期刊文献+
共找到150篇文章
< 1 2 8 >
每页显示 20 50 100
New Approach for Measured Surface Localization Based on Umbilical Points
1
作者 Xiao-Ping Xiao Ming Yin +2 位作者 Liang Heng Guo-Fu Yin Zi-Sheng Li 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2017年第5期1203-1215,共13页
Measured surface localization (MSL) is one of the key essentials for the assessment of form error in pre- cision manufacturing. Currently, the researches on MSL have focused on the corresponding relation search betw... Measured surface localization (MSL) is one of the key essentials for the assessment of form error in pre- cision manufacturing. Currently, the researches on MSL have focused on the corresponding relation search between two surfaces, the performance improvement of localization algorithms and the uncertainty analysis of localization. However, low efficiency, limitation of localization algo- rithms and mismatch of multiple similarities of feature points with no prior are the common disadvantages for MSL. In order to match feature points quickly and fulfill MSL efficiently, this paper presents a new localization approach for measured surfaces by extracting the generic umbilics and estimating their single complex variables, describing the match methods of ambiguous relation at umbilics, presenting the initial localization process of one pair matched points, refining MSL on the basis of obtained closet points for some measured points by the improvement directed projection method. In addition, the proposed algorithm is simulated in two different types of surfaces,two different localization types and multiple similar sur- faces, also tested with the part of B-spline surface machined and bottle mould with no knowledge, finally the initial and accurate rigid body transformation matrix, localization errors between two surfaces and execution time are got. The experimental results show that the pro- posed method is feasible, more accurate in localization and high in efficiency. The proposed research can not only improve the accuracy and performance of form error assessment, but also provide an effective guideline for the integration of different types of measured surfaces. 展开更多
关键词 Measured surface localization Umbilicalpoints and complex variable Similar surface patchesInitial and accurate localization
在线阅读 下载PDF
Angle-robust plasmonic color printing of deep subwavelength nanopixelated sodium metasurfaces
2
作者 Jie Liang Yurui Qu +6 位作者 Huizhen Zhang Yuhan Yang Yang Wang Yuchen Zhang Zhenda Lu Shining Zhu Lin Zhou 《Advanced Photonics Nexus》 2025年第1期50-58,共9页
Plasmonic colors are attracting attention for their subwavelength small size,vibrant hues,and environmental sustainability beyond traditional pigments while suffering from angular and/or polarization dependency due to... Plasmonic colors are attracting attention for their subwavelength small size,vibrant hues,and environmental sustainability beyond traditional pigments while suffering from angular and/or polarization dependency due to distinct excitations of lattice resonances and/or surface plasmon polaritons(SPPs).Here,we demonstrate the sodium metasurface-based plasmonic color palettes with polarization-independent wide-view angle(approximately>〓〓60 deg in experiment and up to〓〓90 deg in theory)and single-particlelevel pixel size(down to∼60 nm)that integrate both pigment-like and structure coloring advantages,fabricated by the templated nanorod-pixelated solidification of wetted liquid metals.Such intriguing performances are mainly attributed to the particle plasmon dominant spectral response by steering the filling profile and thus the interplay between localized surface plasmons and SPPs.Combining low material cost,potentially scalable manufacturing process,and pronounced optical performance,the proposed sodium-based metasurfaces will provide a promising route for advanced color information technology. 展开更多
关键词 angle-robust plasmonic color sodium metal deep subwavelength nanopixel localized surface plasmon resonance color printing.
