Hydrogel scaffolds have numerous potential applications in the tissue engineering field.However,tough hydrogel scaffolds implanted in vivo are seldom reported because it is difficult to balance biocompatibility and hi...Hydrogel scaffolds have numerous potential applications in the tissue engineering field.However,tough hydrogel scaffolds implanted in vivo are seldom reported because it is difficult to balance biocompatibility and high mechanical properties.Inspired by Chinese ramen,we propose a universal fabricating method(printing-P,training-T,cross-linking-C,PTC&PCT)for tough hydrogel scaffolds to fill this gap.First,3D printing fabricates a hydrogel scaffold with desired structures(P).Then,the scaffold could have extraordinarily high mechanical properties and functional surface structure by cycle mechanical training with salting-out assistance(T).Finally,the training results are fixed by photo-cross-linking processing(C).The tough gelatin hydrogel scaffolds exhibit excellent tensile strength of 6.66 MPa(622-fold untreated)and have excellent biocompatibility.Furthermore,this scaffold possesses functional surface structures from nanometer to micron to millimeter,which can efficiently induce directional cell growth.Interestingly,this strategy can produce bionic human tissue with mechanical properties of 10 kPa-10 MPa by changing the type of salt,and many hydrogels,such as gelatin and silk,could be improved with PTC or PCT strategies.Animal experiments show that this scaffold can effectively promote the new generation of muscle fibers,blood vessels,and nerves within 4 weeks,prompting the rapid regeneration of large-volume muscle loss injuries.展开更多
Changes to the microstructure of a hard carbon(HC)and its solid electrolyte interface(SEI)can be effective in improving the electrode kinetics.However,achieving fast charging using a simple and inexpensive strategy wi...Changes to the microstructure of a hard carbon(HC)and its solid electrolyte interface(SEI)can be effective in improving the electrode kinetics.However,achieving fast charging using a simple and inexpensive strategy without sacrificing its initial Coulombic efficiency remains a challenge in sodium ion batteries.A simple liquid-phase coating approach has been used to generate a pitch-derived soft carbon layer on the HC surface,and its effect on the porosity of HC and SEI chemistry has been studied.A variety of structural characterizations show a soft carbon coating can increase the defect and ultra-micropore contents.The increase in ultra-micropore comes from both the soft carbon coatings and the larger pores within the HC that are partially filled by pitch,which provides more Na+storage sites.In-situ FTIR/EIS and ex-situ XPS showed that the soft carbon coating induced the formation of thinner SEI that is richer in NaF from the electrolyte,which stabilized the interface and promoted the charge transfer process.As a result,the anode produced fastcharging(329.8 mAh g^(−1)at 30 mA g^(−1)and 198.6 mAh g^(−1)at 300 mA g^(−1))and had a better cycling performance(a high capacity retention of 81.4%after 100 cycles at 150 mA g^(−1)).This work reveals the critical role of coating layer in changing the pore structure,SEI chemistry and diffusion kinetics of hard carbon,which enables rational design of sodium-ion battery anode with enhanced fast charging capability.展开更多
Fe-based superconductors represent a fascinating class of materials,extensively studied for their complex interplay of superconductivity,magnetism,spin density waves,and nematicity,along with the interactions among th...Fe-based superconductors represent a fascinating class of materials,extensively studied for their complex interplay of superconductivity,magnetism,spin density waves,and nematicity,along with the interactions among these orders.An intriguing yet unexplained phenomenon observed in Fe-based superconductors is the emergence of superconductivity below 25K in the non-superconducting parent compound SrFe_(2)As_(2)following exposure to water at its surface.In this study,we employed in situ angle-resolved photoemission spectroscopy and low-energy electron diffraction to meticulously examine the electronic structure evolution of SrFe_(2)As_(2)upon in situ water dosing.Our findings indicate that water dosing markedly attenuates the spin density wave phase and surface Sr reconstruction while preserving the nematic order in SrFe_(2)As_(2).Furthermore,we detected an enhancement in the spectral weight of bands near the Fermi level.Our observations highlight the critical role of the intricate interplay among various orders induced by water dosing,which effectively modifies the band structure and favors the emergence of superconductivity in SrFe_(2)As_(2).展开更多
Enhancing the lubricating properties and antibacterial adhesion resistance of implantable medical materials is critical to prevent soft tissue injury during implantation and the formation of bacterial biofilms.Prior s...Enhancing the lubricating properties and antibacterial adhesion resistance of implantable medical materials is critical to prevent soft tissue injury during implantation and the formation of bacterial biofilms.Prior studies may have exhibited limitations in the preparation methodologies and long-term stability of coatings for implantable medical materials.In this study,we developed a multilayered hybrid hydrogel coating method based on the rate difference of polymerization initiation on the material surface.The acquired coating with persistent lubrication capability retained its functionality after 2×10^(4) cycles of friction and 21 days of PBS immersion.A quaternary ammonium salt coating with antibacterial properties was introduced to further functionalize the coating.Animal experiments demonstrated that this coating exhibited remarkable effects on delaying encrustation and bacterial colonization.These studies indicate that this simple method of introducing lubricating and antibacterial coatings on catheters is likely to enhance the biocompatibility of medical devices and has broad application prospects in this field of medical devices.展开更多
In the aerospace field,hole burnishing enhancement plays an essential role in improving the service performance of load-bearing holes.To satisfy the assembly accuracy and strength requirements,the structure shape and ...In the aerospace field,hole burnishing enhancement plays an essential role in improving the service performance of load-bearing holes.To satisfy the assembly accuracy and strength requirements,the structure shape and surface integrity must be considered simultaneously during the enhancement process.The current manufacturing process of hole burnishing has a relatively weak balance between the structure shape and surface integrity;therefore,it is necessary to analyze the mechanism and optimize the parameters to improve the strengthening effect of the holes.In this study,a two-dimensional longitudinal simplified model for the hole burnishing process was established,and the reasons for the surface roughness improvement of the hole wall and material accumulation on the upper surface were analyzed.Experiments were conducted to determine the influence of the burnishing parameters on the structure shape(material accumulation,shape contour,and roundness)and surface integrity(surface roughness,residual stress,and surface hardness),based on the opposite requirements of improving the structure shape and surface integrity for the burnishing depth(BD).The results showed that with an increase in the BD,the structure shape deteriorated,whereas the surface integrity improved.Fatigue behavior verification experiments were conducted,and parameter selection schemes for the collaborative improvement of the structure shape and surface integrity were discussed.For the holes of titanium alloy TB6(Ti-10V-2Fe-3Al),the fatigue life can be increased by 162%when the BD,spindle speed,and feed rate were 0.20 mm,200 r/min,and 0.2 mm/r,respectively.展开更多
