silica fibers were modified by a specific ratio of SiB6 mixed with silica sol through vacuum impregnation method.The modified fibers were then incorporated into a phenolic resin matrix to prepare fiber-reinforced resi...Silica fibers were modified by a specific ratio of SiB6 mixed with silica sol through vacuum impregnation method.The modified fibers were then incorporated into a phenolic resin matrix to prepare fiber-reinforced resin composites.The influences of the SiB_(6)/SiO_(2)mixed modification on silica fiber properties were analyzed through thermogravimetric analysis(TGA),differential scanning calorimetry(DSC),scanning electron microscopy(SEM),and X-ray diffraction(XRD),respectively.Additionally,the influence of the SiB_(6)/SiO_(2)mixed modification on the mechanical properties of phenolic resin matrix composites was evaluated through mechanical testing.The experimeatal results indicate that the SiB_(6)/SiO_(2)mixed surface modification shows significant improvement in strength at room temperature and high temperatures,and crystallization temperature of silica fiber increases.The SiB_(6)/Silica sol co-modified silica fiber shows potential for future application in thermal protection and other high-temperature conditions.展开更多
Surface modification of fabrics is an effective way to endow them with antifouling properties while still maintaining their key advantages such as comfort,softness and stretchability.Herein,an atmospheric pressure die...Surface modification of fabrics is an effective way to endow them with antifouling properties while still maintaining their key advantages such as comfort,softness and stretchability.Herein,an atmospheric pressure dielectric barrier discharge(DBD)plasma method is demonstrated for the processing of silk fabrics using 1H,1H,2H,2H-perfluorodecyltriethoxysilane(PFDS)as the precursor.The results showed the successful grafting of PFDS groups onto the surface of silk fabrics without causing damage.Meanwhile,the gas temperature is rather low during the whole processing procedure,suggesting the non-equilibrium characteristics of DBD plasma.The influence on fabrics of the processing parameters(PFDS concentration,plasma treatment time and plasma discharge power)was systematically investigated.An optimum processing condition was determined to be a PFDS concentration of 8wt%,a plasma processing time of 40 s and a plasma power of 11.87 W.However,with prolonged plasma processing time or enhanced plasma power,the plasma-grafted PFDS films could be degraded.Further study revealed that plasma processing of silk fabrics with PFDS would lead to a change in their chemical composition and surface roughness.As a result,the surface energy of the fabrics was reduced,accompanied by improved water and oil repellency as well as enhanced antifouling performance.Besides,the plasma-grafted PFDS films also had good durability and stability.By extending the method to polyester and wool against different oil-/water-based stains,the DBD plasma surface modification technique demonstrated good versatility in improving the antifouling properties of fabrics.This work provides guidance for the surface modification of fabrics using DBD plasma to confer them with desirable functionalities.展开更多
Single crystalline nickel rich Li[Ni_(x)Co_(y)Mn_(1-x–y)]O_(2)(SCNCM)layered oxide cathodes show higher ionic conductivity and better structure integrity than polycrystalline NCM(PCNCM)cathodes by eliminating grain b...Single crystalline nickel rich Li[Ni_(x)Co_(y)Mn_(1-x–y)]O_(2)(SCNCM)layered oxide cathodes show higher ionic conductivity and better structure integrity than polycrystalline NCM(PCNCM)cathodes by eliminating grain boundaries.However,it remains challenges in the controlled synthesis process and restricted cycling stability of SCNCM.Herein,take single crystalline nickel rich Li[Ni_(0.8)Co_(0.1)Mn_(0.1)]O_(2)(SC811)as an example,a dual molten salts(LiOH and Li_(2)SO_(4))assisted secondary calcination method is proposed,for which LiOH salt improves primary crystal size and Li_(2)SO_(4)prevents the aggravation of NCM nanocrystals.To further reduce the interfacial side reactions,Mg-doping and B-coating surface modification was carried out,which effectively suppress anisotropic lattice changes and Li/Ni disorder.In addition,a thin and uniform H_(3)BO_(3)coating effectively prevents direct contact between the electrode and electrolyte,thus reducing harmful parasitic reactions.The single crystal structure engineering and surface modification strategy of oxide layered cathodes significantly improve the cycling stability of the modified SC811 cathode.For example,during a long-term cycling of 470 cycles,a high-capacity retention of 74.2%obtained at 1C rate.Our work provides a new strategy for engineering high energy nickel rich layered oxide NCM cathodes.展开更多
In this study,an amine-reactive poly(pentafluorophenyl acrylate)(PPFPA)platform was developed for advanced surface engineering of next-generation sequencing(NGS)chips.Through post-polymerization modification,PPFPA was...In this study,an amine-reactive poly(pentafluorophenyl acrylate)(PPFPA)platform was developed for advanced surface engineering of next-generation sequencing(NGS)chips.Through post-polymerization modification,PPFPA was functionalized with dual moieties:azide groups for covalent immobilization of DBCO-modified DNA primers via click chemistry and tunable hydrophilic side chains to optimize biocompatibility and surface properties.Systematic screening revealed that hydrophobic azide carriers combined with neutral hydroxyl groups maximized the DNA immobilization efficacy,approaching the performance of commercial polyacrylamide-based polymers.The negatively charged carboxyl groups severely impede DNA primer attachment.Higher molecular weight derivatives further enhance the efficacy of DNA immobilization.In NGS validation,optimized surface modification polymers achieved robust surface density of clustered DNA and high sequencing accuracy,surpassing quality benchmarks and comparable to those of conventional analogs.This platform demonstrates significant potential for tailoring high-sensitivity surfaces for genomic applications,advancing clinical diagnostics,and personalized medicine.展开更多
