A novel surface ion implinted adsorbent [Co(II)-IIP] using polyethyleneimine (PEI) as function monomer and ordered mesoporous silica SBA-15 as support matrix was prepared for Co(II) analysis with high selectivit...A novel surface ion implinted adsorbent [Co(II)-IIP] using polyethyleneimine (PEI) as function monomer and ordered mesoporous silica SBA-15 as support matrix was prepared for Co(II) analysis with high selectivity. The prepared polymer was characterized by Fourier transmission infrared spectrometry, scanning electron microscopy, X-ray diffraction and nitrogen adsorption-desorption isotherm. Bath experiments of Co(II) adsorption onto Co(II)-IIP were performed under the optimum conditions. The experimental data were analyzed by pseudo-first-order and pseudo-second-order kinetic models. It was found that the pseudo-second-order model best correlated the kinetic data. The intraparticle diffusion and liquid film diffusion were applied to discuss the adsorption mechanism. The results showed that Co(II) adsorption onto IIP was controlled by the intraparticle diffusion mechanism, along with a considerable film diffusion contribution. Langmuir, Freundlich and Dubinin-Radushkevich adsorption models were applied to determine the isotherm parameters. Langmuir model fitted the experiment data well and the maximum calculated capacity of Co(II) reached 39.26 mg/g under room temperature. The thermodynamic data were indicative of the spontaneousness of the endothermic sorption process of Co(II) onto Co(II)-IIP. Co(II)-IIP showed high affinity and selectivity for template ion compared with non imprinted polymer (NIP).展开更多
Water behavior in nanoconfined hydrophobic environment is different from that in the bulk,which greatly influences mass transport.Hydrophobicity switching of nanopores showing great potential for controlled water or i...Water behavior in nanoconfined hydrophobic environment is different from that in the bulk,which greatly influences mass transport.Hydrophobicity switching of nanopores showing great potential for controlled water or ion transport has been realized through several methods,especially the voltage-triggered wetting/dewetting inspired by biological ion channels.However,in the hydrophobic silanized nanopores,the finite ionic current is still observed and the ion transport mechanism is not yet clear.Here,we explore the ion transport behavior in the hydrophobic silanized anodic aluminum oxide(AAO).Ion transport through this hydrophobic membrane is confirmed,although no aqueous pathway was observed.Results show that ions transport through the cross-linked silane layer on the inner surface.It is revealed that metal ions,not just the protons or hydroxide ions,are involved in the ion transport driven by external electric field.This study provides a new insight into the ion transport in nanoconfined hydrophobic environment which is helpful to understand the biological processes and design new nanofluidic devices.展开更多
In the study,the catalyst precursors of Ce-modifiedγ-MnO2 were washed with deionized water until the pH value of the supernatant was 1,2,4 and 7,and the obtained catalysts were named accordingly.Under space velocity ...In the study,the catalyst precursors of Ce-modifiedγ-MnO2 were washed with deionized water until the pH value of the supernatant was 1,2,4 and 7,and the obtained catalysts were named accordingly.Under space velocity of 300,000 hr-1,the ozone conversion over the pH=7 catalyst under dry conditions and relative humidity of 65%over a period of 6 hr was 100%and 96%,respectively.However,the ozone decomposition activity of the pH=2 and 4 catalysts distinctly decreased under relative humidity of 65%compared to that under dry conditions.Detailed physical and chemical characterization demonstrated that the residual sulfate ions on the pH=2 and 4 catalysts decreased their hydrophobicity and then restrained humid ozone decomposition activity.The pH=2 and 4 catalysts had inferior resistance to high space velocity under dry conditions,because the residual sulfate ion on their surface reduced their adsorption capacity for ozone molecules and increased their apparent activation energies,which was proved by temperature programmed desorption of O2 and kinetic experiments.Long-term activity testing,X-ray photoelectron spectroscopy and density functional theory calculations revealed that there were two kinds of oxygen vacancies on the manganese dioxide catalysts,one of which more easily adsorbed oxygen species and then became deactivated.This study revealed the detrimental effect of surface acid ions on the activity of catalysts under humid and dry atmospheres,and provided guidance for the development of highly efficient catalysts for ozone decomposition.展开更多