Iron oxide nanoparticles(IONPs)with intrinsic peroxidase(POD)-mimic activity have gained significant attention as nanozymes.Reducing sizes of IONPs is the mostly applied strategy to boost their enzymatic activity due ...Iron oxide nanoparticles(IONPs)with intrinsic peroxidase(POD)-mimic activity have gained significant attention as nanozymes.Reducing sizes of IONPs is the mostly applied strategy to boost their enzymatic activity due to their high specific surface areas.Herein,we synthesized a series of uniformly sized IONPs ranging from3.17 to 21.2 nm,and found that POD activity of IONPs is not monotone increased by reducing their sizes,with the optimal size of 7.82 nm rather than smaller sized 3.17 nm.The reason for this unnormal phenomenon is that electronic structure also had great influence on POD activity,especially at the ultrasmall size region.Since Fe^(2+)are with higher enzymatic activity than Fe^(3+),3.17 nm IONPs although have the largest specific surface area,are prone to be oxidized,which reduced their iron content and ratio of Fe^(2+)to Fe^(3+),and consequently decreased their POD activity.By intentionally oxidized 7.82 nm IONPs in air,POD activity was obviously reduced,illustrating electronic structure cannot be overlooked.At the larger sized region ranging from 7.82 to 21.2 nm,oxidation degree of IONPs is similar,and surface electronic structure had a negligible effect on POD activity,and therefore,POD activity is predominantly influenced by specific surface area.By using the optimized 7.82 nm IONPs,tumor growth was obviously inhibited,demonstrating their potential in cancer therapeutics.Our results reveal that the designing of nanozymes should comprehensively balance their influence of surface electronic structure and specific surface area.展开更多
As cathode materials for alkali-ion batteries,sodium manganese oxides have been receiving considerable and continuous attention in recent decades.In this work,the structure and environment-dependent stability of NaMn_...As cathode materials for alkali-ion batteries,sodium manganese oxides have been receiving considerable and continuous attention in recent decades.In this work,the structure and environment-dependent stability of NaMn_(2)O_(4) surface were studied based on the first principles calculations.The surface stability diagram of NaMn_(2)O_(4) involving various different terminations of(100),(110)and(111)surfaces was constructed,and the stability of these different terminations could be compared as a function of chemical environment.It is found that the(100)-MnO and(111)-ONa terminations are two more stable terminations under the investigated chemical conditions.And the surface energies of(110)surfaces are negative under the investigated chemical potential,hence,(110)surfaces are unstable.The surface energy of NaMn_(2)O_(4) as a function of O chemical potential is also investigated under constant Na chemical potential.The structure relaxation indicates that the surface rumpling and surface reconstruction can affect the electronic structure of the surface,thereby reducing surface energy and stabilizing the surface.Furthermore,the Wulff shape of NaMn_(2)O_(4) was also constructed based on Gibbs-Wulff theorem.展开更多
Surface/underwater target classification is a key topic in marine information research.However,the complex underwater environment,coupled with the diversity of target types and their variable characteristics,presents ...Surface/underwater target classification is a key topic in marine information research.However,the complex underwater environment,coupled with the diversity of target types and their variable characteristics,presents significant challenges for classifier design.For shallow-water waveguides with a negative thermocline,a residual neural network(ResNet)model based on the sound field elevation structure is constructed.This model demonstrates robust classification performance even when facing low signal-to-noise ratios and environmental mismatches.Meanwhile,to address the reduced generalization ability caused by limited labeled acoustic data,an improved ResNet model based on unsupervised domain adaptation(“proposed UDA-ResNet”)is further constructed.This model incorporates data on simulated elevation structures of the sound field to augment the training process.Adversarial training is employed to extract domain-invariant features from simulated and trial data.These strategies help reduce the negative impact caused by domain differences.Experimental results demonstrate that the proposed method shows strong surface/underwater target classification ability under limited sample sizes,thus confirming its feasibility and effectiveness.展开更多
An effective optimization method for the shape/sizing design of composite wing structures is presented with satisfying weight-cutting results. After decoupling, a kind of two-layer cycled optimization strategy suitabl...An effective optimization method for the shape/sizing design of composite wing structures is presented with satisfying weight-cutting results. After decoupling, a kind of two-layer cycled optimization strategy suitable for these integrated shape/sizing optimization is obtained. The uniform design method is used to provide sample points, and approximation models for shape design variables. And the results of sizing optimization are construct- ed with the quadratic response surface method (QRSM). The complex method based on QRSM is used to opti- mize the shape design variables and the criteria method is adopted to optimize the sizing design variables. Compared with the conventional method, the proposed algorithm is more effective and feasible for solving complex composite optimization problems and has good efficiency in weight cutting.展开更多
We assembled approximately 328 seismic records. The data set was from 4 digitally recording long-period and broadband stations of CDSN. We carried out the inversion based on the partitioned waveform inversion (PWI). I...We assembled approximately 328 seismic records. The data set was from 4 digitally recording long-period and broadband stations of CDSN. We carried out the inversion based on the partitioned waveform inversion (PWI). It partitions the large-scale optimization problem into a number of independent small-scale problems. We adopted surface waveform inversion with an equal block (2((2() discretization in order to acquire the images of shear velocity structure at different depths (from surface to 430 km) in the crust and upper-mantle. The resolution of all these anomalies has been established with (check-board( resolution tests. These results show significant difference in velocity, lithosphere and asthenosphere structure between South China Sea and its adjacent regions.展开更多