A Cu-25Cr alloy prepared by vacuum induction melting method was treated by the high current pulsed electron beam (HCPEB) with pulse numbers ranging from 1 to 100. Surface morphologies and microstructures of the allo...A Cu-25Cr alloy prepared by vacuum induction melting method was treated by the high current pulsed electron beam (HCPEB) with pulse numbers ranging from 1 to 100. Surface morphologies and microstructures of the alloy before and after the treatment were investigated by scanning electron microscopy and X-ray diffraction. The results show that significant surface modification can be induced by HCPEB with the pulse number reaching 10. Craters with typical morphologies on the Cu-25Cr alloy surface are formed due to the dynamic thermal field induced by the HCPEB. Micro-cracks, as a unique feature, are well revealed in the irradiated Cu-25Cr specimens and attributed to quasi-static thermal stresses accumulated along the specimen surface. The amount of cracks is found to increase with the pulse number and a preference of these cracks to Cr phases rather than Cu phases is also noted. Another characteristic produced by the HCPEB is the fine Cr spheroids, which are determined to be due to occurrence of liquid phase separation in the Cu-25Cr alloy. In addition, an examination on surface roughness of all specimens reveals that more pulses will produce a roughened surface, as a result of compromising the above features.展开更多
The effect of heat treatment on the transformation temperature of Ti?52.2%Ni (mole fraction) alloy was studied using differential scanning calorimetry (DSC). The transformation temperatures of the alloy can be adjuste...The effect of heat treatment on the transformation temperature of Ti?52.2%Ni (mole fraction) alloy was studied using differential scanning calorimetry (DSC). The transformation temperatures of the alloy can be adjusted effectively by heat treatment. Dense and stable SiO2 coatings were deposited on the surface of the pre-oxidized TiNi alloy by sol?gel method. The bonding strength of films and matrix was (65.9±1.5) N. The electrochemical corrosion test shows that the TiNi alloy with SiO2 coating has excellent corrosion resistance in the Hank’s simulated body fluid. The release behaviors of Ni ion of the alloy with and without SiO2 coating implanted in the acoustic vesicle of guinea pig were studied by EDS testing, which was inhibited effectively by the dense and stable SiO2 coating on the alloy.展开更多
An understanding of osteoblast adhesion and proliferation on biomaterials is crucial to optimizing the surfaces of artificial implants used in clinical practice. Polished, anodic oxidation (AO) and micro-arc oxidati...An understanding of osteoblast adhesion and proliferation on biomaterials is crucial to optimizing the surfaces of artificial implants used in clinical practice. Polished, anodic oxidation (AO) and micro-arc oxidation (MAO) treated titanium (Ti) plates were used as model surfaces to study the adhesion of MG-63 cells. Cells were monitored for 0.5 and 4 h; faster adhesion and spreading of MG-63 ceils were observed on the AO and MAO modified samples. Stimulated secretion of fibronectin (FN) influenced the adhesion rates. In addition, AO and MAO modified surfaces promoted cell proliferation through apparent up-regulation of FN and integrin a5 transcription via outside-in signaling. This strongly suggests that FN secretion by osteoblasts plays an essential role in enhanced cell adhesion, spreading and proliferation on these modified Ti surfaces.展开更多
As a green and sustainable technology,heterogeneous photocatalysis using semiconductors has received much attention during the past decades because of its potential to address energy and environmental problems. Among ...As a green and sustainable technology,heterogeneous photocatalysis using semiconductors has received much attention during the past decades because of its potential to address energy and environmental problems. Among various semiconductors,TiO2 has been regarded as the best and most widely investigated photocatalyst in the past 10 years. Based on the fundamentals of photocatalysis and surface chemistry of TiO2 nanomaterials,we herein summarize and discuss the achievements in the different surface modification strategies employed to date such as surface doping and sensitization,construction of surface heterojunctions,loading of nano-sized co-catalysts,increase in the accessible surface areas,and usage of surface F effects and exposure of highly reactive facets. Especially,the interesting synergistic effects of these different surface modification strategies deserve more attention in the near future. Studying these important advances in photocatalysis fundamentals,and surface chemistry and modification may offer new opportunities for designing highly efficient TiO2-based and non-TiO2-based photocatalysts for solar fuel production,environmental remediation,organic photosynthesis,and other related fields such as solar cell device fabrication,thermal catalysis,and separation and purification.展开更多
Metal ion contamination of drinking water and waste water, especially with heavy metal ion such as lead, is a serious and ongoing problem. In this work, activated carbon prepared from peanut shell (PAC) was used for...Metal ion contamination of drinking water and waste water, especially with heavy metal ion such as lead, is a serious and ongoing problem. In this work, activated carbon prepared from peanut shell (PAC) was used for the removal of Pb^2+ from aqueous solution. The impacts of the Pb25 adsorption capacities of the acid-modified carbons oxidized with HNO3 were also investigated. The surface functional groups of PAC were confirmed by Fourier transform infrared (FTIR) spectroscopy, X-ray photoelectron spectroscopy (XPS), Boehm titration. The textural properties (surface area, total pore volume) were evaluated from the nitrogen adsorption isotherm at 77 K. The experimental results presented indicated that the adsorption data fitted better with the Langmuir adsorption model. A comparative study with a commercial granular activated carbon (GAC) showed that PAC was 10.3 times more efficient compared to GAC based on Langmuir maximum adsorption capacity. Further analysis results by the Langmuir equation showed that HNO3 [20% (by mass)] modified PAC has larger adsorption capacity of Pb^2+ from aqueous solution (as much as 35.5 mg·g^-1). The adsorption capacity enhancement ascribed to pore widening, increased cation-exchange capacity by oxygen groups, and the promoted hydrophilicity of the carbon surface.展开更多