Surface charges and hydration are predominant properties of colloidal particles that govern colloidal stability in aqueous suspensions.These properties usually coexist and interact with each other.The correlation betw...Surface charges and hydration are predominant properties of colloidal particles that govern colloidal stability in aqueous suspensions.These properties usually coexist and interact with each other.The correlation between the surface charge and hydration of minerals is summarized on the basis of innovative experimental,theoretical,and molecular dynamics simulation studies.The factors affecting the adsorption behavior of ions and water molecules,such as ion concentration,ion hydration radius and valence,and surface properties,are discussed.For example,the hydration and adsorption states completely differ between monovalent and divalent ions.For ions of the same valence,the effect of surface charge on the hydration force follows the Hofmeister adsorption series.Electrolyte concentration exerts a significant effect on the hydration force at high ion concentrations.Meanwhile,the ion correlations in high-concentration electrolyte systems become long range.The interfacial water structure largely depends on surface chemistry.The hydration layer between different surfaces shows large qualitative differences.展开更多
This study investigated the interaction between Cu^2+and nano zero-valent iron(NZVI)coated with three types of stabilizers(i.e., polyacrylic acid [PAA], Tween-20 and starch) by examining the Cu^2+ uptake, coll...This study investigated the interaction between Cu^2+and nano zero-valent iron(NZVI)coated with three types of stabilizers(i.e., polyacrylic acid [PAA], Tween-20 and starch) by examining the Cu^2+ uptake, colloidal stability and mobility of surface-modified NZVI(SM-NZVI) in the presence of Cu^2+. The uptake of Cu^2+ by SM-NZVI and the colloidal stability of the Cu-bearing SM-NZVI were examined in batch tests. The results showed that NZVI coated with different modifiers exhibited different affinities for Cu^2+, which resulted in varying colloidal stability of different SM-NZVI in the presence of Cu^2+. The presence of Cu^2+ exerted a slight influence on the aggregation and settling of NZVI modified with PAA or Tween-20. However, the presence of Cu^2+caused significant aggregation and sedimentation of starch-modified NZVI, which is due to Cu^2+complexation with the starch molecules coated on the surface of the particles. Column experiments were conducted to investigate the co-transport of Cu^2+ in association with SM-NZVI in water-saturated quartz sand. It was presumed that a physical straining mechanism accounted for the retention of Cu-bearing SM-NZVI in the porous media. Moreover, the enhanced aggregation of SM-NZVI in the presence of Cu^2+ may be contributing to this straining effect.展开更多
Tetragonal zirconia polycrystals containing 3 mol% yttria (3Y-TZP), which show Superplasticity at high temperatures, were irradiated using 130 MeV Zr+" ions in the TANDEM accelerator facility at Tokai Research Es...Tetragonal zirconia polycrystals containing 3 mol% yttria (3Y-TZP), which show Superplasticity at high temperatures, were irradiated using 130 MeV Zr+" ions in the TANDEM accelerator facility at Tokai Research Establishment, JAERI. The irradiation induced atomic displacement damage was analyzed by TRIM code. Changes in the mechanical properties and fracture behavior caused by the ion irradiation and the effects of subsequent annealing were studied. The distribution of micro-indentation depth as a function of the indentation position from the irradiated surface to the specimen interior was also examined. The occurrence of compressive residual stresses and increases in hardness and fracture toughness were found in the as-irradiated surface region of the specimen. The subsequent annealing revealed that these quantities were decreased gradually with raising the annealing temperature. Probable causes of the generation of the residual stress and the changes in mechanical properties and fracture mode due to the irradiation are discussed.展开更多
Electric potential near a wall for plasma with the surface produced negative ions with magnetic field increasing toward a wall is investigated analytically. The potential profile is derived analytically by using a pla...Electric potential near a wall for plasma with the surface produced negative ions with magnetic field increasing toward a wall is investigated analytically. The potential profile is derived analytically by using a plasma-sheath equation, where negative ions produced on the plasma grid (PG) surface are considered in addition to positive ions and electrons. The potential profile depends on the amount and the temperature of the surface produced negative ions and the profile of the magnetic field. The negative potential peak is formed in the sheath region near the PG surface for the case of strong surface production of negative ions or low temperature negative ions. As the increase rate of the magnetic field near the wall becomes large, the negative potential peak becomes small.展开更多
In this study, the polyacrylate intraocularr lens is irradiated by argon ion which can produce free radicals. In order to obtain better hydrophilic and lower platelets adhesion, monomer vinyl pyrrolidone (NVP) is graf...In this study, the polyacrylate intraocularr lens is irradiated by argon ion which can produce free radicals. In order to obtain better hydrophilic and lower platelets adhesion, monomer vinyl pyrrolidone (NVP) is grafted onto the hydrophobic polyacrylate intraocular lens surface in a certain reaction conditions. Specific changes in intraocular lens are detected by static contact angle (CA), scanning electron microscope (SEM) and light transmittance. The results show that this surface modification can greatly improve its hydrophilic character and surface formation.展开更多
