Mountains are important suppliers of freshwater to downstream areas,affecting large populations in particular in High Mountain Asia(HMA).Yet,the propagation of water from HMA headwaters to downstream areas is not full...Mountains are important suppliers of freshwater to downstream areas,affecting large populations in particular in High Mountain Asia(HMA).Yet,the propagation of water from HMA headwaters to downstream areas is not fully understood,as interactions in the mountain water cycle between the cryo-,hydro-and biosphere remain elusive.We review the definition of blue and green water fluxes as liquid water that contributes to runoff at the outlet of the selected domain(blue)and water lost to the atmosphere through vapor fluxes,that is evaporation from water,ground,and interception plus transpiration(green)and propose to add the term white water to account for the(often neglected)evaporation and sublimation from snow and ice.We provide an assessment of models that can simulate the cryo-hydro-biosphere continuum and the interactions between spheres in high mountain catchments,going beyond disciplinary separations.Land surface models are uniquely able to account for such complexity,since they solve the coupled fluxes of water,energy,and carbon between the land surface and atmosphere.Due to the mechanistic nature of such models,specific variables can be compared systematically to independent remote sensing observations-providing vital insights into model accuracy and enabling the understanding of the complex watersheds of HMA.We discuss recent developments in spaceborne earth observation products that have the potential to support catchment modeling in high mountain regions.We then present a pilot study application of the mechanistic land surface model Tethys&Chloris to a glacierized watershed in the Nepalese Himalayas and discuss the use of high-resolution earth observation data to constrain the meteorological forcing uncertainty and validate model results.We use these insights to highlight the remaining challenges and future opportunities that remote sensing data presents for land surface modeling in HMA.展开更多
High accuracy surface modeling (HASM) is a method which can be applied to soil property interpolation. In this paper, we present a method of HASM combined geographic information for soil property interpolation (HAS...High accuracy surface modeling (HASM) is a method which can be applied to soil property interpolation. In this paper, we present a method of HASM combined geographic information for soil property interpolation (HASM-SP) to improve the accuracy. Based on soil types, land use types and parent rocks, HASM-SP was applied to interpolate soil available P, Li, pH, alkali-hydrolyzable N, total K and Cr in a typical red soil hilly region. To evaluate the performance of HASM-SP, we compared its performance with that of ordinary kriging (OK), ordinary kriging combined geographic information (OK-Geo) and stratified kriging (SK). The results showed that the methods combined with geographic information including HASM-SP and OK-Geo obtained a lower estimation bias. HASM-SP also showed less MAEs and RMSEs when it was compared with the other three methods (OK-Geo, OK and SK). Much more details were presented in the HASM-SP maps for soil properties due to the combination of different types of geographic information which gave abrupt boundary for the spatial varia- tion of soil properties. Therefore, HASM-SP can not only reduce prediction errors but also can be accordant with the distribution of geographic information, which make the spatial simula- tion of soil property more reasonable. HASM-SP has not only enriched the theory of high accuracy surface modeling of soil property, but also provided a scientific method for the ap- plication in resource management and environment planning.展开更多
A scheme for an automatic road surface modeling from a noisy point cloud is presented. The normal vectors of the point cloud are estimated by distance-weighted fitting of local plane. Then, an automatic recognition of...A scheme for an automatic road surface modeling from a noisy point cloud is presented. The normal vectors of the point cloud are estimated by distance-weighted fitting of local plane. Then, an automatic recognition of the road surface from noise is performed based on the fuzzy clustering of normal vectors, with which the mean value is calculated and the projecting plane of point cloud is created to obtain the geometric model accordingly. Based on fuzzy clustering of the intensity attributed to each point, different objects on the road surface are assigned different colors for representing abundant appearances. This unsupervised method is demonstrated in the experiment and shows great effectiveness in reconstructing and rendering better road surface.展开更多
Highly detailed surface models and their real-time applications are increasingly popular in architecture,construction and other design and engineering fields.However,new and related problems have emerged concerning th...Highly detailed surface models and their real-time applications are increasingly popular in architecture,construction and other design and engineering fields.However,new and related problems have emerged concerning the efficient management of the resulting large datasets and the seamless integration of heterogeneous data.Moreover,the increasingly common requirements of local high-fidelity modeling combined with large-scale landscapes lead to difficulty in the seamless multi-resolution representation of hybrid triangulated irregular networks(TINs)and Grids.This paper presents a hybrid data structure with high-efficiency and a related organizational method for the seamless integration of multi-resolution models.This approach is characterized by(1)a self-adaptive algorithm for feature-preserving surface partitioning,(2)an efficient hybrid index structure for combined Grid and TIN surfaces,and(3)a view-dependent scheduling strategy with access to Grids of necessary resolution,giving priority to the dynamic loading of TINs.Experiments using typical real design datasets of highway constructions are able to achieve accuracy-preserved and real-time availability of results that prove the validity and efficiency of this approach.展开更多
Arbitrary topological curve network has no restriction in topology structure,so it has more powerful representing ability in defining complex surfaces.A complex surface modeling system is presented based on arbitrary ...Arbitrary topological curve network has no restriction in topology structure,so it has more powerful representing ability in defining complex surfaces.A complex surface modeling system is presented based on arbitrary topological curve network and the improved combined subdivision method,its functions including creating and editing curve network,and generating and modifying curve network's interpolated surface.This modeling system can be used to the process of products'concept design,and its applications is also significant to the development of subdivision method.展开更多