This paper discusses the coloration process on the stainless steel and the properties of the film. The compositions, morphology and structure of colored films on stainless steel are studied by using SEM,AES,AFM,STM. ...This paper discusses the coloration process on the stainless steel and the properties of the film. The compositions, morphology and structure of colored films on stainless steel are studied by using SEM,AES,AFM,STM. The diffusion controlled mechanisms of films and calculation formula of surface electropotential difference are discussed.展开更多
The implementation of ultrahigh-Ni cathodes in high-energy lithium-ion batteries(LIBs)is constrained by significant structural and interfacial degradation during cycling.In this study,doping-induced surface restructur...The implementation of ultrahigh-Ni cathodes in high-energy lithium-ion batteries(LIBs)is constrained by significant structural and interfacial degradation during cycling.In this study,doping-induced surface restructuring in ultrahigh-nickel cathode materials is rapidly facilitated through an ultrafast Joule heating method.Density functional theory(DFT)calculations,synchrotron X-ray absorption spectroscopy(XAS),and single-particle force test confirmed the establishment of a stable crystal framework and lattice oxygen,which mitigated H2-H3 phase transitions and improved structural reversibility.Additionally,the Sc doping process exhibits a pinning effect on the grain boundaries,as shown by scanning transmission electron microscopy(STEM),enhancing Li~+diffusion kinetics and decreasing mechanical strain during cycling.The in situ development of a cation-mixing layer at grain boundaries also creates a robust cathode/electrolyte interphase,effectively reducing interfacial parasitic reactions and transition metal dissolution,as validated by STEM and time-of-flight secondary ion mass spectrometry(TOF-SIMS).These synergistic modifications reduce particle cracking and surface/interface degradation,leading to enhanced rate capability,structural integrity,and thermal stability.Consequently,the optimized Sc-modified ultrahigh-Ni cathode(Sc-1)exhibits 93.99%capacity retention after 100 cycles at 1 C(25℃)and87.06%capacity retention after 100 cycles at 1 C(50℃),indicating excellent cycling and thermal stability.By presenting a one-step multifunctional modification approach,this research delivers an extensive analysis of the mechanisms governing the structure,microstructure,and interface properties of nickel-rich layered cathode materials(NCMs).These results underscore the potential of ultrahigh-Ni cathodes as viable candidates for advanced lithium-ion batteries(LIBs)in next-generation electric vehicles(EVs).展开更多
Paint removal from steel structure is executed for shipyards of marine and offshore engineering.Due to environmental unfriendliness and unhealthy drawbacks of sand blasting technique, laser ablation technique is propo...Paint removal from steel structure is executed for shipyards of marine and offshore engineering.Due to environmental unfriendliness and unhealthy drawbacks of sand blasting technique, laser ablation technique is proposed as a substituting method.By absorbing high energy of the 1064 nm pulsed laser, the paint is vaporized quickly.The ablated debris is then collected by using a suction pump.Initial metal surface of the steel is exposed when laser beam irradiates perpendicularly and scans over it.The cleaned surface fulfills the requirements of surface preparation standards ISO 8501 of SA2.The adhesion is further characterized with pull-off test after carrying out painting with Jotamastic 87 aluminum paint.The repainting can be embedded onto the laser cleaned surface to bond much more tightly.The excellent adhesion strength of 20 MPa between repainted coating and the substrate is achieved, which is higher than what is required by shipyards applications.展开更多
In this work,ultrasonic surface rolling process(USRP)was utilized to produce a gradient structured layer on 7 B50-T7751 aluminum alloy,and the mechanical properties and corrosion fatigue behavior of treated samples we...In this work,ultrasonic surface rolling process(USRP)was utilized to produce a gradient structured layer on 7 B50-T7751 aluminum alloy,and the mechanical properties and corrosion fatigue behavior of treated samples were studied.These results reveal that underwent USRP,a 425~m thick gradient structure and a 700~m deep compressive residual stress field are created,aluminum grain size become fine(~67 nm),and the corrosion rate of treated surface reduces by 60.08%owing to the combined effect of compressive residual stress and surface nanocrystallization.The corrosion fatigue strength is enhanced to 117%of that of 7 B50 Al alloys by means of USRP due to the introduced compressive residual stress,which is considered as the major favorable factor in suppressing the initiation and early propagation of corrosion fatigue cracks.Besides,the gradient structure is an important factor in providing a significant synergistic contribution to the improvement of corrosion fatigue performance.展开更多
The characteristics of surface maneuver targets are analyzed and a 3-D relative motion model for missiles and targets is established. A variable structure guidance law is designed considering the characteristics of ta...The characteristics of surface maneuver targets are analyzed and a 3-D relative motion model for missiles and targets is established. A variable structure guidance law is designed considering the characteristics of targets. In the guidance law, the distance between missiles and targets as well as the missile-target relative velocity are all substituted by estimation values. The estimation errors, the target's velocity, and the maneuver acceleration are all treated as bounded disturbance. The guidance law proposed can be implemented conveniently in engineering with little target information. The performance of the guidance system is analyzed theoretically and the numerical simulation result shows the effectiveness of the guidance law.展开更多