In this paper, damages and annealing effects of X,Y and Z cut LiNbO-3 implanted by 350keV high energy Ti (1.5 x 10<sup>17</sup> / cm<sup>2</sup>) are studied. The surface damages of X,Y cut pla...In this paper, damages and annealing effects of X,Y and Z cut LiNbO-3 implanted by 350keV high energy Ti (1.5 x 10<sup>17</sup> / cm<sup>2</sup>) are studied. The surface damages of X,Y cut plates are nearly amorphous, but the surface damage of Z cut does not reach saturation. Radiation damage is mainly due to Nb moving atoms and Ti atoms occupy the interstitial sites. By annealing the sample at 1000℃, most damage is removed from the boundary between implanted layer and LiNbO<sub>3</sub> base to surface.展开更多
The inner surface modification process by plasma-based low-energy ion implantation(PBLEII)with an electron cyclotron resonance(ECR)microwave plasma source located at the central axis of a cylindrical tube is model...The inner surface modification process by plasma-based low-energy ion implantation(PBLEII)with an electron cyclotron resonance(ECR)microwave plasma source located at the central axis of a cylindrical tube is modeled to optimize the low-energy ion implantation parameters for industrial applications.In this paper,a magnetized plasma diffusion fluid model has been established to describe the plasma nonuniformity caused by plasma diffusion under an axial magnetic field during the pulse-off time of low pulsed negative bias.Using this plasma density distribution as the initial condition,a sheath collisional fluid model is built up to describe the sheath evolution and ion implantation during the pulse-on time.The plasma nonuniformity at the end of the pulse-off time is more apparent along the radial direction compared with that in the axial direction due to the geometry of the linear plasma source in the center and the difference between perpendicular and parallel plasma diffusion coefficients with respect to the magnetic field.The normalized nitrogen plasma densities on the inner and outer surfaces of the tube are observed to be about 0.39 and 0.24,respectively,of which the value is 1 at the central plasma source.After a 5μs pulse-on time,in the area less than 2 cm from the end of the tube,the nitrogen ion implantation energy decreases from 1.5 keV to 1.3 keV and the ion implantation angle increases from several degrees to more than 40°;both variations reduce the nitrogen ion implantation depth.However,the nitrogen ion implantation dose peaks of about 2×10^(10)-7×10^(10)ions/cm^2 in this area are 2-4 times higher than that of 1.18×10^(10)ions/cm^2 and 1.63×10^(10)ions/cm^2 on the inner and outer surfaces of the tube.The sufficient ion implantation dose ensures an acceptable modification effect near the end of the tube under the low energy and large angle conditions for nitrogen ion implantation,because the modification effect is mainly determined by the ion implantation dose,just as the mass transfer process in PBLEII is dominated by low-energy ion implantation and thermal diffusion.Therefore,a comparatively uniform surface modification by the low-energy nitrogen ion implantation is achieved along the cylindrical tube on both the inner and outer surfaces.展开更多
The hydrodynamic effects of molten surface of titanium alloy on the morphology evolution by intense pulsed ion beam (IPIB) irradiation are studied. It is experimentally revealed that under irradiation of IPIB pulses...The hydrodynamic effects of molten surface of titanium alloy on the morphology evolution by intense pulsed ion beam (IPIB) irradiation are studied. It is experimentally revealed that under irradiation of IPIB pulses, the surface morphology of titanium alloy in a spatial scale of μm exhibits an obvious smoothening trend. The mechanism of this phenomenon is explained by the mass transfer caused by the surface tension of molten metal. Hydrodynamic simulation with a combination of the finite element method and the level set method reveals that the change in curvature on the molten surface leads to uneven distribution of surface tension. Mass transfer is caused by the relief of surface tension, and meanwhile a flattening trend in the surface morphology evolution is achieved.展开更多
Na-rich birnessite(NRB) was synthesized by a simple synthesis method and used as a high-efficiency adsorbent for the removal of ammonium ion(NH+4) from aqueous solution.In order to demonstrate the adsorption perf...Na-rich birnessite(NRB) was synthesized by a simple synthesis method and used as a high-efficiency adsorbent for the removal of ammonium ion(NH+4) from aqueous solution.In order to demonstrate the adsorption performance of the synthesized material,the effects of contact time,pH,initial ammonium ion concentration,and temperature were investigated.Adsorption kinetics showed that the adsorption behavior followed the pseudo second-order kinetic model.The equilibrium adsorption data were fitted to Langmuir and Freundlich adsorption models and the model parameters were evaluated.The monolayer adsorption capacity of the adsorbent,as obtained from the Langmuir isotherm,was 22.61 mg NH+4-N/g at283 K.Thermodynamic analyses showed that the adsorption was spontaneous and that it was also a physisorption process.Our data revealed that the higher NH+4adsorption capacity could be primarily attributed to the water absorption process and electrostatic interaction.Particularly,the high surface hydroxyl-content of NRB enables strong interactions with ammonium ion.The results obtained in this study illustrate that the NRB is expected to be an effective and economically viable adsorbent for ammonium ion removal from aqueous system.展开更多