Calcium carbonate,which is widely employed as a filler added into the polymer matrix,has large numbers of applications owing to the excellent properties such as low cost,non-toxicity,high natural reserves and biocompa...Calcium carbonate,which is widely employed as a filler added into the polymer matrix,has large numbers of applications owing to the excellent properties such as low cost,non-toxicity,high natural reserves and biocompatibility.Nevertheless,in order to obtain the good filling effect,calcium carbonate needs to be surface modified by organic molecules so as to enhance the dispersion and compatibility within the composites.This review paper systematically introduces the theory,methods,and applications progress of calcium carbonate with surface modification.Additionally,the key factors that affect the properties of the composites as well as the current difficulties and challenges are highlighted.The current research progress and potential application prospects of calcium carbonate in the fields of plastics,rubber,paper,medicine and environmental protection are discussed as well.Generally,this review can provide valuable reference for the modification and comprehensive utilization of calcium carbonate.展开更多
Cold plasma techniques were used to treat the surface of Kevlar-49 fibers. The dynamic parameters of wetting, contact-angles and surface energy of the fiber before and alter the treatment were compared to see the chan...Cold plasma techniques were used to treat the surface of Kevlar-49 fibers. The dynamic parameters of wetting, contact-angles and surface energy of the fiber before and alter the treatment were compared to see the changes in the wetting property. ESCA and electron spin resonance were utilized to examine the chemical composition and the attached free radicals of the fiber surface. The results, together with changes in the magnitude of the contact-angle and the number of free radicals with time after the plasma treatment do not show any ageing effect. Single filament test revealed that the tensile strength was not impaired but even improved somewhat after the plasma treatment. The experiment shows that the interlaminar shear strength of Kevlar fiber reinforced epoxy resin compo- site is increased for more than 60%% after the treatment.展开更多
Surfaces of grade III fly ashes were modified through mixing with carbide slag and calcining at 850 ℃ for 1 h. Mineralogical compositions and surface morphology of fly ashes before and after modification were charact...Surfaces of grade III fly ashes were modified through mixing with carbide slag and calcining at 850 ℃ for 1 h. Mineralogical compositions and surface morphology of fly ashes before and after modification were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM), respectively. Effect of surface-modified fly ashes on compressive strength and autogenous shrinkage of blended cement pastes was investigated. Microstructures of cement pastes were examined by backscattered electron (BSE) imaging and mercury intrusion porosimetry (MIP). The experimental results showed that β-C2S was formed on the surfaces of fly ashes after modification. Hydration ofβ-C2S on the surface-modified fly ashes densified interface zone and enhanced bond strength between particles of fly ashes and hydrated clinkers. In addition, surface modification of fly ashes tended to decrease total porosity and 10-50 nm pores of cement pastes. Surface modification of fly ashes increased compressive strength and reduced autogenous shrinkage of cement pastes.展开更多
Hydrogen peroxide was used as an oxidant to modify the cuprite surface and enhance its sulfidization.Surface-adsorption and infrared spectroscopy measurements indicated that the modification of the cuprite surface wit...Hydrogen peroxide was used as an oxidant to modify the cuprite surface and enhance its sulfidization.Surface-adsorption and infrared spectroscopy measurements indicated that the modification of the cuprite surface with hydrogen peroxide before sulfidization increased the adsorption capacity of xanthate.Zeta potential,scanning electron microscopy-energy dispersive X-ray spectroscopy,X-ray photoelectron spectroscopy,and time-of-flight secondary ion mass spectrometry results showed that the modification with hydrogen peroxide increased the contents of S^(2−)and Sn^(2−)species on the cuprite surface.Microflotation tests showed that the recovery of cuprite increased from 61.74%to 83.30%after the modification of the surface with hydrogen peroxide.These results confirm that the modification of the cuprite surface with hydrogen peroxide enhances the sulfidization of cuprite,which in turn improves its flotation.展开更多
Rechargeable aqueous Zn-ion batteries(AZIBs)are one of the most promising energy storage devices for large-scale energy storage owing to their high specific capacity,eco-friendliness,low cost and high safety.Neverthel...Rechargeable aqueous Zn-ion batteries(AZIBs)are one of the most promising energy storage devices for large-scale energy storage owing to their high specific capacity,eco-friendliness,low cost and high safety.Nevertheless,zinc metal anodes suffer from severe dendrite growth and side reactions,resulting in the inferior electrochemical performance of AZIBs.To address these problems,surface modification of zinc metal anodes is a facile and effective method to regulate the interaction between the zinc anode and an electrolyte.In this review,the current challenges and strategies for zinc metal anodes are presented.Furthermore,recent advances in surface modification strategies to improve their electrochemical performance are concluded and discussed.Finally,challenges and prospects for future development of zinc metal anodes are proposed.We hope this review will be useful for designing and fabricating highperformance AZIBs and boosting their practical applications.展开更多