在线阅读 下载PDF
Recent trends and impact of localized surface plasmon resonance (LSPR) and surface-enhanced Raman spectroscopy (SERS) in modern analysis 被引量:1
3
作者 Bibhu Prasad Nanda Priyanka Rani +3 位作者 Priyanka Paul Aman Subrahmanya S.Ganti Rohit Bhatia 《Journal of Pharmaceutical Analysis》 CSCD 2024年第11期1603-1624,共22页
An optical biosensor is a specialized analytical device that utilizes the principles of optics and light in bimolecular processes.Localized surface plasmon resonance(LSPR)is a phenomenon in the realm of nanophotonics ... An optical biosensor is a specialized analytical device that utilizes the principles of optics and light in bimolecular processes.Localized surface plasmon resonance(LSPR)is a phenomenon in the realm of nanophotonics that occurs when metallic nanoparticles(NPs)or nanostructures interact with incident light.Conversely,surface-enhanced Raman spectroscopy(SERS)is an influential analytical technique based on Raman scattering,wherein it amplifies the Raman signals of molecules when they are situated near specific and specially designed nanostructures.A detailed exploration of the recent groundbreaking developments in optical biosensors employing LSPR and SERS technologies has been thoroughly discussed along with their underlying principles and the working mechanisms.A biosensor chip has been created,featuring a high-density deposition of gold nanoparticles(AuNPs)under varying ligand concentration and reaction duration on the substrate.An ordinary description,along with a visual illustration,has been thoroughly provided for concepts such as a sensogram,refractive index shift,surface plasmon resonance(SPR),and the evanescent field,Rayleigh scattering,Raman scattering,as well as the electromagnetic enhancement and chemical enhancement.LSPR and SERS both have advantages and disadvantages,but widely used SERS has some advantages over LSPR,like chemical specificity,high sensitivity,multiplexing,and versatility in different fields.This review confirms and elucidates the significance of different disease biomarker identification.LSPR and SERS both play a vital role in the detection of various types of cancer,such as cervical cancer,ovarian cancer,endometrial cancer,prostate cancer,colorectal cancer,and brain tumors.This proposed optical biosensor offers potential applications for early diagnosis and monitoring of viral disease,bacterial infectious diseases,fungal diseases,diabetes,and cardiac disease biosensing.LSPR and SERS provide a new direction for environmental monitoring,food safety,refining impurities from water samples,and lead detection.The understanding of these biosensors is still limited and challenging. 展开更多
关键词 Localized surface plasmon resonance surface-enhanced Raman spectroscopy Nanophotonic Biosensors Nanoparticles BIOMARKER Cancer
在线阅读 下载PDF
Reconfigurable exceptional point-based sensing with 0.001λsensitivity using spoof localized surface plasmons
4
作者 Yaoran Zhang Hao Hu +4 位作者 Francisco JoséGarcía-Vidal Jingjing Zhang Liangliang Liu Yu Luo Zhuo Li 《Advanced Photonics Nexus》 2024年第5期58-66,共9页
Recent breakthroughs in the field of non-Hermitian physics present unprecedented opportunities,from fundamental theories to cutting-edge applications such as multimode lasers,unconventional wave transport,and high-per... Recent breakthroughs in the field of non-Hermitian physics present unprecedented opportunities,from fundamental theories to cutting-edge applications such as multimode lasers,unconventional wave transport,and high-performance sensors.The exceptional point,a spectral singularity widely existing in non-Hermitian systems,provides an indispensable route to enhance the sensitivity of optical detection.However,the exceptional point of the forementioned systems is set once the system is built or fabricated,and machining errors make it hard to reach such a state precisely.To this end,we develop a highly tunable and reconfigurable exceptional point system,i.e.,a single spoof plasmonic resonator suspended above a substrate and coupled with two freestanding Rayleigh scatterers.Our design offers great flexibility to control exceptional point states,enabling us to dynamically reconfigure the exceptional point formed by various multipolar modes across a broadband frequency range.Specifically,we experimentally implement five distinct exceptional points by precisely manipulating the positions of two movable Rayleigh scatterers.In addition,the enhanced perturbation strength offers remarkable sensitivity enhancement for detecting deep-subwavelength particles with the minimum dimension down to 0.001λ(withλto be the free-space wavelength). 展开更多
关键词 non-Hermitian optics spoof localized surface plasmons exceptional points ultrasensitive microwave sensors
在线阅读 下载PDF
Enhanced amplified spontaneous emission via splitted strong coupling mode in large-area plasmonic cone lattices