We introduce an almost-automatic technique for generating 3D car styling surface models based on a single side-view image. Our approach combines the prior knowledge of car styling and deformable curve network model to...We introduce an almost-automatic technique for generating 3D car styling surface models based on a single side-view image. Our approach combines the prior knowledge of car styling and deformable curve network model to obtain an automatic modeling process. Firstly, we define the consistent parameterized curve template for 2D and 3D case respectivelyby analyzingthe characteristic lines for car styling. Then, a semi-automatic extraction from a side-view car image is adopted. Thirdly, statistic morphable model of 3D curve network isused to get the initial solution with sparse point constraints.Withonly afew post-processing operations, the optimized curve network models for creating surfaces are obtained. Finally, the styling surfaces are automatically generated using template-based parametric surface modeling method. More than 50 3D curve network models are constructed as the morphable database. We show that this intelligent modeling toolsimplifiesthe exhausted modeling task, and also demonstratemeaningful results of our approach.展开更多
The new flee-form surface modelling technology for robotic belt grinding simulation presented in this paper is based on discrete surfel elements generated from the surface approximation point set and can facilitate th...The new flee-form surface modelling technology for robotic belt grinding simulation presented in this paper is based on discrete surfel elements generated from the surface approximation point set and can facilitate the simulation implementation. A local process model exploits the advantage of surfel representation to compute the material removal rate and the final surface grinding error can be easily carried out. With the help of this system, robot programmers can improve the path planning and predict potential problems by visualizing the manufacturing process.展开更多
Errors due to split time stepping are discussed for an explicit free–surface ocean model. In commonly used split time stepping, the way of time integration for the barotropic momentum equation is not compatible with ...Errors due to split time stepping are discussed for an explicit free–surface ocean model. In commonly used split time stepping, the way of time integration for the barotropic momentum equation is not compatible with that of the baroclinic one. The baroclinic equation has three–time–level structure because of leapfrog scheme. The barotropic one, however, has two–time–level structure when represented in terms of the baroclinic time level, on which the baroclinic one is integrated. This incompatibility results in the splitting errors as shown in this paper. The proper split time stepping is therefore proposed in such a way that the compatibility is kept between the barotropic and baroclinic equations. Its splitting errors are shown extremely small, so that it is particularly relevant to long–term integration for climate studies. It is applied to a free–surface model for the North Pacific Ocean.展开更多
To develop a sound ozone(O_3) pollution control strategy,it is important to well understand and characterize the source contribution due to the complex chemical and physical formation processes of O_3.Using the "Sh...To develop a sound ozone(O_3) pollution control strategy,it is important to well understand and characterize the source contribution due to the complex chemical and physical formation processes of O_3.Using the "Shunde" city as a pilot summer case study,we apply an innovative response surface modeling(RSM) methodology based on the Community Multi-Scale Air Quality(CMAQ) modeling simulations to identify the O_3 regime and provide dynamic analysis of the precursor contributions to effectively assess the O_3 impacts of volatile organic compound(VOC) control strategy.Our results show that Shunde is a typical VOC-limited urban O_3 polluted city.The "Jiangmen" city,as the main upper wind area during July 2014,its VOCs and nitrogen oxides(NO_x) emissions make up the largest contribution(9.06%).On the contrary,the contribution from local(Shunde) emission is lowest(6.35%) among the seven neighbor regions.The local VOCs industrial source emission has the largest contribution comparing to other precursor emission sectors in Shunde.The results of dynamic source contribution analysis further show that the local NO_x control could slightly increase the ground O_3 under low(10.00%) and medium(40.00%)reduction ratios,while it could start to turn positive to decrease ground O_3 under the high NO_x abatement ratio(75.00%).The real-time assessment of O_3 impacts from VOCs control strategies in Pearl River Delta(PRD) shows that the joint regional VOCs emission control policy will effectively reduce the ground O_3 concentration in Shunde.展开更多
In Earth system modeling,the land surface is coupled with the atmosphere through surface turbulent fluxes.These fluxes are computed using mean meteorological variables between the surface and a reference height in the...In Earth system modeling,the land surface is coupled with the atmosphere through surface turbulent fluxes.These fluxes are computed using mean meteorological variables between the surface and a reference height in the atmosphere.However,the dependence of flux computation on the reference height,which is usually set as the lowest level in the atmosphere in Earth system models,has not received much attention.Based on high-resolution large-eddy simulation(LES)data under unstable conditions,we find the setting of reference height is not trivial within the framework of current surface layer theory.With a reasonable prescription of aerodynamic roughness length(following the setting in LESs),reference heights near the top of the surface layer tend to provide the best estimate of surface fluxes,especially for the momentum flux.Furthermore,this conclusion for the sensible heat flux is insensitive to the ratio of roughness length for momentum versus heat.These results are robust,whether using the classical or revised surface layer theory.They provide a potential guide for setting the proper reference heights for Earth system modeling and can be further tested in the near future using observational data from land–atmosphere feedback observatories.展开更多
In recent years,fine-scale gridded population data has been widely adopted for assessing and monitoring the Sustainable Development Goals(SDGs).However,the existing population disaggregation techniques struggle to gen...In recent years,fine-scale gridded population data has been widely adopted for assessing and monitoring the Sustainable Development Goals(SDGs).However,the existing population disaggregation techniques struggle to generate precise population grids for small areas with scarce data.To address this,we have introduced a novel,lightweight population gridding technique that integrates dasymetric mapping and point-based surface modeling,titled three-weight surface modeling.This method comprises three weights,each offering a unique perspective on population spatial heterogeneity.The first weight,termed building-volume weight,is equivalent to the preliminary results of assigning population based on building volume data.The second weight,termed POIcenter weight,comprises POI(Point of Interest)categories and aggregation patterns,aiming to articulate high-density population centers.It is computed using the neighborhood accumulation rule of Spearman’s correlation coefficients between POIs and population size.The third weight,termed POI-distance weight,represents varying decay rates of population with distance from high-density centers.This three-weight surface model facilitates dynamic adjustment of parameters to refine the building-volume weight according to the remaining POI-related weights,thereby generating a more precise population surface.Our analysis of the census population and the disaggregation outcomes from 544 villages in three counties of southern Guizhou Province,China(namely,Huishui,Luodian,and Pingtang)revealed that the three-weight surface model using local parameter groups outperformed individual dasymetric mapping or point-based surface modeling in terms of accuracy.Also,the 10 m population grid generated by this local parameter model(LPTW-POP)presented greater resolution and fewer errors(RMSE of 1109,MAE of 422,and MRE of 0.2630)compared to commonly use gridded population datasets like LandScan,WorldPop,and GHSPOP.展开更多