Potential engineering applications of magnesium(Mg)and Mg-based alloys,as the lightest structural metal,have made them a popular subject of study.However,the inferior corrosion and wear characteristics significantly l...Potential engineering applications of magnesium(Mg)and Mg-based alloys,as the lightest structural metal,have made them a popular subject of study.However,the inferior corrosion and wear characteristics significantly limit their application range.It is widely recognized that surface treatment is the most commonly utilized technique for remarkably improving a substrate’s surface characteristics.Numerous methods have been introduced for the surface treatment of Mg and Mg-based alloys to improve their corrosion behavior and tribological performance.Among these,thermal spray(TS)technology provides several methods for deposition of various functional metallic,ceramic,cermet,or other coatings tailored to particular conditions.Recent researches have shown the tremendous potential for thermal spray coated Mg alloys for biomedical and industrial applications.In this context,the cold spray(CS)method,as a comparatively new TS coating technique,can generate the coating layer using kinetic energy rather than combined thermal and kinetic energies,like the high-velocity oxy-fuel(HVOF)spray method.Moreover,the CS process,as a revolutionary method,is able to repair and refurbish with a faster turnaround time;it also provides solutions that do not require dealing with the thermal stresses that are part of the other repair processes,such as welding or other TS processes using a high-temperature flame.In this review paper,the recently designed coatings that are specifically applied to Mg alloys(primarily for industrial applications)employing various coating processes are reviewed.Because of the increased utilization of CS technology for both 3D printed(additively manufactured)coatings and repair of structurally critical components,the most recent CS methods for the surface treatment,repair,and refurbishment of Mg alloys as well as their benefits and restrictions are then discussed and reviewed in detail.Lastly,the prospects of this field of study are briefly discussed,along with a summary of the presented work.展开更多
The last several years have witnessed the prosperous development of zinc-ion batteries(ZIBs),which are considered as a promising competitor of energy storage systems thanks to their low cost and high safety.However,th...The last several years have witnessed the prosperous development of zinc-ion batteries(ZIBs),which are considered as a promising competitor of energy storage systems thanks to their low cost and high safety.However,the reversibility and availability of this system are blighted by problems such as uncontrollable dendritic growth,hydrogen evolution,and corrosion passivation on anode side.A functionally and structurally well-designed anode current collectors(CCs)is believed as a viable solution for those problems,with a lack of summarization according to its working mechanisms.Herein,this review focuses on the challenges of zinc anode and the mechanisms of modified anode CCs,which can be divided into zincophilic modification,structural design,and steering the preferred crystal facet orientation.The possible prospects and directions on zinc anode research and design are proposed at the end to hopefully promote the practical application of ZIBs.展开更多
基金National Natural Science Foundation of China(52171114)。
文摘Infections associated with titanium(Ti)-based implants present significant challenges in clinical treatments,especially when biofilms already form on the implant surface.Many antimicrobial agents,including antibiotics,metallic nanoparticles and antimicrobial peptides,have been extensively used to deal with Ti implant infections.However,these chemical approaches suffer from potential toxicity,antibiotic resistance and poor long-term antibacterial performance.Hence,physical antibacterial surfaces on Ti-based implants have attracted increasing attention.The antibacterial behavior of different surfaces on Ti-based biomaterials against various bacteria only by physical properties of the implants themselves(e.g.,nanotopography)or exogenous physical stimulus(e.g.,photocatalysis)was reviewed,as well as parameters influencing the physical antibacterial processes,such as size,shape and density of the surface nanotextures,and bacterial growth phases.Besides,mechanisms of different fabrication techniques for the physical antibacterial surfaces on Ti-based biomaterials were also summarized.
基金supported by National Natural Science Foundation of China(Grant No.52275343)Natural Science Foundation of Zhejiang Province(Grant No.LY23E050003)Ningbo Youth Science and Technology Innovation Leading Talent Project(Grant No.2023QL021).
文摘Additive manufacturing(AM)has revolutionized the production of metal bone implants,enabling unprecedented levels of customization and functionality.Recent advancements in surface-modification technologies have been crucial in enhancing the performance and biocompatibility of implants.Through leveraging the versatility of AM techniques,particularly powder bed fusion,a range of metallic biomaterials,including stainless steel,titanium,and biodegradable alloys,can be utilized to fabricate implants tailored for craniofacial,trunk,and limb bone reconstructions.However,the potential of AM is contingent on addressing intrinsic defects that may hinder implant performance.Techniques such as sandblasting,chemical treatment,electropolishing,heat treatment,and laser technology effectively remove residual powder and improve the surface roughness of these implants.The development of functional coatings,applied via both dry and wet methods,represents a significant advancement in surface modification research.These coatings not only improve mechanical and biological interactions at the implant-bone interface but also facilitate controlled drug release and enhance antimicrobial properties.Addition-ally,micro-and nanoscale surface modifications using chemical and laser techniques can precisely sculpt implant surfaces to promote the desired cellular responses.This detailed exploration of surface engineering offers a wealth of opportunities for creating next-generation implants that are not only biocompatible but also bioactive,laying the foundation for more effective solutions in bone reconstruction.