5
作者 Jiazhi Yuan Jiang Hu +7 位作者 Yan Zheng Hao Wei Jiamin Xiao Yi Wang Xuchao Zhao Ye Xiang Yong Lei Wenxin Wang 《Opto-Electronic Science》 2025年第2期16-24,共9页
Periodic metal nanoarrays serving as cavities can support directional-tunable amplified spontaneous emission that goes beyond the diffraction limit due to the hybrid states of surface plasmons and Bloch surface waves.... Periodic metal nanoarrays serving as cavities can support directional-tunable amplified spontaneous emission that goes beyond the diffraction limit due to the hybrid states of surface plasmons and Bloch surface waves.Most of these modes'interactions remain within the weak coupling regime,yet strong coupling is also anticipated to occur.In this work,we present an intriguing case of amplified spontaneous emission(ASE),amplified by the splitting upper polariton mode within a strong coupling system,stemming from a square lattice of plasmonic cone lattices(PCLs).The PCLs are fabricated using an anodized aluminum oxide membrane(AAO),which facilitates strong coupling between surface plasmons and Bloch surface wave modes,with the maximum Rabi splitting observed at 0.258 eV for the sample with an aspect ratio of 0.33.A 13.5-fold increase in amplified spontaneous emission is recorded when the emission from Nile Red coincides with this flat energy branch of upper polariton,which exhibits a high photon density of states.Reduced group velocity can prolong photon lifetime and boost the probability of light-matter interaction.The observed ASE phenomenon in this strong coupling plasmonic system widens the scope for applications in nanolasing and polariton lasing. 展开更多
关键词 strong coupling nanocone array surface plasmon polariton localized surface plasmon amplified spontaneous emission
在线阅读 下载PDF
Enhanced photothermal performance of dielectric silicon attached with multiple plasmonic gold nanoparticles
6
作者 Xiangyu Tong Ning Chen +2 位作者 Xiaowen Chen Bin Zhang Xiaohu Wu 《Chinese Physics B》 2025年第8期166-172,共7页
The photothermal properties of dielectric materials at the nanoscale have garnered significant attention,especially in fields such as optical heating,photothermal therapy,and solar utilization.However,although dielect... The photothermal properties of dielectric materials at the nanoscale have garnered significant attention,especially in fields such as optical heating,photothermal therapy,and solar utilization.However,although dielectric materials can concentrate and manipulate light at the nanoscale,they cannot provide sufficient photothermal efficiency in a direct absorption solar collector.Combining plasmonic metal nanoparticles with dielectric nanostructures enables the fabrication of hybrid nanomaterials with excellent photothermal performance.This study presents a novel approach involving uniformly adhering plasmonic gold nanoparticles onto dielectric silicon nanoparticles to enhance the absorption peak,leading to a substantial enhancement of photothermal conversion efficiency.The results demonstrate that the absorption peak of silicon-gold hybrid nanoparticles exceeds that of pure silicon nanoparticles,achieving a 38%increase in photothermal conversion efficiency within a 10 ppm aqueous solution under a 20 mm optical path.The coupling of localized surface plasmon resonance and quadrupole resonance effects enhances the electric field,causing a temperature rise in both the hybrid nanoparticles and the surrounding aqueous solution.Nanostructural modulation studies reveal that the photothermal efficiency of silicon-gold hybrid nanoparticles is positively correlated with gold nanoparticle size but negatively correlated with silicon nanoparticle size.Combining multiple plasmonic nanoparticles with dielectric materials can effectively enhance photothermal performance and hold great application potential in direct absorption solar collectors and solar thermal utilization. 展开更多
关键词 silicon-gold hybrid nanoparticles localized surface plasmon resonance dielectric nanomaterial solar utilization
原文传递
Porous Ti_(3)C_(2)T_(x)for Efficient Electrocatalytic Hydrogen Evolution Reaction
7
作者 LIU Ying HUI Mingming +1 位作者 BU Fanxing LUO Wei 《Journal of Donghua University(English Edition)》 2025年第1期20-28,共9页