A response surface method was utilized for the finite element model updating of a cable-stayed bridge in this paper to establish a baseline finite element model(FEM)that accurately reflects the characteristics of the ...A response surface method was utilized for the finite element model updating of a cable-stayed bridge in this paper to establish a baseline finite element model(FEM)that accurately reflects the characteristics of the actual bridge structure.Firstly,an initial FEM was established by the large-scale finite element software ANSYS,and the modal analysis was carried out on the dynamic response measured by the actual bridge structural health monitoring system.The initial error was obtained by comparing the dynamic characteristics of the measured data with those of the initial finite element model.Then,the second-order complete polynomial was selected to construct the response surface model;the corrected parameters were chosen using the sensitivity method.The response surface model(RSM)was fitted under the test cases designed using the central composite design method.After constructing the objective function,the RSMwas optimized and iterated by the sequential quadratic programmingmethod to obtain the corrected FEM.Finally,the dynamic characteristics of the modified FEM were compared with those of the actual bridge to get the final error.The results show that the modified FEM simulates the dynamic characteristics of the actual cable-stayed bridges more accurately.展开更多
In this paper, we present the double Beta spline curved surface which is controlled by double parameters including the algorithm principles, the treatment of boundary conditions, the alternation of projection, the alg...In this paper, we present the double Beta spline curved surface which is controlled by double parameters including the algorithm principles, the treatment of boundary conditions, the alternation of projection, the algorithms of elimination hiddle line, the process to display and the primiples to produce the shaded curved surface. Based on all the above, a freedom surface modeling system (FSMS) is designed and some examples developed on FSMS are verified and analyzed.展开更多
To aim at prototype parts fabricated with fused deposition modeling (FDM) process, the problems how to improve and enhance their surface micro-precision are studied. The producing mechanism of surface roughness is e...To aim at prototype parts fabricated with fused deposition modeling (FDM) process, the problems how to improve and enhance their surface micro-precision are studied. The producing mechanism of surface roughness is explained with three aspects concretely including the principle error of rapid prototyping (RP) process, the inherent characteristics of FDM process, and some mi- cro-scratches on the surface of the extruded fiber. Based on the micro-characters of section shape of the FDM prototype, a physical model reflecting the outer shape characters is abstracted. With the physical simplified and deduced, the evaluating equations of surface roughness are acquired. According to the FDM sample parts with special design for experimental measurement, the real surface roughness values of different inclined planes are obtained. And the measuring values of surface roughness are compared with the calculation values. Furthermore, the causes of surface roughness deviation between measuring values and calculation values are respectively analyzed and studied. With the references of analytic conclusions, the measuring values of the experimental part surface are revised, and the revised values nearly accord with the calculation values. Based on the influencing principles of FDM process parameters and special post processing of FDM prototype parts, some concrete measures are proposed to reduce the surface roughness of FDM parts, and the applying effects are better.展开更多
The modern aircraft Thermal Management System(TMS)faces significant challenges due to increasing thermal loads and limited heat dissipation pathways.To optimize TMS during the conceptual design stage,the development o...The modern aircraft Thermal Management System(TMS)faces significant challenges due to increasing thermal loads and limited heat dissipation pathways.To optimize TMS during the conceptual design stage,the development of a modeling and simulation tool is crucial.In this study,a TMS simulation model library was created using MATLAB/SIMULINK.To simplify the complexity of the Vapor Cycle System(VCS)model,a Response Surface Model(RSM)was constructed using the Monte Carlo method and validated through simulation experiments.Taking the F-22 fighter TMS as an example,a thermal dynamic simulation model was constructed to analyze the variation of thermal response parameters in key subsystems and elucidate their coupling relationships.Furthermore,the impact of total fuel flow and ram air flow on the TMS was investigated.The findings demonstrate the existence of an optimal total fuel flow that achieves a balance between maximizing fuel heat sink utilization and minimizing bleed air demand.The adaptive distribution of fuel and ram air flow was found to enhance aircraft thermal management performance.This study contributes to improving modeling efficiency and enhancing the understanding of the thermal dynamic characteristics of TMS,thereby facilitating further optimization in aircraft TMS design.展开更多
High performance electromechanical equipment is widely used in various fields, such as national defense, industry and so on [ 1]. In addition, the technical level of high performance electromechanical equipment is the...High performance electromechanical equipment is widely used in various fields, such as national defense, industry and so on [ 1]. In addition, the technical level of high performance electromechanical equipment is the embodiment of the national level of science and technology.展开更多
Response surface methodology(RSM) is introduced into corrosion research as a tool to assess the effects of environmental factors and their interactions on corrosion behavior and establish a model for corrosion predi...Response surface methodology(RSM) is introduced into corrosion research as a tool to assess the effects of environmental factors and their interactions on corrosion behavior and establish a model for corrosion prediction in complex coupled environment(CCE). In this study, a typical CCE, that is, the corrosion environment of pipelines in gas field is taken as an example. The effects of environmental factors such as chloride concentration, pH value and pressure as well as their interactions on critical pitting temperature(CPT) were evaluated, and a quadratic polynomial model was developed for corrosion prediction by RSM. The results showed that the model was excellent in corrosion prediction with R2= 0.9949. CPT was mostly affected by single environmental factor rather than interaction, and among the whole factors, chloride concentration was the most influential factor of CPT.展开更多