基金supported by the Science and Technology Planning Project of Guangdong Province(Nos.2024A0505040016 and 2023A0505050148)National Key Research and Development Project of China(2023YFB3809900/2023YFB3809902)Natural Science Foundation of Guangdong Province(No.2025A1515010026)。
文摘Biodegradable metals have garnered considerable interest owing to their capacity for self-degradation following the repair of damaged tissues.This review commences with their historical development and clarifies the essential prerequisites for their successful clinical translation.Subsequently,a detailed review of magnesium-based materials is presented from five critical areas of alloying,fabrication techniques,purification,surface modification,and structural design,systematically addressing their progress in biodegradation rate retardation,mechanical reinforcement,and biocompatibility enhancement.Furthermore,recent breakthroughs in vivo animal experiments and clinical translation of magnesium alloys are summarized.Finally,this review concludes with a critical assessment of the achievements and challenges encountered in the clinical application of these materials,and proposes practical strategies to address current limitations and guide future research perspectives.
基金supported by the National Research Foundation of Korea(NRF)grant funded by the Korea government(MSIT)(No.2021R1A2C1007400)supported,partly,by the National R&D Program through the National Research Foundation of Korea(NRF)funded by the Ministry of Science and ICT(Nos.NRF-2020M3H4A3106383,NRF2020M3H4A3081764)+1 种基金supported,partly,by ETRI(No.21YB1610)supported by a Korea Institute for Advancement of Technology(KIAT)grant funded by the Korea Government(MOTIE)(No.P0008458,HRD Program for Industrial Innovation)。
文摘Four types of submicron Ag-coated Cu particles with different Ag contents were prepared as sintering paste fillers,and the Ag contents of the particles were measured to be 10,20,30,and 40 wt.%.Four types of particles(in order of increasing Ag content:A10,A20,A30,and A40)were surface-modified with stearic acid,to suppress the Ag shell dewetting and improve sinterability.The surface-modified particles were mixed with a polyol-based solvent to fabricate a resin-free paste.Subsequently,the pastes were screen-printed onto a slide glass and sintered at 250°C in a nitrogen atmosphere for 1-10 min to form an electrode.The electrical resistivity of the sintered film as a function of sintering time was measured using a four-point probe.All the four surface-modified Cu@Ag particles with different Ag contents exhibited decreased electrical resistivity.Particularly,the largest difference in values after and before the surface modification was observed for A40 with the highest Ag content;the electrical resistivities of the initial and surface-modified particles were 1.51×10^(-4) and 6.67×10^(-5)Ω·cm,respectively,after sintering for 10 min.The findings of this study confirmed that the surface modification using stearic acid effectively suppressed the dewetting of the Ag shell and improved the sinterability of the submicron Cu@Ag particles.
基金Funded by the Natural Science Foundation of Hubei Province(No.2024AFB833)。
文摘Silica fibers were modified by a specific ratio of SiB6 mixed with silica sol through vacuum impregnation method.The modified fibers were then incorporated into a phenolic resin matrix to prepare fiber-reinforced resin composites.The influences of the SiB_(6)/SiO_(2)mixed modification on silica fiber properties were analyzed through thermogravimetric analysis(TGA),differential scanning calorimetry(DSC),scanning electron microscopy(SEM),and X-ray diffraction(XRD),respectively.Additionally,the influence of the SiB_(6)/SiO_(2)mixed modification on the mechanical properties of phenolic resin matrix composites was evaluated through mechanical testing.The experimeatal results indicate that the SiB_(6)/SiO_(2)mixed surface modification shows significant improvement in strength at room temperature and high temperatures,and crystallization temperature of silica fiber increases.The SiB_(6)/Silica sol co-modified silica fiber shows potential for future application in thermal protection and other high-temperature conditions.
基金the financial support from National Natural Science Foundation of China(Nos.22078125 and 52004102)Postdoctoral Science Foundation of China(No.2023M741472)。
文摘Surface modification of fabrics is an effective way to endow them with antifouling properties while still maintaining their key advantages such as comfort,softness and stretchability.Herein,an atmospheric pressure dielectric barrier discharge(DBD)plasma method is demonstrated for the processing of silk fabrics using 1H,1H,2H,2H-perfluorodecyltriethoxysilane(PFDS)as the precursor.The results showed the successful grafting of PFDS groups onto the surface of silk fabrics without causing damage.Meanwhile,the gas temperature is rather low during the whole processing procedure,suggesting the non-equilibrium characteristics of DBD plasma.The influence on fabrics of the processing parameters(PFDS concentration,plasma treatment time and plasma discharge power)was systematically investigated.An optimum processing condition was determined to be a PFDS concentration of 8wt%,a plasma processing time of 40 s and a plasma power of 11.87 W.However,with prolonged plasma processing time or enhanced plasma power,the plasma-grafted PFDS films could be degraded.Further study revealed that plasma processing of silk fabrics with PFDS would lead to a change in their chemical composition and surface roughness.As a result,the surface energy of the fabrics was reduced,accompanied by improved water and oil repellency as well as enhanced antifouling performance.Besides,the plasma-grafted PFDS films also had good durability and stability.By extending the method to polyester and wool against different oil-/water-based stains,the DBD plasma surface modification technique demonstrated good versatility in improving the antifouling properties of fabrics.This work provides guidance for the surface modification of fabrics using DBD plasma to confer them with desirable functionalities.