High-resolution lithospheric structure is essential for understanding the tectonic evolution and deformation patterns of the southeastern Tibetan plateau. This is now possible due to recent advances in ambient noise a...High-resolution lithospheric structure is essential for understanding the tectonic evolution and deformation patterns of the southeastern Tibetan plateau. This is now possible due to recent advances in ambient noise and earthquake surface wave tomography, and great improvements in data coverage from dense portable array stations deployed in SE Tibet. In this review paper, I first give a brief overview of the tomographic methods from ambient noise and earthquake surface waves, and then summarize the major findings about the lithospheric structure and deformation in SE Tibet revealed by ambient noise and earthquake surface wave tomography as well as by other seismic and geophysical observations. These findings mainly include the 3-D distribution of mechanically weak zones in the mid-lower crust, lateral and vertical variations in radial and azimuthal anisotropy, possible interplay of some fault zones with crustal weak zones, and importance of strike-slip faulting on upper crustal deformation. These results suggest that integration of block extrusion in the more rigid upper-middle crust and channel flow in the more ductile mid-lower crust will be more compatible with the current geophysical observations. Finally I discuss some future perspective researches in SE Tibet, including array-based tomography, joint inversion using multiple seismic data, and integration of geodynamic modeling and seismic observations.展开更多
We use the U.S. Navy's Master Oceanographic Observation Data Set (MOODS) forthe Yellow Sea/ East China Sea (YES) to investigate the climatological water mass features and theseasonal and non-seasonal variabilities...We use the U.S. Navy's Master Oceanographic Observation Data Set (MOODS) forthe Yellow Sea/ East China Sea (YES) to investigate the climatological water mass features and theseasonal and non-seasonal variabilities of the thermohaline structure, and use the ComprehensiveOcean-Atmosphere Data Set (COADS) from 1945 to 1989 to investigate the linkage between the fluxes(momentum, heat, and moisture) across the air-ocean interface and the formation of the water massfeatures. After examining the major current systems and considering the local bathymetry and watermass properties, we divide YES into five regions: East China Sea (ECS) shelf, Yellow Sea (YS) Basin,Cheju bifurcation (CB) zone, Taiwan Warm Current (TWC) region, Kuroshio Current (KC) region. Thelong term mean surface heat balance corresponds to a heat loss of 30 W m^(-2) in the ESC and CBregions, a heat loss of 65 W m^(-2) in the KC and TWC regions, and a heat gain of 15 W m^(-2) in theYS region. The surface freshwater balance is defined by precipitation minus evaporation. The annualwater loss from the surface for the five subareas ranges from 1.8 to 4 cm month^(-1). The freshwater loss from the surface should be compensated for from the river run-off. The entire watercolumn of the shelf region (ECS, YS, and CB) undergoes an evident seasonal thermal cycle withmaximum values of temperature during summer and maximum mixed layer depths during winter. However,only the surface waters of the TWC and KC regions exhibit a seasonal thermal cycle.. We also foundtwo different relations between surface salinity and the Yangtze River run-off, namely, out-of-phasein the East China Sea shelf and in-phase in the Yellow Sea. This may confirm an earlier study thatthe summer fresh water discharge from the Yangtze River forms a relatively shallow, low salinityplume-like structure extending offshore on average towards the northeast.展开更多
A new parameterization scheme of sea surface momentum roughness length for all wind regimes, including high winds, under tropical cyclone (TC) conditions is constructed based on measurements from Global Positioning ...A new parameterization scheme of sea surface momentum roughness length for all wind regimes, including high winds, under tropical cyclone (TC) conditions is constructed based on measurements from Global Positioning System (GPS) dropsonde. It reproduces the observed regime transition, namely, an increase of the drag coefficient with an increase in wind speed up to 40 m s-1 , followed by a decrease with a further increase in wind speed. The effect of this parameterization on the structure and intensity of TCs is evaluated using a newly developed numerical model, TCM4. The results show that the final intensity is increased by 10.5% (8.9%) in the maximum surface wind speed and by 8.1 hPa (5.9 hPa) in the minimum sea surface pressure drop with (without) dissipative heating. This intensity increase is found to be due mainly to the reduced frictional dissipation in the surface layer and little to do with either the surface enthalpy flux or latent heat release in the eyewall convection. The effect of the new parameterization on the storm structure is found to be insignificant and occurs only in the inner core region with the increase in tangential winds in the eyewall and the increase in temperature anomalies in the eye. This is because the difference in drag coefficient appears only in a small area under the eyewall. Implications of the results are briefly discussed.展开更多
The characteristics of turbulent boundary layer over streamwise aligned drag reducing riblet surface under zero-pressure gradient are investigated using particle image velocimetry. The formation and distribution of la...The characteristics of turbulent boundary layer over streamwise aligned drag reducing riblet surface under zero-pressure gradient are investigated using particle image velocimetry. The formation and distribution of large-scale coherent structures and their effect on momentum partition are analyzed using two-point correlation and probability density function. Compared with smooth surface, the streamwise riblets reduce the friction velocity and Reynolds stress in the turbulent boundary layer, indicating the drag reduction effect. Strong correlation has been found between the occurrence of hairpin vortices and the momentum distribution. The number and streamwise length scale of hairpin vortices decrease over streamwise riblet surface. The correlation between number of uniform momentum zones and Reynolds number remains the same as smooth surface.展开更多
Distributed acoustic sensing(DAS) is one recently developed seismic acquisition technique that is based on fiber-optic sensing. DAS provides dense spatial spacing that is useful to image shallow structure with surface...Distributed acoustic sensing(DAS) is one recently developed seismic acquisition technique that is based on fiber-optic sensing. DAS provides dense spatial spacing that is useful to image shallow structure with surface waves.To test the feasibility of DAS in shallow structure imaging,the PoroTomo team conducted a DAS experiment with the vibroseis truck T-Rex in Brady’s Hot Springs, Nevada, USA.The Rayleigh waves excited by the vertical mode of the vibroseis truck were analyzed with the Multichannel Analysis of Surface Waves(MASW) method. Phase velocities between5 and 20 Hz were successfully extracted for one segment of cable and were employed to build a shear-wave velocity model for the top 50 meters. The dispersion curves obtained with DAS agree well with the ones extracted from co-located geophones data and from the passive source Noise Correlation Functions(NCF). Comparing to the co-located geophone array, the higher sensor density that DAS arrays provides help reducing aliasing in dispersion analysis, and separating different surface wave modes. This study demonstrates the feasibility and advantage of DAS in imaging shallow structure with surface waves.展开更多
基金supported by the Innovative Research Group Project of the National Natural Science Foundation of China(T2121004)Key Programme(52235007)National Outstanding Youth Foundation of China(52325504).