Multiphase flow in low permeability porous media is involved in numerous energy and environmental applications.However,a complete description of this process is challenging due to the limited modeling scale and the ef...Multiphase flow in low permeability porous media is involved in numerous energy and environmental applications.However,a complete description of this process is challenging due to the limited modeling scale and the effects of complex pore structures and wettability.To address this issue,based on the digital rock of low permeability sandstone,a direct numerical simulation is performed considering the interphase drag and boundary slip to clarify the microscopic water-oil displacement process.In addition,a dual-porosity pore network model(PNM)is constructed to obtain the water-oil relative permeability of the sample.The displacement efficiency as a recovery process is assessed under different wetting and pore structure properties.Results show that microscopic displacement mechanisms explain the corresponding macroscopic relative permeability.The injected water breaks through the outlet earlier with a large mass flow,while thick oil films exist in rough hydrophobic surfaces and poorly connected pores.The variation of water-oil relative permeability is significant,and residual oil saturation is high in the oil-wet system.The flooding is extensive,and the residual oil is trapped in complex pore networks for hydrophilic pore surfaces;thus,water relative permeability is lower in the water-wet system.While the displacement efficiency is the worst in mixed-wetting systems for poor water connectivity.Microporosity negatively correlates with invading oil volume fraction due to strong capillary resistance,and a large microporosity corresponds to low residual oil saturation.This work provides insights into the water-oil flow from different modeling perspectives and helps to optimize the development plan for enhanced recovery.展开更多
The inner surface modification process by plasma-based low-energy ion implantation(PBLEII)with an electron cyclotron resonance(ECR)microwave plasma source located at the central axis of a cylindrical tube is model...The inner surface modification process by plasma-based low-energy ion implantation(PBLEII)with an electron cyclotron resonance(ECR)microwave plasma source located at the central axis of a cylindrical tube is modeled to optimize the low-energy ion implantation parameters for industrial applications.In this paper,a magnetized plasma diffusion fluid model has been established to describe the plasma nonuniformity caused by plasma diffusion under an axial magnetic field during the pulse-off time of low pulsed negative bias.Using this plasma density distribution as the initial condition,a sheath collisional fluid model is built up to describe the sheath evolution and ion implantation during the pulse-on time.The plasma nonuniformity at the end of the pulse-off time is more apparent along the radial direction compared with that in the axial direction due to the geometry of the linear plasma source in the center and the difference between perpendicular and parallel plasma diffusion coefficients with respect to the magnetic field.The normalized nitrogen plasma densities on the inner and outer surfaces of the tube are observed to be about 0.39 and 0.24,respectively,of which the value is 1 at the central plasma source.After a 5μs pulse-on time,in the area less than 2 cm from the end of the tube,the nitrogen ion implantation energy decreases from 1.5 keV to 1.3 keV and the ion implantation angle increases from several degrees to more than 40°;both variations reduce the nitrogen ion implantation depth.However,the nitrogen ion implantation dose peaks of about 2×10^(10)-7×10^(10)ions/cm^2 in this area are 2-4 times higher than that of 1.18×10^(10)ions/cm^2 and 1.63×10^(10)ions/cm^2 on the inner and outer surfaces of the tube.The sufficient ion implantation dose ensures an acceptable modification effect near the end of the tube under the low energy and large angle conditions for nitrogen ion implantation,because the modification effect is mainly determined by the ion implantation dose,just as the mass transfer process in PBLEII is dominated by low-energy ion implantation and thermal diffusion.Therefore,a comparatively uniform surface modification by the low-energy nitrogen ion implantation is achieved along the cylindrical tube on both the inner and outer surfaces.展开更多
Stone Pine(Pinus pinea L.)is currently the pine species with the highest commercial value with edible seeds.In this respect,this study introduces a new methodology for extracting Stone Pine trees from Digital Surface ...Stone Pine(Pinus pinea L.)is currently the pine species with the highest commercial value with edible seeds.In this respect,this study introduces a new methodology for extracting Stone Pine trees from Digital Surface Models(DSMs)generated through an Unmanned Aerial Vehicle(UAV)mission.We developed a novel enhanced probability map of local maxima that facilitates the computation of the orientation symmetry by means of new probabilistic local minima information.Four test sites are used to evaluate our automated framework within one of the most important Stone Pine forest areas in Antalya,Turkey.A Hand-held Mobile Laser Scanner(HMLS)was utilized to collect the reference point cloud dataset.Our findings confirm that the proposed methodology,which uses a single DSM as an input,secures overall pixel-based and object-based F1-scores of 88.3%and 97.7%,respectively.The overall median Euclidean distance revealed between the automatically extracted stem locations and the manually extracted ones is computed to be 36 cm(less than 4 pixels),demonstrating the effectiveness and robustness of the proposed methodology.Finally,the comparison with the state-of-the-art reveals that the outcomes of the proposed methodology outperform the results of six previous studies in this context.展开更多
基金supported by the ESA and NRSCC Dragon 5 cooperation project“Cryosphere-hydrosphere interactions of the Asian water towers:using remote sensing to drive hyper-resolution ecohydrological modelling”[Grant no.59199]PB and FP acknowledge funding from the SNSF(High-elevation precipitation in High Mountain Asia,HOPE)[Grant no.183633]+4 种基金ESM,MK,SFu and FP acknowledge funding from the ERC under the European Union’s Horizon 2020 research and innovation program(Rapid mass losses of debris-covered glaciers in High Mountain Asia,RAVEN)[Grant no.772751]LJ,CZ and MMe acknowledge the Second Tibetan Plateau Scientific Expedition and Research Program(STEP)[grant no.2019QZKK010308,no.2019QZKK0206]the National Natural Science Foundation of China projects(Grant no.42171039,no.91737205)the Chinese Academy of Sciences President’s International Fellowship Initiative[Grant no.2020VTA0001]the MOST High-Level Foreign Expert Program[Grant no.G2022055010L].