The adsorption characteristics and mechanisms of the biosorbent from waste activated sludge were investigated by adsorbing Pb2+and Zn2+in aqueous single-metal solutions. A p H value of the metal solutions at 6.0 was...The adsorption characteristics and mechanisms of the biosorbent from waste activated sludge were investigated by adsorbing Pb2+and Zn2+in aqueous single-metal solutions. A p H value of the metal solutions at 6.0 was beneficial to the high adsorption quantity of the biosorbent. The optimal mass ratio of the biosorbent to metal ions was found to be 2. A higher adsorption quantity of the biosorbent was achieved by keeping the reaction temperature below 55°C. Response surface methodology was applied to optimize the biosorption processes, and the developed mathematical equations showed high determination coefficients(above 0.99 for both metal ions) and insignificant lack of fit(p = 0.0838 and 0.0782 for Pb2+and Zn2+, respectively). Atomic force microscopy analyses suggested that the metal elements were adsorbed onto the biosorbent surface via electrostatic interaction. X-ray photoelectron spectroscopy analyses indicated the presence of complexation(between –NH2,-CN and metal ions) and ion-exchange(between –COOH and metal ions). The adsorption mechanisms could be the combined action of electrostatic interaction, complexation and ion-exchange between functional groups and metal ions.展开更多
K9 glass is a common material of optics and micro system, with cheaper price and better processing function. With the development of the optical and micro system, the technique of manufacturing micron/nanometer dimens...K9 glass is a common material of optics and micro system, with cheaper price and better processing function. With the development of the optical and micro system, the technique of manufacturing micron/nanometer dimensions microstructure and micro device on K9 glass has used in photoelectron, microwave and diffraction optics device et al The coarse surface of optics and microwave device can cause the light scattering and signal losing, and the function of device reduced. So the supersmooth surface plays an important role in optic and microwave device.展开更多
Hydrogen peroxide(H_(2)O_(2))is extensively used in medical disinfection,water treatment,and environmental protection.To achieve the green synthesis of H_(2)O_(2),g-C_(3)N_(4)-based photocatalysis is an effective stra...Hydrogen peroxide(H_(2)O_(2))is extensively used in medical disinfection,water treatment,and environmental protection.To achieve the green synthesis of H_(2)O_(2),g-C_(3)N_(4)-based photocatalysis is an effective strategy and shows great potential.Nonetheless,single g-C_(3)N_(4)exhibits poor photocatalytic properties due to severe photogenerated charge recombination.To solve this challenge,this work enables F^(−)adsorption on the surface of g-C_(3)N_(4)nanotubes in solution driven by Coulomb forces through pH adjustment and the addition of NH4F.The photocatalytic H_(2)O_(2)production rate of the optimal F^(−)-decorated g-C_(3)N_(4)is three times higher than that of pure g-C_(3)N_(4),attributing to the synergistic effect of F^(−)and H^(+).Quenching experiments verify that the photocatalytic H_(2)O_(2)production process of CNF is a two-electron oxygen reduction process.Electron quenching dynamics of g-C_(3)N_(4)and CNF are revealed by femtosecond transient absorption spectroscopy(fs-TAS).Compared to pure g-C_(3)N_(4),CNF has an additional ultrashort lifetime(3.1 ps)representing the interfacial electron transfer from the conduction band of g-C_(3)N_(4)to F^(−).In situ fs-TAS results show that the interfacial electron transfer rate and electron utilization efficiency are respectively increased from 1.5×10^(8)s^(–1)and 19%in air to 5.0×10^(8)s^(-1)and 45%in O_(2) atmosphere with ethanol sacrificial agent.Hence,the O_(2),H^(+),and photogenerated electrons are key substances in the H_(2)O_(2)evolution.This work has elucidated the dynamics mechanism of enhanced photocatalytic performance of F^(−)-modified g-C_(3)N_(4)and provides inspiration for the design and synthesis of efficient g-C_(3)N_(4)-based photocatalysts.展开更多
There was a complete set of cross-polar distributive data of nitrate (NO<sub>3</sub><sup>-</sup>) content inthe surface snow of the Antarctic ice sheet along the route of the 1990 Internation...There was a complete set of cross-polar distributive data of nitrate (NO<sub>3</sub><sup>-</sup>) content inthe surface snow of the Antarctic ice sheet along the route of the 1990 International Trans-Antarctica Expedition. We have shown the profiles of nitrate concentration and flux alongthe route as the plots associated with geomagnetic latitude for further analysis on the展开更多
基金Project supported by the National Natural Science Foundation of China (No. 21077046), Ph. D. Programs Foundation of Ministry of Education of China (No. 20093227110015), Ph.D. Innovation Programs Foundation of Jiangsu University (No. CX09B 12XZ).