基金financially supported by the National Natural Science Foundation of China under the Grant No.22209075。
文摘Single crystalline nickel rich Li[Ni_(x)Co_(y)Mn_(1-x–y)]O_(2)(SCNCM)layered oxide cathodes show higher ionic conductivity and better structure integrity than polycrystalline NCM(PCNCM)cathodes by eliminating grain boundaries.However,it remains challenges in the controlled synthesis process and restricted cycling stability of SCNCM.Herein,take single crystalline nickel rich Li[Ni_(0.8)Co_(0.1)Mn_(0.1)]O_(2)(SC811)as an example,a dual molten salts(LiOH and Li_(2)SO_(4))assisted secondary calcination method is proposed,for which LiOH salt improves primary crystal size and Li_(2)SO_(4)prevents the aggravation of NCM nanocrystals.To further reduce the interfacial side reactions,Mg-doping and B-coating surface modification was carried out,which effectively suppress anisotropic lattice changes and Li/Ni disorder.In addition,a thin and uniform H_(3)BO_(3)coating effectively prevents direct contact between the electrode and electrolyte,thus reducing harmful parasitic reactions.The single crystal structure engineering and surface modification strategy of oxide layered cathodes significantly improve the cycling stability of the modified SC811 cathode.For example,during a long-term cycling of 470 cycles,a high-capacity retention of 74.2%obtained at 1C rate.Our work provides a new strategy for engineering high energy nickel rich layered oxide NCM cathodes.
基金financially supported by the Science and Technology Commission of Shanghai Municipality(No.24ZR1401400)Shenzhen Salus Bio Med Company for their strong support in this study。
文摘In this study,an amine-reactive poly(pentafluorophenyl acrylate)(PPFPA)platform was developed for advanced surface engineering of next-generation sequencing(NGS)chips.Through post-polymerization modification,PPFPA was functionalized with dual moieties:azide groups for covalent immobilization of DBCO-modified DNA primers via click chemistry and tunable hydrophilic side chains to optimize biocompatibility and surface properties.Systematic screening revealed that hydrophobic azide carriers combined with neutral hydroxyl groups maximized the DNA immobilization efficacy,approaching the performance of commercial polyacrylamide-based polymers.The negatively charged carboxyl groups severely impede DNA primer attachment.Higher molecular weight derivatives further enhance the efficacy of DNA immobilization.In NGS validation,optimized surface modification polymers achieved robust surface density of clustered DNA and high sequencing accuracy,surpassing quality benchmarks and comparable to those of conventional analogs.This platform demonstrates significant potential for tailoring high-sensitivity surfaces for genomic applications,advancing clinical diagnostics,and personalized medicine.
基金Projects(51101177,51401040,51171146,51171216) supported by the National Natural Science Foundation of ChinaProject(CSTC2012JJA245) supported by the Natural Science Foundation of Chongqing,China
文摘A Cu-25Cr alloy prepared by vacuum induction melting method was treated by the high current pulsed electron beam (HCPEB) with pulse numbers ranging from 1 to 100. Surface morphologies and microstructures of the alloy before and after the treatment were investigated by scanning electron microscopy and X-ray diffraction. The results show that significant surface modification can be induced by HCPEB with the pulse number reaching 10. Craters with typical morphologies on the Cu-25Cr alloy surface are formed due to the dynamic thermal field induced by the HCPEB. Micro-cracks, as a unique feature, are well revealed in the irradiated Cu-25Cr specimens and attributed to quasi-static thermal stresses accumulated along the specimen surface. The amount of cracks is found to increase with the pulse number and a preference of these cracks to Cr phases rather than Cu phases is also noted. Another characteristic produced by the HCPEB is the fine Cr spheroids, which are determined to be due to occurrence of liquid phase separation in the Cu-25Cr alloy. In addition, an examination on surface roughness of all specimens reveals that more pulses will produce a roughened surface, as a result of compromising the above features.
基金Project(81170609)supported by the National Natural Science Foundation of ChinaProject(11JJ6087)supported by the Nature Science Foundation of Hunan Province,ChinaProject supported by the Open Project of State Key Laboratory of Powder Metallurgy,Central South University,China
文摘The effect of heat treatment on the transformation temperature of Ti?52.2%Ni (mole fraction) alloy was studied using differential scanning calorimetry (DSC). The transformation temperatures of the alloy can be adjusted effectively by heat treatment. Dense and stable SiO2 coatings were deposited on the surface of the pre-oxidized TiNi alloy by sol?gel method. The bonding strength of films and matrix was (65.9±1.5) N. The electrochemical corrosion test shows that the TiNi alloy with SiO2 coating has excellent corrosion resistance in the Hank’s simulated body fluid. The release behaviors of Ni ion of the alloy with and without SiO2 coating implanted in the acoustic vesicle of guinea pig were studied by EDS testing, which was inhibited effectively by the dense and stable SiO2 coating on the alloy.