文摘Mountains are important suppliers of freshwater to downstream areas,affecting large populations in particular in High Mountain Asia(HMA).Yet,the propagation of water from HMA headwaters to downstream areas is not fully understood,as interactions in the mountain water cycle between the cryo-,hydro-and biosphere remain elusive.We review the definition of blue and green water fluxes as liquid water that contributes to runoff at the outlet of the selected domain(blue)and water lost to the atmosphere through vapor fluxes,that is evaporation from water,ground,and interception plus transpiration(green)and propose to add the term white water to account for the(often neglected)evaporation and sublimation from snow and ice.We provide an assessment of models that can simulate the cryo-hydro-biosphere continuum and the interactions between spheres in high mountain catchments,going beyond disciplinary separations.Land surface models are uniquely able to account for such complexity,since they solve the coupled fluxes of water,energy,and carbon between the land surface and atmosphere.Due to the mechanistic nature of such models,specific variables can be compared systematically to independent remote sensing observations-providing vital insights into model accuracy and enabling the understanding of the complex watersheds of HMA.We discuss recent developments in spaceborne earth observation products that have the potential to support catchment modeling in high mountain regions.We then present a pilot study application of the mechanistic land surface model Tethys&Chloris to a glacierized watershed in the Nepalese Himalayas and discuss the use of high-resolution earth observation data to constrain the meteorological forcing uncertainty and validate model results.We use these insights to highlight the remaining challenges and future opportunities that remote sensing data presents for land surface modeling in HMA.
基金Foundation: National Natural Science Foundation of China, No.41001057 China National Science Fund for Distinguished Young Scholars, No.40825003 Project Supported by State Key Laboratory of Earth Surface Processes and Resource Ecology, No.2011-KF-06
文摘High accuracy surface modeling (HASM) is a method which can be applied to soil property interpolation. In this paper, we present a method of HASM combined geographic information for soil property interpolation (HASM-SP) to improve the accuracy. Based on soil types, land use types and parent rocks, HASM-SP was applied to interpolate soil available P, Li, pH, alkali-hydrolyzable N, total K and Cr in a typical red soil hilly region. To evaluate the performance of HASM-SP, we compared its performance with that of ordinary kriging (OK), ordinary kriging combined geographic information (OK-Geo) and stratified kriging (SK). The results showed that the methods combined with geographic information including HASM-SP and OK-Geo obtained a lower estimation bias. HASM-SP also showed less MAEs and RMSEs when it was compared with the other three methods (OK-Geo, OK and SK). Much more details were presented in the HASM-SP maps for soil properties due to the combination of different types of geographic information which gave abrupt boundary for the spatial varia- tion of soil properties. Therefore, HASM-SP can not only reduce prediction errors but also can be accordant with the distribution of geographic information, which make the spatial simula- tion of soil property more reasonable. HASM-SP has not only enriched the theory of high accuracy surface modeling of soil property, but also provided a scientific method for the ap- plication in resource management and environment planning.
基金Supported by the National Natural Science Foundation of China (No.40471089) and the Key Laboratory of Geo-informatics of State Bureau of Surveying and Mapping.
文摘A scheme for an automatic road surface modeling from a noisy point cloud is presented. The normal vectors of the point cloud are estimated by distance-weighted fitting of local plane. Then, an automatic recognition of the road surface from noise is performed based on the fuzzy clustering of normal vectors, with which the mean value is calculated and the projecting plane of point cloud is created to obtain the geometric model accordingly. Based on fuzzy clustering of the intensity attributed to each point, different objects on the road surface are assigned different colors for representing abundant appearances. This unsupervised method is demonstrated in the experiment and shows great effectiveness in reconstructing and rendering better road surface.
基金The work described in this paper was supported by National Natural Science Foundation of China(No.41171311,No.41021061)National Basic Research Program of China(No.2012CB725300).
文摘Highly detailed surface models and their real-time applications are increasingly popular in architecture,construction and other design and engineering fields.However,new and related problems have emerged concerning the efficient management of the resulting large datasets and the seamless integration of heterogeneous data.Moreover,the increasingly common requirements of local high-fidelity modeling combined with large-scale landscapes lead to difficulty in the seamless multi-resolution representation of hybrid triangulated irregular networks(TINs)and Grids.This paper presents a hybrid data structure with high-efficiency and a related organizational method for the seamless integration of multi-resolution models.This approach is characterized by(1)a self-adaptive algorithm for feature-preserving surface partitioning,(2)an efficient hybrid index structure for combined Grid and TIN surfaces,and(3)a view-dependent scheduling strategy with access to Grids of necessary resolution,giving priority to the dynamic loading of TINs.Experiments using typical real design datasets of highway constructions are able to achieve accuracy-preserved and real-time availability of results that prove the validity and efficiency of this approach.
基金Project supported by the Fundamental Research Foundations for the Central Universities (Grant No.2009B30514)
文摘Arbitrary topological curve network has no restriction in topology structure,so it has more powerful representing ability in defining complex surfaces.A complex surface modeling system is presented based on arbitrary topological curve network and the improved combined subdivision method,its functions including creating and editing curve network,and generating and modifying curve network's interpolated surface.This modeling system can be used to the process of products'concept design,and its applications is also significant to the development of subdivision method.