MXene is an emerging class of two-dimensional(2D)layered transition metal carbides or nitrides.Due to the highly tunable components and surface functional groups,it holds great potential in electrocatalytic hydrogen e... MXene is an emerging class of two-dimensional(2D)layered transition metal carbides or nitrides.Due to the highly tunable components and surface functional groups,it holds great potential in electrocatalytic hydrogen evolution reaction(HER).However,MXene nanosheet suffers from a strong tendency to restack and a lack of active edge sites.In this work,the porous Ti_(3)C_(2)T_(x)was synthesized by an oxidation and etching two-step strategy and then characterized by a series of spectroscopic techniques.The obtained porous Ti_(3)C_(2)T_(x)possesses a large number of in-plane pores.This not only creates abundant active edge sites but also enhances the mass transfer and increases the accessibility of the active sites.Compared with Ti_(3)C_(2)T_(x),in a 0.5 mol/L H_(2)SO_(4)electrolyte,the porous Ti_(3)C_(2)T_(x)shows a 65.6%higher electrochemical surface area(ECSA)(440 mF/cm^(2)),a 95.2%lower charge transfer resistance(12.8Ω),and a 69.8%lower Tafel slope(144 mV/dec),and thus exhibits lower overpotential with good stability at a current density of 10 mA/cm^(2).At the same time,the HER performance of the porous Ti_(3)C_(2)T_(x)can be further enhanced by near-infrared laser irradiation based on the localized surface plasmon resonance effect. 展开更多
关键词 porous Ti_(3)C_(2)T_(x) hydrogen evolution reaction(HER) active edge site localized surface plasmon resonance
在线阅读 下载PDF
Interfacial engineering of a plasmonic Ag/Ag_(2)CO_(3)/C_(3)N_(5)S-scheme heterojunction for high-performance photocatalytic degradation of antibiotics
8
作者 Shijie Li Xinyu Li +3 位作者 Yanping Liu Peng Zhang Junlei Zhang Bin Zhang 《Chinese Journal of Catalysis》 2025年第5期130-142,共13页
Devising S-scheme heterostructure is considered as a cutting-edge strategy for advanced photocatalysts with effectively segregated photo-carriers and prominent redox potential for emerging organic pollutants control.H... Devising S-scheme heterostructure is considered as a cutting-edge strategy for advanced photocatalysts with effectively segregated photo-carriers and prominent redox potential for emerging organic pollutants control.Herein,an S-scheme Ag_(2)CO_(3)/C_(3)N_(5) heterojunction photocatalyst was developed via a simple in situ chemical deposition procedure,and further photoreduction operation made metallic Ag(size:3.5–12.5 nm)being in situ formed on Ag_(2)CO_(3)/C_(3)N_(5) for a plasmonic S-scheme Ag/Ag_(2)CO_(3)/C_(3)N_(5) heterojunction photocatalyst.Consequently,Ag/Ag_(2)CO_(3)/C_(3)N_(5) manifests pronouncedly upgraded photocatalytic performance toward oxytetracycline degradation with a superior photoreaction rate constant of 0.0475 min‒1,which is 13.2,3.9 and 2.2 folds that of C_(3)N_(5),Ag_(2)CO_(3),and Ag_(2)CO_(3)/C_(3)N_(5),respectively.As evidenced by comprehensive characterizations and density functional theory calculations,the localized surface plasmon resonance effect of metallic Ag and the unique S-scheme charge transfer mechanism in 0D/0D/2D Ag/Ag_(2)CO_(3)/C_(3)N_(5) collaboratively strengthen the visible-light absorption,and facilitate the effective separation of powerful charge carriers,thereby significantly promoting the generation of reactive species like·OH^(-),h^(+)and·O_(2)^(-)for efficient oxytetracycline destruction.Moreover,four consecutive cycles demonstrate the reusability of Ag/Ag_(2)CO_(3)/C_(3)N_(5).Furthermore,the authentic water purification tests affirm its practical application potential.This work not only provides a candidate strategy for advancing S-scheme heterojunction photocatalysts but also makes a certain contribution to water decontamination. 展开更多
关键词 Localized surface plasmon resonance S-scheme Ag/Ag_(2)CO_(3)/C_(3)N_(5) Antibiotic removal Internal electric field
在线阅读 下载PDF
Nanostructured materials with localized surface plasmon resonance for photocatalysis 被引量:7
9
作者 Juan Li Zaizhu Lou Baojun Li 《Chinese Chemical Letters》 SCIE CAS CSCD 2022年第3期1154-1168,共15页
Localized surface plasmon resonance (LSPR) enhanced photocatalysis has fascinated much interest and considerable efforts have been devoted toward the development of plasmonic photocatalysts. In the past decades, noble... Localized surface plasmon resonance (LSPR) enhanced photocatalysis has fascinated much interest and considerable efforts have been devoted toward the development of plasmonic photocatalysts. In the past decades, noble metal nanoparticles (Au and Ag) with LSPR feature have found wide applications in solar energy conversion. Numerous metal-based photocatalysts have been proposed including metal/semiconductor heterostructures and plasmonic bimetallic or multimetallic nanostructures. However, high cost and scarce reserve of noble metals largely limit their further practical use, which drives the focus gradually shift to low-cost and abundant nonmetallic nanostructures. Recently, various heavily doped semiconductors (such as WO_(3-x), MoO_(3-x), Cu_(2-x)S, TiN) have emerged as potential alternatives to costly noble metals for efficient photocatalysis due to their strong LSPR property in visible-near infrared region. This review starts with a brief introduction to LSPR property and LSPR-enhanced photocatalysis, the following highlights recent advances of plasmonic photocatalysts from noble metal to semiconductor-based plasmonic nanostructures. Their synthesis methods and promising applicability in plasmon-driven photocatalytic reactions such as water splitting, CO_(2) reduction and pollution decomposition are also summarized in details. This review is expected to give guidelines for exploring more efficient plasmonic systems and provide a perspective on development of plasmonic photocatalysis. 展开更多