文摘A novel surface ion implinted adsorbent [Co(II)-IIP] using polyethyleneimine (PEI) as function monomer and ordered mesoporous silica SBA-15 as support matrix was prepared for Co(II) analysis with high selectivity. The prepared polymer was characterized by Fourier transmission infrared spectrometry, scanning electron microscopy, X-ray diffraction and nitrogen adsorption-desorption isotherm. Bath experiments of Co(II) adsorption onto Co(II)-IIP were performed under the optimum conditions. The experimental data were analyzed by pseudo-first-order and pseudo-second-order kinetic models. It was found that the pseudo-second-order model best correlated the kinetic data. The intraparticle diffusion and liquid film diffusion were applied to discuss the adsorption mechanism. The results showed that Co(II) adsorption onto IIP was controlled by the intraparticle diffusion mechanism, along with a considerable film diffusion contribution. Langmuir, Freundlich and Dubinin-Radushkevich adsorption models were applied to determine the isotherm parameters. Langmuir model fitted the experiment data well and the maximum calculated capacity of Co(II) reached 39.26 mg/g under room temperature. The thermodynamic data were indicative of the spontaneousness of the endothermic sorption process of Co(II) onto Co(II)-IIP. Co(II)-IIP showed high affinity and selectivity for template ion compared with non imprinted polymer (NIP).
基金the National Natural Science Foundation of China(Nos.22074061,21775066,21974058).
文摘Water behavior in nanoconfined hydrophobic environment is different from that in the bulk,which greatly influences mass transport.Hydrophobicity switching of nanopores showing great potential for controlled water or ion transport has been realized through several methods,especially the voltage-triggered wetting/dewetting inspired by biological ion channels.However,in the hydrophobic silanized nanopores,the finite ionic current is still observed and the ion transport mechanism is not yet clear.Here,we explore the ion transport behavior in the hydrophobic silanized anodic aluminum oxide(AAO).Ion transport through this hydrophobic membrane is confirmed,although no aqueous pathway was observed.Results show that ions transport through the cross-linked silane layer on the inner surface.It is revealed that metal ions,not just the protons or hydroxide ions,are involved in the ion transport driven by external electric field.This study provides a new insight into the ion transport in nanoconfined hydrophobic environment which is helpful to understand the biological processes and design new nanofluidic devices.
基金supported by the National Key R&D Program of China(Nos.2016YFC0207104 and 2017YFC0211802)the National Natural Science Foundation of China(NSFC)(No.21876191)the Youth Innovation Promotion Association,CAS(No.2017064)
文摘In the study,the catalyst precursors of Ce-modifiedγ-MnO2 were washed with deionized water until the pH value of the supernatant was 1,2,4 and 7,and the obtained catalysts were named accordingly.Under space velocity of 300,000 hr-1,the ozone conversion over the pH=7 catalyst under dry conditions and relative humidity of 65%over a period of 6 hr was 100%and 96%,respectively.However,the ozone decomposition activity of the pH=2 and 4 catalysts distinctly decreased under relative humidity of 65%compared to that under dry conditions.Detailed physical and chemical characterization demonstrated that the residual sulfate ions on the pH=2 and 4 catalysts decreased their hydrophobicity and then restrained humid ozone decomposition activity.The pH=2 and 4 catalysts had inferior resistance to high space velocity under dry conditions,because the residual sulfate ion on their surface reduced their adsorption capacity for ozone molecules and increased their apparent activation energies,which was proved by temperature programmed desorption of O2 and kinetic experiments.Long-term activity testing,X-ray photoelectron spectroscopy and density functional theory calculations revealed that there were two kinds of oxygen vacancies on the manganese dioxide catalysts,one of which more easily adsorbed oxygen species and then became deactivated.This study revealed the detrimental effect of surface acid ions on the activity of catalysts under humid and dry atmospheres,and provided guidance for the development of highly efficient catalysts for ozone decomposition.