文摘Hydrogel scaffolds have numerous potential applications in the tissue engineering field.However,tough hydrogel scaffolds implanted in vivo are seldom reported because it is difficult to balance biocompatibility and high mechanical properties.Inspired by Chinese ramen,we propose a universal fabricating method(printing-P,training-T,cross-linking-C,PTC&PCT)for tough hydrogel scaffolds to fill this gap.First,3D printing fabricates a hydrogel scaffold with desired structures(P).Then,the scaffold could have extraordinarily high mechanical properties and functional surface structure by cycle mechanical training with salting-out assistance(T).Finally,the training results are fixed by photo-cross-linking processing(C).The tough gelatin hydrogel scaffolds exhibit excellent tensile strength of 6.66 MPa(622-fold untreated)and have excellent biocompatibility.Furthermore,this scaffold possesses functional surface structures from nanometer to micron to millimeter,which can efficiently induce directional cell growth.Interestingly,this strategy can produce bionic human tissue with mechanical properties of 10 kPa-10 MPa by changing the type of salt,and many hydrogels,such as gelatin and silk,could be improved with PTC or PCT strategies.Animal experiments show that this scaffold can effectively promote the new generation of muscle fibers,blood vessels,and nerves within 4 weeks,prompting the rapid regeneration of large-volume muscle loss injuries.
基金National Key Research and Development Program of China(2022YFE0206300)National Natural Science Foundation of China(U21A2081,22075074,22209047)+2 种基金Guangdong Basic and Applied Basic Research Foundation(2024A1515011620)Hunan Provincial Natural Science Foundation of China(2024JJ5068)Foundation of Yuelushan Center for Industrial Innovation(2023YCII0119)。
文摘Changes to the microstructure of a hard carbon(HC)and its solid electrolyte interface(SEI)can be effective in improving the electrode kinetics.However,achieving fast charging using a simple and inexpensive strategy without sacrificing its initial Coulombic efficiency remains a challenge in sodium ion batteries.A simple liquid-phase coating approach has been used to generate a pitch-derived soft carbon layer on the HC surface,and its effect on the porosity of HC and SEI chemistry has been studied.A variety of structural characterizations show a soft carbon coating can increase the defect and ultra-micropore contents.The increase in ultra-micropore comes from both the soft carbon coatings and the larger pores within the HC that are partially filled by pitch,which provides more Na+storage sites.In-situ FTIR/EIS and ex-situ XPS showed that the soft carbon coating induced the formation of thinner SEI that is richer in NaF from the electrolyte,which stabilized the interface and promoted the charge transfer process.As a result,the anode produced fastcharging(329.8 mAh g^(−1)at 30 mA g^(−1)and 198.6 mAh g^(−1)at 300 mA g^(−1))and had a better cycling performance(a high capacity retention of 81.4%after 100 cycles at 150 mA g^(−1)).This work reveals the critical role of coating layer in changing the pore structure,SEI chemistry and diffusion kinetics of hard carbon,which enables rational design of sodium-ion battery anode with enhanced fast charging capability.
基金supported by the National Nature Science Foundation of China[Grant Nos.92365204 and 12274298(Z.K.Liu)]the National Key R&D program of China[Grant No.2022YFA1604400/03(Z.K.Liu)]Zhangjiang Laboratory(Y.M.Zhang).The authors thank BL02B at the Shanghai Synchrotron Radiation Facility supported by the National Natural Science Foundation of China(Contract No.11227902).
文摘Fe-based superconductors represent a fascinating class of materials,extensively studied for their complex interplay of superconductivity,magnetism,spin density waves,and nematicity,along with the interactions among these orders.An intriguing yet unexplained phenomenon observed in Fe-based superconductors is the emergence of superconductivity below 25K in the non-superconducting parent compound SrFe_(2)As_(2)following exposure to water at its surface.In this study,we employed in situ angle-resolved photoemission spectroscopy and low-energy electron diffraction to meticulously examine the electronic structure evolution of SrFe_(2)As_(2)upon in situ water dosing.Our findings indicate that water dosing markedly attenuates the spin density wave phase and surface Sr reconstruction while preserving the nematic order in SrFe_(2)As_(2).Furthermore,we detected an enhancement in the spectral weight of bands near the Fermi level.Our observations highlight the critical role of the intricate interplay among various orders induced by water dosing,which effectively modifies the band structure and favors the emergence of superconductivity in SrFe_(2)As_(2).
基金financially supported by the National Natural Science Foundation of China(Nos.52373296 and 52173287)。
文摘Enhancing the lubricating properties and antibacterial adhesion resistance of implantable medical materials is critical to prevent soft tissue injury during implantation and the formation of bacterial biofilms.Prior studies may have exhibited limitations in the preparation methodologies and long-term stability of coatings for implantable medical materials.In this study,we developed a multilayered hybrid hydrogel coating method based on the rate difference of polymerization initiation on the material surface.The acquired coating with persistent lubrication capability retained its functionality after 2×10^(4) cycles of friction and 21 days of PBS immersion.A quaternary ammonium salt coating with antibacterial properties was introduced to further functionalize the coating.Animal experiments demonstrated that this coating exhibited remarkable effects on delaying encrustation and bacterial colonization.These studies indicate that this simple method of introducing lubricating and antibacterial coatings on catheters is likely to enhance the biocompatibility of medical devices and has broad application prospects in this field of medical devices.