关键词 Localized surface plasmon resonance Plasmonic photocatalysis Plasmonic semiconductor Hot electrons Solar energy harvesting
原文传递
Ultrasensitive nanosensors based on localized surface plasmon resonances:From theory to applications 被引量:5
10
作者 Wen Chen Huatian Hu +3 位作者 Wei Jiang Yuhao Xu Shunping Zhang Hongxing Xu 《Chinese Physics B》 SCIE EI CAS CSCD 2018年第10期58-78,共21页
The subwavelength confinement feature of localized surface plasmon resonance(LSPR) allows plasmonic nanostructures to be functionalized as powerful platforms for detecting various molecular analytes as well as weak ... The subwavelength confinement feature of localized surface plasmon resonance(LSPR) allows plasmonic nanostructures to be functionalized as powerful platforms for detecting various molecular analytes as well as weak processes with nanoscale spatial resolution. One of the main goals of this field of research is to lower the absolute limit-of-detection(LOD)of LSPR-based sensors. This involves the improvement of(i) the figure-of-merit associated with structural parameters such as the size, shape and interparticle arrangement and,(ii) the spectral resolution. The latter involves advanced target identification and noise reduction techniques. By highlighting the strategies for improving the LOD, this review introduces the fundamental principles and recent progress of LSPR sensing based on different schemes including 1) refractometric sensing realized by observing target-induced refractive index changes, 2) plasmon rulers based on target-induced relative displacement of coupled plasmonic structures, 3) other relevant LSPR-based sensing schemes including chiral plasmonics,nanoparticle growth, and optomechanics. The ultimate LOD and the future trends of these LSPR-based sensing are also discussed. 展开更多
关键词 plasmonic sensing localized surface plasmon resonance plasmon rulers NANOPARTICLES
原文传递
Generating Parametric G^n Blending Surface with Some Constraints 被引量:4
11
作者 宋遒志 戴全辉 +1 位作者 陈立平 钟毅芳 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2003年第2期108-116,共9页
This paper presents a method of generating a parametric G^n blending surfacebased on reparameterizing the partial surface patches in the base surfaces on the basis of ErichHartmann method. This method is expressed as ... This paper presents a method of generating a parametric G^n blending surfacebased on reparameterizing the partial surface patches in the base surfaces on the basis of ErichHartmann method. This method is expressed as follows Firstly, the partial region near contact curvesin both base surfaces is reparameterized. The contact curves are used as the boundaries of thereparameterized partial region respectively. The reparameterized partial region in two base surfacesis called the reparameterized local base surfaces. Then the parametric G^n blending surface isgenerated by a linear combination of the reparameterized local base surface patches depending on oneof the common parameters. Therefore, generating a Parametric G^n Blending Surface between two basesurfaces is translated into generating a Parametric G^n Blending Surface between the tworeparameterized local base surfaces. This paper illustrates the method to generate the G^n blendingsurface with some constraints by generating a G^2 blending surface between the aerofoil and the bodyof a missile with the constraints of the forward and rear fringe curves. When the G^n blendingsurface with some constraints is generated, the partial region near contact curves in both basesurfaces is reparameterized, and the scale factors, offset, balance factor and thumb weight aredefined by meeting the constraints through using an optimization method. Then the parametric G^nblending surface is generated by the linear combination of the reparameterized local base surfacepatches. The shape of the blending surface can be adjusted by changing the size of thereparameterized local base surface patches. 展开更多
关键词 blending surface reparameterized local base surface contact curve linearcombination CONSTRAINTS optimization
在线阅读 下载PDF
Tunable localized surface plasmon resonances in MoO_(3-x)-TiO_(2) nanocomposites with enhanced catalytic activity for CO_(2) photoreduction under visible light 被引量:4
12
作者 Shunji Xie Haikun Zhang +4 位作者 Guodong Liu Xuejiao Wu Jinchi Lin Qinghong Zhang Ye Wang 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2020年第7期1125-1131,共7页
