This paper presents a topology optimization approach for the surface flows on variable design domains.Via this approach,the matching between the pattern of a surface flow and the 2-manifold used to define the pattern ...This paper presents a topology optimization approach for the surface flows on variable design domains.Via this approach,the matching between the pattern of a surface flow and the 2-manifold used to define the pattern can be optimized,where the 2-manifold is implicitly defined on another fixed 2-manifold named as the base manifold.The fiber bundle topology optimization approach is developed based on the description of the topological structure of the surface flow by using the differential geometry concept of the fiber bundle.The material distribution method is used to achieve the evolution of the pattern of the surface flow.The evolution of the implicit 2-manifold is realized via a homeomorphous map.The design variable of the pattern of the surface flow and that of the implicit 2-manifold are regularized by two sequentially implemented surface-PDE filters.The two surface-PDE filters are coupled,because they are defined on the implicit 2-manifold and base manifold,respectively.The surface Navier-Stokes equations,defined on the implicit 2-manifold,are used to describe the surface flow.The fiber bundle topology optimization problem is analyzed using the continuous adjoint method implemented on the first-order Sobolev space.Several numerical examples have been provided to demonstrate this approach,where the combination of the viscous dissipation and pressure drop is used as the design objective.展开更多
[Objective] The effect of baffled surface flow wetlands on water purification was studied in order to provide a reference for the ecological restoration of polluted river.[Method] Contents of some indexes like DO,TN,T...[Objective] The effect of baffled surface flow wetlands on water purification was studied in order to provide a reference for the ecological restoration of polluted river.[Method] Contents of some indexes like DO,TN,TP,NH+4-N,CODCr,SS,SD,etc.were determined in the band baffled surface flow wetlands with total area of 7 400 m2 at JiaLu riverside.[Result] Baffled surface flow wetlands could improve the effluent quality significantly,could enhance transparency and dissolved oxygen content and also could decrease SS content.The removal rate of TN was kept at more than 73% in summer and decreased to 23% in early winter;The removal rate of TP was little influenced by temperature,and it was kept at more than 77% in summer and still kept at more than 69% in autumn and winter;The removal rate of NH+4-N was kept at more than 83% in summer and decreased slightly in autumn and winter,but still kept at more than 75%;The removal rate of CODCr ranged from 14% to 50%.[Conclusion] Baffled surface flow wetlands could effectively improve the purification effect of surface flow wetlands,which is a feasible way for ecological restoration.展开更多
A numerical model for shallow water flow has been developed based on the unsteady Reynolds-averaged Navier-Stokes equations with the hydrodynamic pressure instead of hydrostatic pressure assumption. The equations are ...A numerical model for shallow water flow has been developed based on the unsteady Reynolds-averaged Navier-Stokes equations with the hydrodynamic pressure instead of hydrostatic pressure assumption. The equations are transformed into the σ-coordinate system and the eddy viscosity is calculated with the standard k-ε turbulence model. The control volume method is used to discrete the equations, and the boundary conditions at the bed for shallow water models only include vertical diffusion terms expressed with wall functions. And the semi-implicit method for pressure linked equation arithmetic is adopted to solve the equations. The model is applied to the 2D vertical plane flow of a current over two steep-sided trenches for which experiment data are available for comparison and good agreement is obtained. And the model is used to predicting the flow in a channel with a steep-sided submerged breakwater at the bottom, and the streamline is drawn.展开更多
A constrained interpolation profile CIP-based numerical tank is developed to simulate violent free surface flows.The numerical simulation is performed by the CIP-based Cartesian grid method,which is described in the p...A constrained interpolation profile CIP-based numerical tank is developed to simulate violent free surface flows.The numerical simulation is performed by the CIP-based Cartesian grid method,which is described in the present paper.The tangent of hyperbola for interface capturing(THINC) scheme is applied for capturing complex free surfaces.The new model is capable of simulating a flow with violently varied free surface.A series of computations are conducted to assess the developed algorithm and its versatility.These tests include the collapse of water column with and without an obstacle,sloshing in a fixed tank,the generation of regular waves in a tank,the generation of extreme waves in a tank.Excellent agreements are obtained when numerical results are compared with available analytical,experimental,and other numerical results.展开更多
In order to accurately simulate strong three-dimensional (3-D) free surface flows and sediment transport, the fully 3- D non-hydrostatic pressure models are developed based on the incompressible Navier-Stokes equati...In order to accurately simulate strong three-dimensional (3-D) free surface flows and sediment transport, the fully 3- D non-hydrostatic pressure models are developed based on the incompressible Navier-Stokes equations and convection-diffusion equation of sediment concentration with the mixing triangle and quadrilateral grids. The governing equations are discretized with the unstructured finite volume method in order to provide conservation properties of mass and momentum, and flexibility with practical application. It is shown that it is first-order accurate on nonuniform plane two-dimensional (2-D) grids and second-order accurate on uniform plane grids. A third-order approximation of the vertical velocity at the top-layer is applied. In such a way, free surface zero stress boundary condition is satisfied maturely, and very few vertical layers are needed to give an accurate solution even for complex discontinuous flow and short wave simulation. The model is applied to four examples to simulate strong 3-D free surface flows and sediment transport where non-hydrostatic pressures have a considerable effect on the velocity field. The newly developed model is verified against analytical solutions with an excellent agreement.展开更多