文摘In the aerospace field,hole burnishing enhancement plays an essential role in improving the service performance of load-bearing holes.To satisfy the assembly accuracy and strength requirements,the structure shape and surface integrity must be considered simultaneously during the enhancement process.The current manufacturing process of hole burnishing has a relatively weak balance between the structure shape and surface integrity;therefore,it is necessary to analyze the mechanism and optimize the parameters to improve the strengthening effect of the holes.In this study,a two-dimensional longitudinal simplified model for the hole burnishing process was established,and the reasons for the surface roughness improvement of the hole wall and material accumulation on the upper surface were analyzed.Experiments were conducted to determine the influence of the burnishing parameters on the structure shape(material accumulation,shape contour,and roundness)and surface integrity(surface roughness,residual stress,and surface hardness),based on the opposite requirements of improving the structure shape and surface integrity for the burnishing depth(BD).The results showed that with an increase in the BD,the structure shape deteriorated,whereas the surface integrity improved.Fatigue behavior verification experiments were conducted,and parameter selection schemes for the collaborative improvement of the structure shape and surface integrity were discussed.For the holes of titanium alloy TB6(Ti-10V-2Fe-3Al),the fatigue life can be increased by 162%when the BD,spindle speed,and feed rate were 0.20 mm,200 r/min,and 0.2 mm/r,respectively.
基金financially supported by the Natural Science Foundation of Zhejiang Province(No.LR22E010001)the National Natural Science Foundation of China(No.52073258)+1 种基金the Fundamental Research Funds for the Provincial Universities of Zhejiang(No.RF-B2022006)the R&D Program of Zhejiang University of Technology(No.KYY-HX-20190730)
文摘Iron oxide nanoparticles(IONPs)with intrinsic peroxidase(POD)-mimic activity have gained significant attention as nanozymes.Reducing sizes of IONPs is the mostly applied strategy to boost their enzymatic activity due to their high specific surface areas.Herein,we synthesized a series of uniformly sized IONPs ranging from3.17 to 21.2 nm,and found that POD activity of IONPs is not monotone increased by reducing their sizes,with the optimal size of 7.82 nm rather than smaller sized 3.17 nm.The reason for this unnormal phenomenon is that electronic structure also had great influence on POD activity,especially at the ultrasmall size region.Since Fe^(2+)are with higher enzymatic activity than Fe^(3+),3.17 nm IONPs although have the largest specific surface area,are prone to be oxidized,which reduced their iron content and ratio of Fe^(2+)to Fe^(3+),and consequently decreased their POD activity.By intentionally oxidized 7.82 nm IONPs in air,POD activity was obviously reduced,illustrating electronic structure cannot be overlooked.At the larger sized region ranging from 7.82 to 21.2 nm,oxidation degree of IONPs is similar,and surface electronic structure had a negligible effect on POD activity,and therefore,POD activity is predominantly influenced by specific surface area.By using the optimized 7.82 nm IONPs,tumor growth was obviously inhibited,demonstrating their potential in cancer therapeutics.Our results reveal that the designing of nanozymes should comprehensively balance their influence of surface electronic structure and specific surface area.
基金Project(BK20241969)supported by the Natural Science Foundation of Jiangsu Province,ChinaProject(51971249)supported by the National Natural Science Foundation of China。
文摘As cathode materials for alkali-ion batteries,sodium manganese oxides have been receiving considerable and continuous attention in recent decades.In this work,the structure and environment-dependent stability of NaMn_(2)O_(4) surface were studied based on the first principles calculations.The surface stability diagram of NaMn_(2)O_(4) involving various different terminations of(100),(110)and(111)surfaces was constructed,and the stability of these different terminations could be compared as a function of chemical environment.It is found that the(100)-MnO and(111)-ONa terminations are two more stable terminations under the investigated chemical conditions.And the surface energies of(110)surfaces are negative under the investigated chemical potential,hence,(110)surfaces are unstable.The surface energy of NaMn_(2)O_(4) as a function of O chemical potential is also investigated under constant Na chemical potential.The structure relaxation indicates that the surface rumpling and surface reconstruction can affect the electronic structure of the surface,thereby reducing surface energy and stabilizing the surface.Furthermore,the Wulff shape of NaMn_(2)O_(4) was also constructed based on Gibbs-Wulff theorem.
基金supported by the National Natural Science Foundation of China(Grant Nos.62471024 and 62301183)the Open Research Fund of Hanjiang Laboratory(KF2024001).
文摘Surface/underwater target classification is a key topic in marine information research.However,the complex underwater environment,coupled with the diversity of target types and their variable characteristics,presents significant challenges for classifier design.For shallow-water waveguides with a negative thermocline,a residual neural network(ResNet)model based on the sound field elevation structure is constructed.This model demonstrates robust classification performance even when facing low signal-to-noise ratios and environmental mismatches.Meanwhile,to address the reduced generalization ability caused by limited labeled acoustic data,an improved ResNet model based on unsupervised domain adaptation(“proposed UDA-ResNet”)is further constructed.This model incorporates data on simulated elevation structures of the sound field to augment the training process.Adversarial training is employed to extract domain-invariant features from simulated and trial data.These strategies help reduce the negative impact caused by domain differences.Experimental results demonstrate that the proposed method shows strong surface/underwater target classification ability under limited sample sizes,thus confirming its feasibility and effectiveness.
文摘An effective optimization method for the shape/sizing design of composite wing structures is presented with satisfying weight-cutting results. After decoupling, a kind of two-layer cycled optimization strategy suitable for these integrated shape/sizing optimization is obtained. The uniform design method is used to provide sample points, and approximation models for shape design variables. And the results of sizing optimization are construct- ed with the quadratic response surface method (QRSM). The complex method based on QRSM is used to opti- mize the shape design variables and the criteria method is adopted to optimize the sizing design variables. Compared with the conventional method, the proposed algorithm is more effective and feasible for solving complex composite optimization problems and has good efficiency in weight cutting.
基金State Natural Scientific Foundation (49734150) and National High Performance Computation Foundation.
文摘We assembled approximately 328 seismic records. The data set was from 4 digitally recording long-period and broadband stations of CDSN. We carried out the inversion based on the partitioned waveform inversion (PWI). It partitions the large-scale optimization problem into a number of independent small-scale problems. We adopted surface waveform inversion with an equal block (2((2() discretization in order to acquire the images of shear velocity structure at different depths (from surface to 430 km) in the crust and upper-mantle. The resolution of all these anomalies has been established with (check-board( resolution tests. These results show significant difference in velocity, lithosphere and asthenosphere structure between South China Sea and its adjacent regions.