The photocatalytic reduction of CO2 with H2O to fuels and chemicals using solar energy is one of the most attractive but highly difficult routes.Thus far,only a very limited number of photocatalysts has been reported ... The photocatalytic reduction of CO2 with H2O to fuels and chemicals using solar energy is one of the most attractive but highly difficult routes.Thus far,only a very limited number of photocatalysts has been reported to be capable of catalyzing the photocatalytic reduction of CO2 under visible light.The utilization of the localized surface plasmon resonance(LSPR)phenomenon is an attractive strategy for developing visible-light photocatalysts.Herein,we have succeeded in synthesizing plasmonic MoO3?x-TiO2 nanocomposites with tunable LSPR by a simple solvothermal method.The well-structured nanocomposite containing two-dimensional(2D)molybdenum oxide(MoO3?x)nanosheets and one-dimensional(1D)titanium oxide nanotubes(TiO2-NT)showed LSPR absorption band in the visible-light region,and the incorporation of TiO2-NT significantly enhanced the LSPR absorption band.The MoO3?x-TiO2-NT nanocomposite is promising for application in the photocatalytic reduction of CO2 with H2O under visible light irradiation. 展开更多
关键词 PHOTOCATALYSIS Carbon dioxide Visible light Localized surface plasmon resonance MoO_(3-x)-TiO_(2) nanocomposite
在线阅读 下载PDF
Photocurrent improvement of an ultra-thin silicon solar cell using the localized surface plasmonic effect of clustering nanoparticles 被引量:3
13
作者 F Sobhani H Heidarzadeh H Bahador 《Chinese Physics B》 SCIE EI CAS CSCD 2020年第6期532-537,共6页
The cluster-shaped plasmonic nanostructures are used to manage the incident light inside an ultra-thin silicon solar cell.Here we simulate spherical,conical,pyramidal,and cylindrical nanoparticles in a form of a clust... The cluster-shaped plasmonic nanostructures are used to manage the incident light inside an ultra-thin silicon solar cell.Here we simulate spherical,conical,pyramidal,and cylindrical nanoparticles in a form of a cluster at the rear side of a thin silicon cell,using the finite difference time domain(FDTD)method.By calculating the optical absorption and hence the photocurrent,it is shown that the clustering of nanoparticles significantly improves them.The photocurrent enhancement is the result of the plasmonic effects of clustering the nanoparticles.For comparison,first a cell with a single nanoparticle at the rear side is evaluated.Then four smaller nanoparticles are put around it to make a cluster.The photocurrents of 20.478 mA/cm2,23.186 mA/cm2,21.427 mA/cm2,and 21.243 mA/cm2 are obtained for the cells using clustering conical,spherical,pyramidal,cylindrical NPs at the backside,respectively.These values are 13.987 mA/cm2,16.901 mA/cm2,16.507 mA/cm2,17.926 mA/cm2 for the cell with one conical,spherical,pyramidal,cylindrical NPs at the backside,respectively.Therefore,clustering can significantly improve the photocurrents.Finally,the distribution of the electric field and the generation rate for the proposed structures are calculated. 展开更多
关键词 clustering nanoparticles plasmonic solar cell localized surface plasmon resonance PHOTOCURRENT finite difference time domain(FDTD)method light management
原文传递
A high figure of merit localized surface plasmon sensor based on a gold nanograting on the top of a gold planar film 被引量:2
14
作者 张祖银 王立娜 +3 位作者 胡海峰 李康文 马勋鹏 宋国峰 《Chinese Physics B》 SCIE EI CAS CSCD 2013年第10期345-348,共4页
We investigate the sensitivity and figure of merit (FOM) of a localized surface plasmon (LSP) sensor with gold nanograting on the top of planar metallic film. The sensitivity of the localized surface plasmon senso... We investigate the sensitivity and figure of merit (FOM) of a localized surface plasmon (LSP) sensor with gold nanograting on the top of planar metallic film. The sensitivity of the localized surface plasmon sensor is 317 nm/RIU, and the FOM is predicted to be above 8, which is very high for a localized surface plasmon sensor. By employing the rigorous coupled-wave analysis (RCWA) method, we analyze the distribution of the magnetic field and find that the sensing property of our proposed system is attributed to the interactions between the localized surface plasmon around the gold nanostrips and the surface plasmon polarition on the surface of the gold planar metallic film. These findings are important for developing high FOM localized surface plasmon sensors. 展开更多
关键词 localized surface plasmon biosensor figure of merit nanogratings gold film
原文传递
Manipulated localized surface plasmon resonances in silver nanoshells coated with a spherical anisotropic layer 被引量:2
15
作者 蒋书敏 吴大建 +1 位作者 程营 刘晓峻 《Chinese Physics B》 SCIE EI CAS CSCD 2012年第12期481-486,共6页