基金Supported by National Natural Science Foundation of China(Nos.11472073,61173102 and 61370143)
文摘We introduce an almost-automatic technique for generating 3D car styling surface models based on a single side-view image. Our approach combines the prior knowledge of car styling and deformable curve network model to obtain an automatic modeling process. Firstly, we define the consistent parameterized curve template for 2D and 3D case respectivelyby analyzingthe characteristic lines for car styling. Then, a semi-automatic extraction from a side-view car image is adopted. Thirdly, statistic morphable model of 3D curve network isused to get the initial solution with sparse point constraints.Withonly afew post-processing operations, the optimized curve network models for creating surfaces are obtained. Finally, the styling surfaces are automatically generated using template-based parametric surface modeling method. More than 50 3D curve network models are constructed as the morphable database. We show that this intelligent modeling toolsimplifiesthe exhausted modeling task, and also demonstratemeaningful results of our approach.
基金Project supported by the Deutsche Forschungsgemeinschaft (DFG)as a part of the research group 366 (Simulation-Aided Offline ProcessDesign and Optimization in Manufacturing Sculptured Surfaces)
文摘The new flee-form surface modelling technology for robotic belt grinding simulation presented in this paper is based on discrete surfel elements generated from the surface approximation point set and can facilitate the simulation implementation. A local process model exploits the advantage of surfel representation to compute the material removal rate and the final surface grinding error can be easily carried out. With the help of this system, robot programmers can improve the path planning and predict potential problems by visualizing the manufacturing process.
基金Hundred Talent Program of Chinese Academy of Sciences under Grant No. 0300YQ000101. Partly supported by the National Natural Sci
文摘Errors due to split time stepping are discussed for an explicit free–surface ocean model. In commonly used split time stepping, the way of time integration for the barotropic momentum equation is not compatible with that of the baroclinic one. The baroclinic equation has three–time–level structure because of leapfrog scheme. The barotropic one, however, has two–time–level structure when represented in terms of the baroclinic time level, on which the baroclinic one is integrated. This incompatibility results in the splitting errors as shown in this paper. The proper split time stepping is therefore proposed in such a way that the compatibility is kept between the barotropic and baroclinic equations. Its splitting errors are shown extremely small, so that it is particularly relevant to long–term integration for climate studies. It is applied to a free–surface model for the North Pacific Ocean.
基金Financial support for this work is provided by the Shunde Environment ProtectionTransportation and Urban Administration Bureau(no.0851-1361FS02CL51)+5 种基金the Guangdong Provincial Science and Technology Plan Projects(no.2014A050503019)Guangzhou Environmental Protection Bureau(no.x2hjB2150020)supported by the funding of State Environmental Protection Key Laboratory of Sources and Control of Air Pollution Complexthe project of Atmospheric Haze Collaboration Control Technology Design(no.XDB05030400)from Chinese Academy of Sciencesthe Special Program for Applied Research on Super Computation of the NSFC-Guangdong Joint Fund(U1501501)(the second phase)the Guangdong Provincial Engineering and Technology Research Center for Environmental Risk Prevention and Emergency Disposal(no.b2152120)
文摘To develop a sound ozone(O_3) pollution control strategy,it is important to well understand and characterize the source contribution due to the complex chemical and physical formation processes of O_3.Using the "Shunde" city as a pilot summer case study,we apply an innovative response surface modeling(RSM) methodology based on the Community Multi-Scale Air Quality(CMAQ) modeling simulations to identify the O_3 regime and provide dynamic analysis of the precursor contributions to effectively assess the O_3 impacts of volatile organic compound(VOC) control strategy.Our results show that Shunde is a typical VOC-limited urban O_3 polluted city.The "Jiangmen" city,as the main upper wind area during July 2014,its VOCs and nitrogen oxides(NO_x) emissions make up the largest contribution(9.06%).On the contrary,the contribution from local(Shunde) emission is lowest(6.35%) among the seven neighbor regions.The local VOCs industrial source emission has the largest contribution comparing to other precursor emission sectors in Shunde.The results of dynamic source contribution analysis further show that the local NO_x control could slightly increase the ground O_3 under low(10.00%) and medium(40.00%)reduction ratios,while it could start to turn positive to decrease ground O_3 under the high NO_x abatement ratio(75.00%).The real-time assessment of O_3 impacts from VOCs control strategies in Pearl River Delta(PRD) shows that the joint regional VOCs emission control policy will effectively reduce the ground O_3 concentration in Shunde.
基金supported by the Natural Science Foundation of China(Grant Nos.42088101 and 42375163)the Guangdong Major Project of Basic and Applied Basic Research(Grant No.2021B0301030007)the specific research fund of The Innovation Platform for Academicians of Hainan Province(Grant No.YSPTZX202143)。
文摘In Earth system modeling,the land surface is coupled with the atmosphere through surface turbulent fluxes.These fluxes are computed using mean meteorological variables between the surface and a reference height in the atmosphere.However,the dependence of flux computation on the reference height,which is usually set as the lowest level in the atmosphere in Earth system models,has not received much attention.Based on high-resolution large-eddy simulation(LES)data under unstable conditions,we find the setting of reference height is not trivial within the framework of current surface layer theory.With a reasonable prescription of aerodynamic roughness length(following the setting in LESs),reference heights near the top of the surface layer tend to provide the best estimate of surface fluxes,especially for the momentum flux.Furthermore,this conclusion for the sensible heat flux is insensitive to the ratio of roughness length for momentum versus heat.These results are robust,whether using the classical or revised surface layer theory.They provide a potential guide for setting the proper reference heights for Earth system modeling and can be further tested in the near future using observational data from land–atmosphere feedback observatories.