文摘This paper discusses the coloration process on the stainless steel and the properties of the film. The compositions, morphology and structure of colored films on stainless steel are studied by using SEM,AES,AFM,STM. The diffusion controlled mechanisms of films and calculation formula of surface electropotential difference are discussed.
基金supported by the National Key R&D Program of China(2022YFB3803501)the National Natural Science Foundation of China(22179008,22209156)+5 种基金support from the Beijing Nova Program(20230484241)support from the China Postdoctoral Science Foundation(2024M754084)the Postdoctoral Fellowship Program of CPSF(GZB20230931)support from beamline BL08U1A of Shanghai Synchrotron Radiation Facility(2024-SSRF-PT-506950)beamline 1W1B of the Beijing Synchrotron Radiation Facility(2021-BEPC-PT-006276)support from Initial Energy Science&Technology Co.,Ltd(IEST)。
文摘The implementation of ultrahigh-Ni cathodes in high-energy lithium-ion batteries(LIBs)is constrained by significant structural and interfacial degradation during cycling.In this study,doping-induced surface restructuring in ultrahigh-nickel cathode materials is rapidly facilitated through an ultrafast Joule heating method.Density functional theory(DFT)calculations,synchrotron X-ray absorption spectroscopy(XAS),and single-particle force test confirmed the establishment of a stable crystal framework and lattice oxygen,which mitigated H2-H3 phase transitions and improved structural reversibility.Additionally,the Sc doping process exhibits a pinning effect on the grain boundaries,as shown by scanning transmission electron microscopy(STEM),enhancing Li~+diffusion kinetics and decreasing mechanical strain during cycling.The in situ development of a cation-mixing layer at grain boundaries also creates a robust cathode/electrolyte interphase,effectively reducing interfacial parasitic reactions and transition metal dissolution,as validated by STEM and time-of-flight secondary ion mass spectrometry(TOF-SIMS).These synergistic modifications reduce particle cracking and surface/interface degradation,leading to enhanced rate capability,structural integrity,and thermal stability.Consequently,the optimized Sc-modified ultrahigh-Ni cathode(Sc-1)exhibits 93.99%capacity retention after 100 cycles at 1 C(25℃)and87.06%capacity retention after 100 cycles at 1 C(50℃),indicating excellent cycling and thermal stability.By presenting a one-step multifunctional modification approach,this research delivers an extensive analysis of the mechanisms governing the structure,microstructure,and interface properties of nickel-rich layered cathode materials(NCMs).These results underscore the potential of ultrahigh-Ni cathodes as viable candidates for advanced lithium-ion batteries(LIBs)in next-generation electric vehicles(EVs).
基金supported by the National Natural Science Foundation of China (U1609209)National Natural Science Foundation of China (61605162)+2 种基金NSFC-Liaoning Province united foundation (U1608259)National Natural Science Foundation of China (51501219)the financial support from the China Scholarship Council
文摘Paint removal from steel structure is executed for shipyards of marine and offshore engineering.Due to environmental unfriendliness and unhealthy drawbacks of sand blasting technique, laser ablation technique is proposed as a substituting method.By absorbing high energy of the 1064 nm pulsed laser, the paint is vaporized quickly.The ablated debris is then collected by using a suction pump.Initial metal surface of the steel is exposed when laser beam irradiates perpendicularly and scans over it.The cleaned surface fulfills the requirements of surface preparation standards ISO 8501 of SA2.The adhesion is further characterized with pull-off test after carrying out painting with Jotamastic 87 aluminum paint.The repainting can be embedded onto the laser cleaned surface to bond much more tightly.The excellent adhesion strength of 20 MPa between repainted coating and the substrate is achieved, which is higher than what is required by shipyards applications.
基金supported financially by the National Natural Science Foundation of China(No.51771155)the Equipment Pre-research Field Foundation(No.61409220202).
文摘In this work,ultrasonic surface rolling process(USRP)was utilized to produce a gradient structured layer on 7 B50-T7751 aluminum alloy,and the mechanical properties and corrosion fatigue behavior of treated samples were studied.These results reveal that underwent USRP,a 425~m thick gradient structure and a 700~m deep compressive residual stress field are created,aluminum grain size become fine(~67 nm),and the corrosion rate of treated surface reduces by 60.08%owing to the combined effect of compressive residual stress and surface nanocrystallization.The corrosion fatigue strength is enhanced to 117%of that of 7 B50 Al alloys by means of USRP due to the introduced compressive residual stress,which is considered as the major favorable factor in suppressing the initiation and early propagation of corrosion fatigue cracks.Besides,the gradient structure is an important factor in providing a significant synergistic contribution to the improvement of corrosion fatigue performance.
文摘The characteristics of surface maneuver targets are analyzed and a 3-D relative motion model for missiles and targets is established. A variable structure guidance law is designed considering the characteristics of targets. In the guidance law, the distance between missiles and targets as well as the missile-target relative velocity are all substituted by estimation values. The estimation errors, the target's velocity, and the maneuver acceleration are all treated as bounded disturbance. The guidance law proposed can be implemented conveniently in engineering with little target information. The performance of the guidance system is analyzed theoretically and the numerical simulation result shows the effectiveness of the guidance law.
基金supported by the National Natural Science Foundation of China (No. 41222028)the Chinese Academy of Sciences/State Administration of Foreign Experts Affairs International Partnership Program for Creative Research Teams
文摘High-resolution lithospheric structure is essential for understanding the tectonic evolution and deformation patterns of the southeastern Tibetan plateau. This is now possible due to recent advances in ambient noise and earthquake surface wave tomography, and great improvements in data coverage from dense portable array stations deployed in SE Tibet. In this review paper, I first give a brief overview of the tomographic methods from ambient noise and earthquake surface waves, and then summarize the major findings about the lithospheric structure and deformation in SE Tibet revealed by ambient noise and earthquake surface wave tomography as well as by other seismic and geophysical observations. These findings mainly include the 3-D distribution of mechanically weak zones in the mid-lower crust, lateral and vertical variations in radial and azimuthal anisotropy, possible interplay of some fault zones with crustal weak zones, and importance of strike-slip faulting on upper crustal deformation. These results suggest that integration of block extrusion in the more rigid upper-middle crust and channel flow in the more ductile mid-lower crust will be more compatible with the current geophysical observations. Finally I discuss some future perspective researches in SE Tibet, including array-based tomography, joint inversion using multiple seismic data, and integration of geodynamic modeling and seismic observations.