基金financially supported by the National Natural Science Foundation of China(Nos.51804213,51820105006,51474167,51674183,and 51674174)the China Scholarships Council(No.201906935041)。
文摘Surface charges and hydration are predominant properties of colloidal particles that govern colloidal stability in aqueous suspensions.These properties usually coexist and interact with each other.The correlation between the surface charge and hydration of minerals is summarized on the basis of innovative experimental,theoretical,and molecular dynamics simulation studies.The factors affecting the adsorption behavior of ions and water molecules,such as ion concentration,ion hydration radius and valence,and surface properties,are discussed.For example,the hydration and adsorption states completely differ between monovalent and divalent ions.For ions of the same valence,the effect of surface charge on the hydration force follows the Hofmeister adsorption series.Electrolyte concentration exerts a significant effect on the hydration force at high ion concentrations.Meanwhile,the ion correlations in high-concentration electrolyte systems become long range.The interfacial water structure largely depends on surface chemistry.The hydration layer between different surfaces shows large qualitative differences.
基金supported by the Fundamental Research Funds for the Central Universities (531107040788)the National Natural Science Foundation of China (Nos. 51409100, 51039001, 51378190)the Program for Changjiang Scholars and Innovative Research Team in University (IRT-13R17)
文摘This study investigated the interaction between Cu^2+and nano zero-valent iron(NZVI)coated with three types of stabilizers(i.e., polyacrylic acid [PAA], Tween-20 and starch) by examining the Cu^2+ uptake, colloidal stability and mobility of surface-modified NZVI(SM-NZVI) in the presence of Cu^2+. The uptake of Cu^2+ by SM-NZVI and the colloidal stability of the Cu-bearing SM-NZVI were examined in batch tests. The results showed that NZVI coated with different modifiers exhibited different affinities for Cu^2+, which resulted in varying colloidal stability of different SM-NZVI in the presence of Cu^2+. The presence of Cu^2+ exerted a slight influence on the aggregation and settling of NZVI modified with PAA or Tween-20. However, the presence of Cu^2+caused significant aggregation and sedimentation of starch-modified NZVI, which is due to Cu^2+complexation with the starch molecules coated on the surface of the particles. Column experiments were conducted to investigate the co-transport of Cu^2+ in association with SM-NZVI in water-saturated quartz sand. It was presumed that a physical straining mechanism accounted for the retention of Cu-bearing SM-NZVI in the porous media. Moreover, the enhanced aggregation of SM-NZVI in the presence of Cu^2+ may be contributing to this straining effect.
文摘Tetragonal zirconia polycrystals containing 3 mol% yttria (3Y-TZP), which show Superplasticity at high temperatures, were irradiated using 130 MeV Zr+" ions in the TANDEM accelerator facility at Tokai Research Establishment, JAERI. The irradiation induced atomic displacement damage was analyzed by TRIM code. Changes in the mechanical properties and fracture behavior caused by the ion irradiation and the effects of subsequent annealing were studied. The distribution of micro-indentation depth as a function of the indentation position from the irradiated surface to the specimen interior was also examined. The occurrence of compressive residual stresses and increases in hardness and fracture toughness were found in the as-irradiated surface region of the specimen. The subsequent annealing revealed that these quantities were decreased gradually with raising the annealing temperature. Probable causes of the generation of the residual stress and the changes in mechanical properties and fracture mode due to the irradiation are discussed.
文摘Electric potential near a wall for plasma with the surface produced negative ions with magnetic field increasing toward a wall is investigated analytically. The potential profile is derived analytically by using a plasma-sheath equation, where negative ions produced on the plasma grid (PG) surface are considered in addition to positive ions and electrons. The potential profile depends on the amount and the temperature of the surface produced negative ions and the profile of the magnetic field. The negative potential peak is formed in the sheath region near the PG surface for the case of strong surface production of negative ions or low temperature negative ions. As the increase rate of the magnetic field near the wall becomes large, the negative potential peak becomes small.
基金National Natural Science of Foundation of Chinagrant number:81070716
文摘In this study, the polyacrylate intraocularr lens is irradiated by argon ion which can produce free radicals. In order to obtain better hydrophilic and lower platelets adhesion, monomer vinyl pyrrolidone (NVP) is grafted onto the hydrophobic polyacrylate intraocular lens surface in a certain reaction conditions. Specific changes in intraocular lens are detected by static contact angle (CA), scanning electron microscope (SEM) and light transmittance. The results show that this surface modification can greatly improve its hydrophilic character and surface formation.