The influences of the anisotropy of the outer spherically anisotropic (SA) layer on the far-field spectra and near- field enhancements of the silver nanoshells are investigated by using a modified Mie scattering the... The influences of the anisotropy of the outer spherically anisotropic (SA) layer on the far-field spectra and near- field enhancements of the silver nanoshells are investigated by using a modified Mie scattering theory. It is found that with the increase of the anisotropic value of the SA layer, the dipole resonance wavelength of the silver nanoshell first increases and then decreases, while the local field factor (LFF) reduces. With the decrease of SA layer thickness, the dipole wavelength of the silver nanoshell shows a distinct blue-shift. When the SA layer becomes very thin, the modulations of the anisotropy of the SA layer on the plasmon resonance energy and the near-field enhancement are weakened. We further find that the smaller anisotropic value of the SA layer is helpful for obtaining the larger near-field enhancement in the Ag nanoshell. The geometric average of the dielectric components of the SA layer has a stronger effect on the plasmon resonance energy of the silver nanoshell than on the near-field enhancement. 展开更多
关键词 Ag nanoshell spherically anisotropic Mie theory localized surface plasmon resonance
原文传递
Polydopamine-Assisted Fabrication of Fiber-Optic Localized Surface Plasmon Resonance Sensor Based on Gold Nanoparticles 被引量:1
16
作者 苏荣欣 裴哲远 +4 位作者 黄仁亮 齐崴 王梦凡 王利兵 何志敏 《Transactions of Tianjin University》 EI CAS 2015年第5期412-419,共8页
A fast and facile method of fabricating fiber-optic localized surface plasmon resonance sensors baseff on spherical gold nanoparticles was introduced in this study. The gold nanoparticles with an average diameter of 5... A fast and facile method of fabricating fiber-optic localized surface plasmon resonance sensors baseff on spherical gold nanoparticles was introduced in this study. The gold nanoparticles with an average diameter of 55 nm were synthesized via the Turkevich method and were then immobilized onto the surface of an uncladded sensor probe using a polydopamine layer. To obtain a sensor probe with high sensitivity to changes in the refractive index, a set of key optimization parameters, including the sensing length, coating time of the potydopamine layer, and coating time of the gold nanoparticles, were investigated. The sensitivity of the optimized sensor probe was 522.80 nm per refractive index unit, and the probe showed distinctive wavelength shifts when the refractive index was changed from 1.328 6 to 1.398 7. When stored in deionized water at 4 ℃, the sensor probe proved to be stable over a period of two weeks. The sensor also exhibited advantages, such as low cost, fast fabrication, and simple optical setup, which indicated its potential application in remote sensing and real-time detection. 展开更多
关键词 localized surface plasmon resonance SENSOR gold nanoparticles POLYDOPAMINE optimization
在线阅读 下载PDF
Size dependent optical properties of LaB_6 nanoparticles enhanced by localized surface plasmon resonance 被引量:1
17
作者 洪源 张晓松 +4 位作者 李波 李梦真 石庆良 王有为 李岚 《Journal of Rare Earths》 SCIE EI CAS CSCD 2013年第11期1096-1101,共6页
Lanthanum hexaboride nanopartieles, with high emission electrons in cathode materials and peculiar blocking near infrared wavelengths, were applied for many aspects. Based on the quasi-static approximation of Mie theo... Lanthanum hexaboride nanopartieles, with high emission electrons in cathode materials and peculiar blocking near infrared wavelengths, were applied for many aspects. Based on the quasi-static approximation of Mie theory, the size dependent optical prop- erties of LaB6 nanoparticles were researched, such as refractive index n(ω), extinction coefficient k(ω), reflectivity R(ω), absorption coefficient a(ω), and electron energy loss L(ω). Due to the localized surface plasmon resonance (LSPR), the extinction coefficient k(ω) and absorption coefficient a(ω) depended on the size, and the LSPR peaks red-shifted with sizes increased, which was different from that of bulk materials. In addition, electron energy-loss spectrum L(co) showed electrons oscillation reinforced, since electrons absorbed the photon energy and generated resonance. Further, reftectivity R(ω) and refractive index n(ω) indicated that the light in near infrared region could not be propagated on the surface of LaB6 materials, which exhibited metallic behaviors. So the resonance peak of LaB6 nanoparticle was located in near-infrared region, making use of this property for solar control glazing and heat-shielding application. 展开更多
关键词 LaB6 nanoparticles optical properties localized surface plasmon resonance absorption coefficient extinction coefficient rare earths
原文传递
An Optimal Design of the Two-Staged Square Sectional Combined Energy Absorption Structure with Local Surface Nanocrystallization 被引量:1
18
作者 Xinsheng Xu Jianlong Qu +3 位作者 Tong Li Zhenzhen Tong Zhen Zhao Zhenhuan Zhou 《Acta Mechanica Solida Sinica》 SCIE EI CSCD 2021年第6期820-829,共10页