基金the support of the Natural Science Foundation of Shanghai Municipality(No.24ZR1420500)the Project of Yulin Science,and Technology Light(No.2024-KJZG-KXJ-005)the Project of International Research Center of Big Data for SDGs(No.CBAS2024SDG005).
文摘In recent years,fine-scale gridded population data has been widely adopted for assessing and monitoring the Sustainable Development Goals(SDGs).However,the existing population disaggregation techniques struggle to generate precise population grids for small areas with scarce data.To address this,we have introduced a novel,lightweight population gridding technique that integrates dasymetric mapping and point-based surface modeling,titled three-weight surface modeling.This method comprises three weights,each offering a unique perspective on population spatial heterogeneity.The first weight,termed building-volume weight,is equivalent to the preliminary results of assigning population based on building volume data.The second weight,termed POIcenter weight,comprises POI(Point of Interest)categories and aggregation patterns,aiming to articulate high-density population centers.It is computed using the neighborhood accumulation rule of Spearman’s correlation coefficients between POIs and population size.The third weight,termed POI-distance weight,represents varying decay rates of population with distance from high-density centers.This three-weight surface model facilitates dynamic adjustment of parameters to refine the building-volume weight according to the remaining POI-related weights,thereby generating a more precise population surface.Our analysis of the census population and the disaggregation outcomes from 544 villages in three counties of southern Guizhou Province,China(namely,Huishui,Luodian,and Pingtang)revealed that the three-weight surface model using local parameter groups outperformed individual dasymetric mapping or point-based surface modeling in terms of accuracy.Also,the 10 m population grid generated by this local parameter model(LPTW-POP)presented greater resolution and fewer errors(RMSE of 1109,MAE of 422,and MRE of 0.2630)compared to commonly use gridded population datasets like LandScan,WorldPop,and GHSPOP.
基金supported by the National Natural Science Foundation of China(NNSFC)(Grant no.12272148).
文摘A response surface method was utilized for the finite element model updating of a cable-stayed bridge in this paper to establish a baseline finite element model(FEM)that accurately reflects the characteristics of the actual bridge structure.Firstly,an initial FEM was established by the large-scale finite element software ANSYS,and the modal analysis was carried out on the dynamic response measured by the actual bridge structural health monitoring system.The initial error was obtained by comparing the dynamic characteristics of the measured data with those of the initial finite element model.Then,the second-order complete polynomial was selected to construct the response surface model;the corrected parameters were chosen using the sensitivity method.The response surface model(RSM)was fitted under the test cases designed using the central composite design method.After constructing the objective function,the RSMwas optimized and iterated by the sequential quadratic programmingmethod to obtain the corrected FEM.Finally,the dynamic characteristics of the modified FEM were compared with those of the actual bridge to get the final error.The results show that the modified FEM simulates the dynamic characteristics of the actual cable-stayed bridges more accurately.
文摘In this paper, we present the double Beta spline curved surface which is controlled by double parameters including the algorithm principles, the treatment of boundary conditions, the alternation of projection, the algorithms of elimination hiddle line, the process to display and the primiples to produce the shaded curved surface. Based on all the above, a freedom surface modeling system (FSMS) is designed and some examples developed on FSMS are verified and analyzed.
基金This project is supported by National Natural Science Foundation of China (No. 50575139)
文摘To aim at prototype parts fabricated with fused deposition modeling (FDM) process, the problems how to improve and enhance their surface micro-precision are studied. The producing mechanism of surface roughness is explained with three aspects concretely including the principle error of rapid prototyping (RP) process, the inherent characteristics of FDM process, and some mi- cro-scratches on the surface of the extruded fiber. Based on the micro-characters of section shape of the FDM prototype, a physical model reflecting the outer shape characters is abstracted. With the physical simplified and deduced, the evaluating equations of surface roughness are acquired. According to the FDM sample parts with special design for experimental measurement, the real surface roughness values of different inclined planes are obtained. And the measuring values of surface roughness are compared with the calculation values. Furthermore, the causes of surface roughness deviation between measuring values and calculation values are respectively analyzed and studied. With the references of analytic conclusions, the measuring values of the experimental part surface are revised, and the revised values nearly accord with the calculation values. Based on the influencing principles of FDM process parameters and special post processing of FDM prototype parts, some concrete measures are proposed to reduce the surface roughness of FDM parts, and the applying effects are better.
文摘The modern aircraft Thermal Management System(TMS)faces significant challenges due to increasing thermal loads and limited heat dissipation pathways.To optimize TMS during the conceptual design stage,the development of a modeling and simulation tool is crucial.In this study,a TMS simulation model library was created using MATLAB/SIMULINK.To simplify the complexity of the Vapor Cycle System(VCS)model,a Response Surface Model(RSM)was constructed using the Monte Carlo method and validated through simulation experiments.Taking the F-22 fighter TMS as an example,a thermal dynamic simulation model was constructed to analyze the variation of thermal response parameters in key subsystems and elucidate their coupling relationships.Furthermore,the impact of total fuel flow and ram air flow on the TMS was investigated.The findings demonstrate the existence of an optimal total fuel flow that achieves a balance between maximizing fuel heat sink utilization and minimizing bleed air demand.The adaptive distribution of fuel and ram air flow was found to enhance aircraft thermal management performance.This study contributes to improving modeling efficiency and enhancing the understanding of the thermal dynamic characteristics of TMS,thereby facilitating further optimization in aircraft TMS design.
文摘High performance electromechanical equipment is widely used in various fields, such as national defense, industry and so on [ 1]. In addition, the technical level of high performance electromechanical equipment is the embodiment of the national level of science and technology.