基金Project (2010DFA32270) supported by the Ministry of Science and Technology of China (International Science & Technology Cooperation Program of China) Project (51102090) supported by the National Natural Science Foundation of ChinaProject (NCET-12-0170) supported by the Program for New Century Excellent Talents in University of China
文摘An understanding of osteoblast adhesion and proliferation on biomaterials is crucial to optimizing the surfaces of artificial implants used in clinical practice. Polished, anodic oxidation (AO) and micro-arc oxidation (MAO) treated titanium (Ti) plates were used as model surfaces to study the adhesion of MG-63 cells. Cells were monitored for 0.5 and 4 h; faster adhesion and spreading of MG-63 ceils were observed on the AO and MAO modified samples. Stimulated secretion of fibronectin (FN) influenced the adhesion rates. In addition, AO and MAO modified surfaces promoted cell proliferation through apparent up-regulation of FN and integrin a5 transcription via outside-in signaling. This strongly suggests that FN secretion by osteoblasts plays an essential role in enhanced cell adhesion, spreading and proliferation on these modified Ti surfaces.
基金supported by the Industry and Research Collaborative Innovation Major Projects Of Guangzhou(201508020098)the National Natural Science Foundation of China(20906034+2 种基金21173088and 21207041)the State Key Laboratory of Advanced Technology for Material Synthesis and Processing,Wuhan University of Technology(2015-KF-7)~~
文摘As a green and sustainable technology,heterogeneous photocatalysis using semiconductors has received much attention during the past decades because of its potential to address energy and environmental problems. Among various semiconductors,TiO2 has been regarded as the best and most widely investigated photocatalyst in the past 10 years. Based on the fundamentals of photocatalysis and surface chemistry of TiO2 nanomaterials,we herein summarize and discuss the achievements in the different surface modification strategies employed to date such as surface doping and sensitization,construction of surface heterojunctions,loading of nano-sized co-catalysts,increase in the accessible surface areas,and usage of surface F effects and exposure of highly reactive facets. Especially,the interesting synergistic effects of these different surface modification strategies deserve more attention in the near future. Studying these important advances in photocatalysis fundamentals,and surface chemistry and modification may offer new opportunities for designing highly efficient TiO2-based and non-TiO2-based photocatalysts for solar fuel production,environmental remediation,organic photosynthesis,and other related fields such as solar cell device fabrication,thermal catalysis,and separation and purification.
文摘Metal ion contamination of drinking water and waste water, especially with heavy metal ion such as lead, is a serious and ongoing problem. In this work, activated carbon prepared from peanut shell (PAC) was used for the removal of Pb^2+ from aqueous solution. The impacts of the Pb25 adsorption capacities of the acid-modified carbons oxidized with HNO3 were also investigated. The surface functional groups of PAC were confirmed by Fourier transform infrared (FTIR) spectroscopy, X-ray photoelectron spectroscopy (XPS), Boehm titration. The textural properties (surface area, total pore volume) were evaluated from the nitrogen adsorption isotherm at 77 K. The experimental results presented indicated that the adsorption data fitted better with the Langmuir adsorption model. A comparative study with a commercial granular activated carbon (GAC) showed that PAC was 10.3 times more efficient compared to GAC based on Langmuir maximum adsorption capacity. Further analysis results by the Langmuir equation showed that HNO3 [20% (by mass)] modified PAC has larger adsorption capacity of Pb^2+ from aqueous solution (as much as 35.5 mg·g^-1). The adsorption capacity enhancement ascribed to pore widening, increased cation-exchange capacity by oxygen groups, and the promoted hydrophilicity of the carbon surface.
基金Project(AA18242008)supported by the Guangxi Science&Technology Major Project,ChinaProject(HZXYKFKT201904)supported by the Opening Project of Guangxi Key Laboratory of Calcium Carbonate Resources Comprehensive Utilization,China。
文摘Calcium carbonate,which is widely employed as a filler added into the polymer matrix,has large numbers of applications owing to the excellent properties such as low cost,non-toxicity,high natural reserves and biocompatibility.Nevertheless,in order to obtain the good filling effect,calcium carbonate needs to be surface modified by organic molecules so as to enhance the dispersion and compatibility within the composites.This review paper systematically introduces the theory,methods,and applications progress of calcium carbonate with surface modification.Additionally,the key factors that affect the properties of the composites as well as the current difficulties and challenges are highlighted.The current research progress and potential application prospects of calcium carbonate in the fields of plastics,rubber,paper,medicine and environmental protection are discussed as well.Generally,this review can provide valuable reference for the modification and comprehensive utilization of calcium carbonate.
文摘Cold plasma techniques were used to treat the surface of Kevlar-49 fibers. The dynamic parameters of wetting, contact-angles and surface energy of the fiber before and alter the treatment were compared to see the changes in the wetting property. ESCA and electron spin resonance were utilized to examine the chemical composition and the attached free radicals of the fiber surface. The results, together with changes in the magnitude of the contact-angle and the number of free radicals with time after the plasma treatment do not show any ageing effect. Single filament test revealed that the tensile strength was not impaired but even improved somewhat after the plasma treatment. The experiment shows that the interlaminar shear strength of Kevlar fiber reinforced epoxy resin compo- site is increased for more than 60%% after the treatment.