In this paper,a local surface nanocrystallization technology is used for thin-walled structures with square cross sections,and an energy absorption device of two-staged combined energy absorption structure is proposed... In this paper,a local surface nanocrystallization technology is used for thin-walled structures with square cross sections,and an energy absorption device of two-staged combined energy absorption structure is proposed.In virtue of the surface nanocrystallization that enables to change the material on local positions,the structural deformation is induced and controlled to maximize the energy absorption capacity.A numerical model of the two-staged combined energy absorption structure is established,and the local surface nanocrystallization layout is optimized.The results show that the specific energy absorption of two-staged combined structure with local surface nanocrystallization can be increased by 34.36%compared with the untreated counterpart of the same material and structural shape.The ratio between the first and second peak crushing forces and the energy absorption allocation ratio between the two stages can be adjusted in the ranges of 0.26–0.55 and 0.31–0.45,respectively,which can be controlled by the local surface nanocrystallization designs.The numerical simulation and experimental results are in good agreement,which shows that the design for energy absorption device with local surface nanocrystallization is feasible and effective. 展开更多
关键词 Local surface nanocrystallization Two-staged energy absorption Square cross-sectional thin-walled structure Specific energy absorption
原文传递
Enhanced Photovoltaic Properties for Rear Passivated Crystalline Silicon Solar Cells by Fabricating Boron Doped Local Back Surface Field 被引量:1
19
作者 陈楠 SHEN Shuiliang 杜国平 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2017年第6期1323-1328,共6页
In order to enhance the p-type doping concentration in the LBSF, boron was added into the aluminum paste and boron doped local back surface field(B-LBSF) was successfully fabricated in this work. Through boron dopin... In order to enhance the p-type doping concentration in the LBSF, boron was added into the aluminum paste and boron doped local back surface field(B-LBSF) was successfully fabricated in this work. Through boron doping in the LBSF, much higher doping concentration was observed for the B-LBSF over the Al-LBSF. Higher doping concentration in the LBSF is expected to lead to better rear passivation and lower rear contact resistance. Based on one thousand pieces of solar cells for each type, it was found that the rear passivated crystalline silicon solar cells with B-LBSF showed statistical improvement in their photovoltaic properties over those with Al-LBSF. 展开更多
关键词 crystalline silicon solar cells rear passivation local back surface field dopingconcentration
原文传递
Investigation on Surface Plasmon Polaritons and Localized Surface Plasmon Production Mechanism in Micro-Nano Structures 被引量:1
20
作者 Ling-Xi Hu Min Hu Sheng-Gang Liu 《Journal of Electronic Science and Technology》 CAS CSCD 2022年第1期20-29,共10页
The simulation mechanism of surface plasmon polaritons(SPPs)and localized surface plasmon(LSP)in different structures was studied,including the Au reflection grating(Au grating),Au substrate with dielectric ribbons gr... The simulation mechanism of surface plasmon polaritons(SPPs)and localized surface plasmon(LSP)in different structures was studied,including the Au reflection grating(Au grating),Au substrate with dielectric ribbons grating(Au substrate grating),and pure electric conductor(PEC)substrate with Au ribbons grating(Au ribbons grating).And the characteristics of the Smith-Purcell radiation in these structures were presented.Simulation results show that SPPs are excited on the bottom surface of Au substrate grating grooves and LSP is stimulated on the upper surface both of Au ribbons grating grooves and Au grating grooves.Owing to the irreconcilable contradiction between optimizing the grating diffraction radiation efficiency and optimizing the SPPs excitation efficiency in the Au substrate grating,only 40-times enhancement of the radiation intensity was obtained by excited SPPs.However,the LSP enhanced structure overcomes the above problem and gains much better radiation enhancement ability,with about 200-times enhancement obtained in the Au ribbons grating and more than 500-times enhancement obtained in the Au grating.The results presented here provide a way of developing miniature,integratable,tunable,high-power-density radiation sources from visible light to ultraviolet rays at room temperature. 展开更多
关键词 Coherent radiation high-power radiation localized surface plasmon(LSP) micro-nano structure Smith-Purcell radiation surface plasmon polaritons(SPPs)
在线阅读 下载PDF
上一页 1 2 8 下一页 到第
使用帮助 返回顶部