基金financially supported by the Hundred Talents Program of Chinese Academy of Sciencesthe National Natural Science Foundation of China (No. U1460202)the Key Laboratory of Superlight Material and Surface Technology (Harbin Engineering University), Ministry of Education
文摘Response surface methodology(RSM) is introduced into corrosion research as a tool to assess the effects of environmental factors and their interactions on corrosion behavior and establish a model for corrosion prediction in complex coupled environment(CCE). In this study, a typical CCE, that is, the corrosion environment of pipelines in gas field is taken as an example. The effects of environmental factors such as chloride concentration, pH value and pressure as well as their interactions on critical pitting temperature(CPT) were evaluated, and a quadratic polynomial model was developed for corrosion prediction by RSM. The results showed that the model was excellent in corrosion prediction with R2= 0.9949. CPT was mostly affected by single environmental factor rather than interaction, and among the whole factors, chloride concentration was the most influential factor of CPT.
基金supported by National Natural Science Foundation of China(Grant No.42172159)Science Foundation of China University of Petroleum,Beijing(Grant No.2462023XKBH002).
文摘Multiphase flow in low permeability porous media is involved in numerous energy and environmental applications.However,a complete description of this process is challenging due to the limited modeling scale and the effects of complex pore structures and wettability.To address this issue,based on the digital rock of low permeability sandstone,a direct numerical simulation is performed considering the interphase drag and boundary slip to clarify the microscopic water-oil displacement process.In addition,a dual-porosity pore network model(PNM)is constructed to obtain the water-oil relative permeability of the sample.The displacement efficiency as a recovery process is assessed under different wetting and pore structure properties.Results show that microscopic displacement mechanisms explain the corresponding macroscopic relative permeability.The injected water breaks through the outlet earlier with a large mass flow,while thick oil films exist in rough hydrophobic surfaces and poorly connected pores.The variation of water-oil relative permeability is significant,and residual oil saturation is high in the oil-wet system.The flooding is extensive,and the residual oil is trapped in complex pore networks for hydrophilic pore surfaces;thus,water relative permeability is lower in the water-wet system.While the displacement efficiency is the worst in mixed-wetting systems for poor water connectivity.Microporosity negatively correlates with invading oil volume fraction due to strong capillary resistance,and a large microporosity corresponds to low residual oil saturation.This work provides insights into the water-oil flow from different modeling perspectives and helps to optimize the development plan for enhanced recovery.
基金supported by National Natural Science Foundation of China(Nos.50725519,51271048,51321004)
文摘The inner surface modification process by plasma-based low-energy ion implantation(PBLEII)with an electron cyclotron resonance(ECR)microwave plasma source located at the central axis of a cylindrical tube is modeled to optimize the low-energy ion implantation parameters for industrial applications.In this paper,a magnetized plasma diffusion fluid model has been established to describe the plasma nonuniformity caused by plasma diffusion under an axial magnetic field during the pulse-off time of low pulsed negative bias.Using this plasma density distribution as the initial condition,a sheath collisional fluid model is built up to describe the sheath evolution and ion implantation during the pulse-on time.The plasma nonuniformity at the end of the pulse-off time is more apparent along the radial direction compared with that in the axial direction due to the geometry of the linear plasma source in the center and the difference between perpendicular and parallel plasma diffusion coefficients with respect to the magnetic field.The normalized nitrogen plasma densities on the inner and outer surfaces of the tube are observed to be about 0.39 and 0.24,respectively,of which the value is 1 at the central plasma source.After a 5μs pulse-on time,in the area less than 2 cm from the end of the tube,the nitrogen ion implantation energy decreases from 1.5 keV to 1.3 keV and the ion implantation angle increases from several degrees to more than 40°;both variations reduce the nitrogen ion implantation depth.However,the nitrogen ion implantation dose peaks of about 2×10^(10)-7×10^(10)ions/cm^2 in this area are 2-4 times higher than that of 1.18×10^(10)ions/cm^2 and 1.63×10^(10)ions/cm^2 on the inner and outer surfaces of the tube.The sufficient ion implantation dose ensures an acceptable modification effect near the end of the tube under the low energy and large angle conditions for nitrogen ion implantation,because the modification effect is mainly determined by the ion implantation dose,just as the mass transfer process in PBLEII is dominated by low-energy ion implantation and thermal diffusion.Therefore,a comparatively uniform surface modification by the low-energy nitrogen ion implantation is achieved along the cylindrical tube on both the inner and outer surfaces.
基金supported by the Projects of Scientific Investigation(BAP)of Ankara Haci Bayram Veli University[Grant No.01/2019-32].
文摘Stone Pine(Pinus pinea L.)is currently the pine species with the highest commercial value with edible seeds.In this respect,this study introduces a new methodology for extracting Stone Pine trees from Digital Surface Models(DSMs)generated through an Unmanned Aerial Vehicle(UAV)mission.We developed a novel enhanced probability map of local maxima that facilitates the computation of the orientation symmetry by means of new probabilistic local minima information.Four test sites are used to evaluate our automated framework within one of the most important Stone Pine forest areas in Antalya,Turkey.A Hand-held Mobile Laser Scanner(HMLS)was utilized to collect the reference point cloud dataset.Our findings confirm that the proposed methodology,which uses a single DSM as an input,secures overall pixel-based and object-based F1-scores of 88.3%and 97.7%,respectively.The overall median Euclidean distance revealed between the automatically extracted stem locations and the manually extracted ones is computed to be 36 cm(less than 4 pixels),demonstrating the effectiveness and robustness of the proposed methodology.Finally,the comparison with the state-of-the-art reveals that the outcomes of the proposed methodology outperform the results of six previous studies in this context.