文摘We use the U.S. Navy's Master Oceanographic Observation Data Set (MOODS) forthe Yellow Sea/ East China Sea (YES) to investigate the climatological water mass features and theseasonal and non-seasonal variabilities of the thermohaline structure, and use the ComprehensiveOcean-Atmosphere Data Set (COADS) from 1945 to 1989 to investigate the linkage between the fluxes(momentum, heat, and moisture) across the air-ocean interface and the formation of the water massfeatures. After examining the major current systems and considering the local bathymetry and watermass properties, we divide YES into five regions: East China Sea (ECS) shelf, Yellow Sea (YS) Basin,Cheju bifurcation (CB) zone, Taiwan Warm Current (TWC) region, Kuroshio Current (KC) region. Thelong term mean surface heat balance corresponds to a heat loss of 30 W m^(-2) in the ESC and CBregions, a heat loss of 65 W m^(-2) in the KC and TWC regions, and a heat gain of 15 W m^(-2) in theYS region. The surface freshwater balance is defined by precipitation minus evaporation. The annualwater loss from the surface for the five subareas ranges from 1.8 to 4 cm month^(-1). The freshwater loss from the surface should be compensated for from the river run-off. The entire watercolumn of the shelf region (ECS, YS, and CB) undergoes an evident seasonal thermal cycle withmaximum values of temperature during summer and maximum mixed layer depths during winter. However,only the surface waters of the TWC and KC regions exhibit a seasonal thermal cycle.. We also foundtwo different relations between surface salinity and the Yangtze River run-off, namely, out-of-phasein the East China Sea shelf and in-phase in the Yellow Sea. This may confirm an earlier study thatthe summer fresh water discharge from the Yangtze River forms a relatively shallow, low salinityplume-like structure extending offshore on average towards the northeast.
基金support from the National Basic Research Program of China (973 Program) (No. 2009CB421500)the National Natural Science Foundation of China (GrantNos. 40875039 and 40730948)+3 种基金the Typhoon Research Foundation of Shanghai Typhoon Institute/China Mete-orological Administration (Grant Nos. 2006STB07 and2008ST11)support from the Knowledge Innovation Program of theChinese Academy of Sciences (IAP09318)support from the US Office of Naval Research (Grant No. N00014-021-0532)the National Science Foundation (Grant No. ATM-0427128)
文摘A new parameterization scheme of sea surface momentum roughness length for all wind regimes, including high winds, under tropical cyclone (TC) conditions is constructed based on measurements from Global Positioning System (GPS) dropsonde. It reproduces the observed regime transition, namely, an increase of the drag coefficient with an increase in wind speed up to 40 m s-1 , followed by a decrease with a further increase in wind speed. The effect of this parameterization on the structure and intensity of TCs is evaluated using a newly developed numerical model, TCM4. The results show that the final intensity is increased by 10.5% (8.9%) in the maximum surface wind speed and by 8.1 hPa (5.9 hPa) in the minimum sea surface pressure drop with (without) dissipative heating. This intensity increase is found to be due mainly to the reduced frictional dissipation in the surface layer and little to do with either the surface enthalpy flux or latent heat release in the eyewall convection. The effect of the new parameterization on the storm structure is found to be insignificant and occurs only in the inner core region with the increase in tangential winds in the eyewall and the increase in temperature anomalies in the eye. This is because the difference in drag coefficient appears only in a small area under the eyewall. Implications of the results are briefly discussed.
基金supported by the National Natural Science Foundation of China (Nos. 11721202 and 11672020)
文摘The characteristics of turbulent boundary layer over streamwise aligned drag reducing riblet surface under zero-pressure gradient are investigated using particle image velocimetry. The formation and distribution of large-scale coherent structures and their effect on momentum partition are analyzed using two-point correlation and probability density function. Compared with smooth surface, the streamwise riblets reduce the friction velocity and Reynolds stress in the turbulent boundary layer, indicating the drag reduction effect. Strong correlation has been found between the occurrence of hairpin vortices and the momentum distribution. The number and streamwise length scale of hairpin vortices decrease over streamwise riblet surface. The correlation between number of uniform momentum zones and Reynolds number remains the same as smooth surface.
基金partially supported by the Geothermal Technologies Office of the USA Department of Energy (No. DE-EE0006760)the State Key Laboratory of Geodesy and Earth’s Dynamics, Institute of Geodey and Geophysics, Chinese Academy of Sciences (No. SKLGED2019-5-4-E)
文摘Distributed acoustic sensing(DAS) is one recently developed seismic acquisition technique that is based on fiber-optic sensing. DAS provides dense spatial spacing that is useful to image shallow structure with surface waves.To test the feasibility of DAS in shallow structure imaging,the PoroTomo team conducted a DAS experiment with the vibroseis truck T-Rex in Brady’s Hot Springs, Nevada, USA.The Rayleigh waves excited by the vertical mode of the vibroseis truck were analyzed with the Multichannel Analysis of Surface Waves(MASW) method. Phase velocities between5 and 20 Hz were successfully extracted for one segment of cable and were employed to build a shear-wave velocity model for the top 50 meters. The dispersion curves obtained with DAS agree well with the ones extracted from co-located geophones data and from the passive source Noise Correlation Functions(NCF). Comparing to the co-located geophone array, the higher sensor density that DAS arrays provides help reducing aliasing in dispersion analysis, and separating different surface wave modes. This study demonstrates the feasibility and advantage of DAS in imaging shallow structure with surface waves.