基金Funded by the National Basic Research Program of China (No.2009CB623105)
文摘Surfaces of grade III fly ashes were modified through mixing with carbide slag and calcining at 850 ℃ for 1 h. Mineralogical compositions and surface morphology of fly ashes before and after modification were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM), respectively. Effect of surface-modified fly ashes on compressive strength and autogenous shrinkage of blended cement pastes was investigated. Microstructures of cement pastes were examined by backscattered electron (BSE) imaging and mercury intrusion porosimetry (MIP). The experimental results showed that β-C2S was formed on the surfaces of fly ashes after modification. Hydration ofβ-C2S on the surface-modified fly ashes densified interface zone and enhanced bond strength between particles of fly ashes and hydrated clinkers. In addition, surface modification of fly ashes tended to decrease total porosity and 10-50 nm pores of cement pastes. Surface modification of fly ashes increased compressive strength and reduced autogenous shrinkage of cement pastes.
基金Project funded by Ten Thousand Talent Plans for Young Top-notch Talents of Yunnan Province, China (No. YNWR-QNBJ-2018-051)。
文摘Hydrogen peroxide was used as an oxidant to modify the cuprite surface and enhance its sulfidization.Surface-adsorption and infrared spectroscopy measurements indicated that the modification of the cuprite surface with hydrogen peroxide before sulfidization increased the adsorption capacity of xanthate.Zeta potential,scanning electron microscopy-energy dispersive X-ray spectroscopy,X-ray photoelectron spectroscopy,and time-of-flight secondary ion mass spectrometry results showed that the modification with hydrogen peroxide increased the contents of S^(2−)and Sn^(2−)species on the cuprite surface.Microflotation tests showed that the recovery of cuprite increased from 61.74%to 83.30%after the modification of the surface with hydrogen peroxide.These results confirm that the modification of the cuprite surface with hydrogen peroxide enhances the sulfidization of cuprite,which in turn improves its flotation.
基金supported by the National Key Research and Development Program of China(2020YFB1713500)the Chinese 02 Special Fund(2017ZX02408003)+2 种基金the Open Fund of National Joint Engineering Research Center for abrasion control and molding of metal materials(HKDNM201807)the Student Research Training Plan of Henan University of Science and Technology(2020026)the National Undergraduate Innovation and Entrepreneurship Training Program(202010464031,202110464005)。
文摘Rechargeable aqueous Zn-ion batteries(AZIBs)are one of the most promising energy storage devices for large-scale energy storage owing to their high specific capacity,eco-friendliness,low cost and high safety.Nevertheless,zinc metal anodes suffer from severe dendrite growth and side reactions,resulting in the inferior electrochemical performance of AZIBs.To address these problems,surface modification of zinc metal anodes is a facile and effective method to regulate the interaction between the zinc anode and an electrolyte.In this review,the current challenges and strategies for zinc metal anodes are presented.Furthermore,recent advances in surface modification strategies to improve their electrochemical performance are concluded and discussed.Finally,challenges and prospects for future development of zinc metal anodes are proposed.We hope this review will be useful for designing and fabricating highperformance AZIBs and boosting their practical applications.
文摘Potential engineering applications of magnesium(Mg)and Mg-based alloys,as the lightest structural metal,have made them a popular subject of study.However,the inferior corrosion and wear characteristics significantly limit their application range.It is widely recognized that surface treatment is the most commonly utilized technique for remarkably improving a substrate’s surface characteristics.Numerous methods have been introduced for the surface treatment of Mg and Mg-based alloys to improve their corrosion behavior and tribological performance.Among these,thermal spray(TS)technology provides several methods for deposition of various functional metallic,ceramic,cermet,or other coatings tailored to particular conditions.Recent researches have shown the tremendous potential for thermal spray coated Mg alloys for biomedical and industrial applications.In this context,the cold spray(CS)method,as a comparatively new TS coating technique,can generate the coating layer using kinetic energy rather than combined thermal and kinetic energies,like the high-velocity oxy-fuel(HVOF)spray method.Moreover,the CS process,as a revolutionary method,is able to repair and refurbish with a faster turnaround time;it also provides solutions that do not require dealing with the thermal stresses that are part of the other repair processes,such as welding or other TS processes using a high-temperature flame.In this review paper,the recently designed coatings that are specifically applied to Mg alloys(primarily for industrial applications)employing various coating processes are reviewed.Because of the increased utilization of CS technology for both 3D printed(additively manufactured)coatings and repair of structurally critical components,the most recent CS methods for the surface treatment,repair,and refurbishment of Mg alloys as well as their benefits and restrictions are then discussed and reviewed in detail.Lastly,the prospects of this field of study are briefly discussed,along with a summary of the presented work.
基金supported by the National Natural Science Foundation of China(Grant Nos.51874110 and 51604089)Natural Science Foundation of Heilongjiang Province(YQ2021B004)Open Project of State Key Laboratory of Urban Water Resource and Environment(Grant No.QA202138).
文摘The last several years have witnessed the prosperous development of zinc-ion batteries(ZIBs),which are considered as a promising competitor of energy storage systems thanks to their low cost and high safety.However,the reversibility and availability of this system are blighted by problems such as uncontrollable dendritic growth,hydrogen evolution,and corrosion passivation on anode side.A functionally and structurally well-designed anode current collectors(CCs)is believed as a viable solution for those problems,with a lack of summarization according to its working mechanisms.Herein,this review focuses on the challenges of zinc anode and the mechanisms of modified anode CCs,which can be divided into zincophilic modification,structural design,and steering the preferred crystal facet orientation.The possible prospects and directions on zinc anode research and design are proposed at the end to hopefully promote the practical application of ZIBs.