文摘In this paper, damages and annealing effects of X,Y and Z cut LiNbO-3 implanted by 350keV high energy Ti (1.5 x 10<sup>17</sup> / cm<sup>2</sup>) are studied. The surface damages of X,Y cut plates are nearly amorphous, but the surface damage of Z cut does not reach saturation. Radiation damage is mainly due to Nb moving atoms and Ti atoms occupy the interstitial sites. By annealing the sample at 1000℃, most damage is removed from the boundary between implanted layer and LiNbO<sub>3</sub> base to surface.
基金supported by National Natural Science Foundation of China(Nos.50725519,51271048,51321004)
文摘The inner surface modification process by plasma-based low-energy ion implantation(PBLEII)with an electron cyclotron resonance(ECR)microwave plasma source located at the central axis of a cylindrical tube is modeled to optimize the low-energy ion implantation parameters for industrial applications.In this paper,a magnetized plasma diffusion fluid model has been established to describe the plasma nonuniformity caused by plasma diffusion under an axial magnetic field during the pulse-off time of low pulsed negative bias.Using this plasma density distribution as the initial condition,a sheath collisional fluid model is built up to describe the sheath evolution and ion implantation during the pulse-on time.The plasma nonuniformity at the end of the pulse-off time is more apparent along the radial direction compared with that in the axial direction due to the geometry of the linear plasma source in the center and the difference between perpendicular and parallel plasma diffusion coefficients with respect to the magnetic field.The normalized nitrogen plasma densities on the inner and outer surfaces of the tube are observed to be about 0.39 and 0.24,respectively,of which the value is 1 at the central plasma source.After a 5μs pulse-on time,in the area less than 2 cm from the end of the tube,the nitrogen ion implantation energy decreases from 1.5 keV to 1.3 keV and the ion implantation angle increases from several degrees to more than 40°;both variations reduce the nitrogen ion implantation depth.However,the nitrogen ion implantation dose peaks of about 2×10^(10)-7×10^(10)ions/cm^2 in this area are 2-4 times higher than that of 1.18×10^(10)ions/cm^2 and 1.63×10^(10)ions/cm^2 on the inner and outer surfaces of the tube.The sufficient ion implantation dose ensures an acceptable modification effect near the end of the tube under the low energy and large angle conditions for nitrogen ion implantation,because the modification effect is mainly determined by the ion implantation dose,just as the mass transfer process in PBLEII is dominated by low-energy ion implantation and thermal diffusion.Therefore,a comparatively uniform surface modification by the low-energy nitrogen ion implantation is achieved along the cylindrical tube on both the inner and outer surfaces.
基金Supported by the National Natural Science Foundation of China under Grant No 1175012the China Postdoctoral Science Foundation under Grant No 2016M600897the National Science and Technology Major Project of the Ministry of Science and Technology of China under Grant No 2013ZX04001-071
文摘The hydrodynamic effects of molten surface of titanium alloy on the morphology evolution by intense pulsed ion beam (IPIB) irradiation are studied. It is experimentally revealed that under irradiation of IPIB pulses, the surface morphology of titanium alloy in a spatial scale of μm exhibits an obvious smoothening trend. The mechanism of this phenomenon is explained by the mass transfer caused by the surface tension of molten metal. Hydrodynamic simulation with a combination of the finite element method and the level set method reveals that the change in curvature on the molten surface leads to uneven distribution of surface tension. Mass transfer is caused by the relief of surface tension, and meanwhile a flattening trend in the surface morphology evolution is achieved.
基金supported by the National Natural Science Foundation of China(No.51278409)the Education Department of Shaanxi Province(No.15JS046)
文摘Na-rich birnessite(NRB) was synthesized by a simple synthesis method and used as a high-efficiency adsorbent for the removal of ammonium ion(NH+4) from aqueous solution.In order to demonstrate the adsorption performance of the synthesized material,the effects of contact time,pH,initial ammonium ion concentration,and temperature were investigated.Adsorption kinetics showed that the adsorption behavior followed the pseudo second-order kinetic model.The equilibrium adsorption data were fitted to Langmuir and Freundlich adsorption models and the model parameters were evaluated.The monolayer adsorption capacity of the adsorbent,as obtained from the Langmuir isotherm,was 22.61 mg NH+4-N/g at283 K.Thermodynamic analyses showed that the adsorption was spontaneous and that it was also a physisorption process.Our data revealed that the higher NH+4adsorption capacity could be primarily attributed to the water absorption process and electrostatic interaction.Particularly,the high surface hydroxyl-content of NRB enables strong interactions with ammonium ion.The results obtained in this study illustrate that the NRB is expected to be an effective and economically viable adsorbent for ammonium ion removal from aqueous system.
基金the support provided by China Scholarship Council, Sheng Yun-Fei College Students Scientific and Technological Innovation Fundthe National Science & Technology Pillar Program (No. 2013BAD21B03)
文摘The adsorption characteristics and mechanisms of the biosorbent from waste activated sludge were investigated by adsorbing Pb2+and Zn2+in aqueous single-metal solutions. A p H value of the metal solutions at 6.0 was beneficial to the high adsorption quantity of the biosorbent. The optimal mass ratio of the biosorbent to metal ions was found to be 2. A higher adsorption quantity of the biosorbent was achieved by keeping the reaction temperature below 55°C. Response surface methodology was applied to optimize the biosorption processes, and the developed mathematical equations showed high determination coefficients(above 0.99 for both metal ions) and insignificant lack of fit(p = 0.0838 and 0.0782 for Pb2+and Zn2+, respectively). Atomic force microscopy analyses suggested that the metal elements were adsorbed onto the biosorbent surface via electrostatic interaction. X-ray photoelectron spectroscopy analyses indicated the presence of complexation(between –NH2,-CN and metal ions) and ion-exchange(between –COOH and metal ions). The adsorption mechanisms could be the combined action of electrostatic interaction, complexation and ion-exchange between functional groups and metal ions.
文摘K9 glass is a common material of optics and micro system, with cheaper price and better processing function. With the development of the optical and micro system, the technique of manufacturing micron/nanometer dimensions microstructure and micro device on K9 glass has used in photoelectron, microwave and diffraction optics device et al The coarse surface of optics and microwave device can cause the light scattering and signal losing, and the function of device reduced. So the supersmooth surface plays an important role in optic and microwave device.
基金financially supported by the National Natural Science Foundation of China(Nos.U23A20102,52202375,22469001,22261142666,and 22366028)the Natural Science Foundation of Hubei Province of China(No.2022CFA001)。
文摘Hydrogen peroxide(H_(2)O_(2))is extensively used in medical disinfection,water treatment,and environmental protection.To achieve the green synthesis of H_(2)O_(2),g-C_(3)N_(4)-based photocatalysis is an effective strategy and shows great potential.Nonetheless,single g-C_(3)N_(4)exhibits poor photocatalytic properties due to severe photogenerated charge recombination.To solve this challenge,this work enables F^(−)adsorption on the surface of g-C_(3)N_(4)nanotubes in solution driven by Coulomb forces through pH adjustment and the addition of NH4F.The photocatalytic H_(2)O_(2)production rate of the optimal F^(−)-decorated g-C_(3)N_(4)is three times higher than that of pure g-C_(3)N_(4),attributing to the synergistic effect of F^(−)and H^(+).Quenching experiments verify that the photocatalytic H_(2)O_(2)production process of CNF is a two-electron oxygen reduction process.Electron quenching dynamics of g-C_(3)N_(4)and CNF are revealed by femtosecond transient absorption spectroscopy(fs-TAS).Compared to pure g-C_(3)N_(4),CNF has an additional ultrashort lifetime(3.1 ps)representing the interfacial electron transfer from the conduction band of g-C_(3)N_(4)to F^(−).In situ fs-TAS results show that the interfacial electron transfer rate and electron utilization efficiency are respectively increased from 1.5×10^(8)s^(–1)and 19%in air to 5.0×10^(8)s^(-1)and 45%in O_(2) atmosphere with ethanol sacrificial agent.Hence,the O_(2),H^(+),and photogenerated electrons are key substances in the H_(2)O_(2)evolution.This work has elucidated the dynamics mechanism of enhanced photocatalytic performance of F^(−)-modified g-C_(3)N_(4)and provides inspiration for the design and synthesis of efficient g-C_(3)N_(4)-based photocatalysts.
基金Project supported by the National Committee for Antarctic Research of China, the State Commission of Science and Technology of China, and the National Natural Science Foundation of China.
文摘There was a complete set of cross-polar distributive data of nitrate (NO<sub>3</sub><sup>-</sup>) content inthe surface snow of the Antarctic ice sheet along the route of the 1990 International Trans-Antarctica Expedition. We have shown the profiles of nitrate concentration and flux alongthe route as the plots associated with geomagnetic latitude for further analysis on the