It is known that free-surface flows with small slopes can be described by classical lubrication theory.By replacing the assumption of quasi-parallel flows with local wedge flows,the classical lubrication theory has be...It is known that free-surface flows with small slopes can be described by classical lubrication theory.By replacing the assumption of quasi-parallel flows with local wedge flows,the classical lubrication theory has been generalized to the situation with finite surface slopes and vanishing fluxes,e.g.,steady capillary flows with moving contact lines.In this work,this theory is further extended by imposing the contribution of finite fluxes,which can be modeled by a source/sink flow in a wedge.The resulting lubrication equation is used to investigate the surface morphologies observed in dip coating of an inclined plate,including the Landau-Levich-Derjaguin film,dimple and capillary shock.Dependence of these structures on the inclination angle and relative speed with respect to the plate is discussed in detail.Numerical solutions of the lubrication equation agree well with available asymptotic theory.展开更多
The formation of mesoscale eddies and the structure of the surface flow field in the Luzon Strait area were examined using in-situ CTD data, Argo float data, and multi-satellite remote sensing data collected from May ...The formation of mesoscale eddies and the structure of the surface flow field in the Luzon Strait area were examined using in-situ CTD data, Argo float data, and multi-satellite remote sensing data collected from May to August 2009. The results show that vigorous water exchange between Kuroshio water and South China Sea (SCS) water began to emerge over the 200 m water column throughout the strait. Based on an objective definition of surface currents, float A69 tracked an anti-cyclonic eddy southwest of Taiwan Island under a Lagrangian current measurement. The salinity inside the anti-cyclonic eddy was higher than in typical SCS water but lower than in Kuroshio mainstream water, indicating that this eddy was induced by Kuroshio frontal intrusion through the Luzun Strait and into the SCS. From hydrographic data, we propose that continuous horizontal diffusion with high-salinity characteristics in the subsurface layer could extend to 119°E or even further west. The high-temperature filament, large positive sea level anomaly and clockwise geostrophic current all confirmed the existence of this warm eddy in May and June. A strongly negative wind stress curl maintained the eddy until it died. The surface flow field during July and August was rather complicated. Float A83 described an east-west orientated shuttle run in the 20°N section that was not reported by previous studies. At the same time, float A80 indicated a Kuroshio bend into the north-central region of Luzon Strait but it did not cross 120.5°E. The water mass rejoining the Kuroshio mainstream from the southern tip of Taiwan Island was less saline, indicating an entrainment of water from SCS by the Kuroshio bend.展开更多
The construction of an integrated numerical model is presented in this paper to deal with the interactions between vegetated surface and saturated subsurface flows. A numerical model is built by integrating the previo...The construction of an integrated numerical model is presented in this paper to deal with the interactions between vegetated surface and saturated subsurface flows. A numerical model is built by integrating the previously developed quasi-three-dimensional (Q3D) vegetated surface flow model with a two-dimensional (2D) saturated groundwater flow model. The vegetated surface flow model is constructed by coupling the explicit finite volume solution of 2D shallow water equations (SWEs) with the implicit finite difference solution of Navier-Stokes equations (NSEs) for vertical velocity distribution. The subsurface model is based on the explicit finite volume solution of 2D saturated groundwater flow equations (SGFEs). The ground and vegetated surface water interaction is achieved by introducing source-sink terms into the continuity equations. Two solutions are tightly coupled in a single code. The integrated model is applied to four test cases, and the results are satisfactory.展开更多
Simulating turbulent liquids with breaking waves and splashes is among the most desired features in fluid animation. Lagrangian methods such as Smoothed Particle Hydrodynamics method (SPH) are a promising way to captu...Simulating turbulent liquids with breaking waves and splashes is among the most desired features in fluid animation. Lagrangian methods such as Smoothed Particle Hydrodynamics method (SPH) are a promising way to capture such properties. However, the Particle-based liquid surface simulation has not been applied very well since its consumption is way too large. This paper derives the governing equations in SPH approaches and parallelizes the dynamics-based surface simulation with the MapReduce program models which apply the SPH approach in Cloud Computing. Compared to the serial methods, this approach obtained a 3.11 times speedup on the experimental platform.展开更多
A higher-efficient three-dimensional non-hydrostatic model is developed to simulate small amplitude free surface flows based on a staggered unstructured grid. In this model, a fractional step algorithm is adopted to s...A higher-efficient three-dimensional non-hydrostatic model is developed to simulate small amplitude free surface flows based on a staggered unstructured grid. In this model, a fractional step algorithm is adopted to solve the Navier-Stokes equations in two major steps. A top-layer pressure method is proposed to minimize the number of vertical layers and subsequently the computational cost. Three classical examples of small amplitude free surface flows are used to demonstrate the capability and efficiency of the model. The satisfactory results demonstrated the capability and efficiency of modelling a range of small amplitude free surface flows with only a small number of vertical layers.展开更多
A staggered finite-volume technique for non-hydrostatic, small amplitude free surface flow governed by the incompressible Navier-Stokes equations is presented there is a proper balance between accuracy and computing t...A staggered finite-volume technique for non-hydrostatic, small amplitude free surface flow governed by the incompressible Navier-Stokes equations is presented there is a proper balance between accuracy and computing time. The advection and horizontal diffusion terms in the momentum equation are discretized by an integral interpolation method on the orthogonal unstructured staggered mesh and, while it has the attractive property of being conservative. The pressure-correction algorithm is employed for the non-hydrostatic pressure in order to achieve second-order temporal accuracy. A conservative scalar transport algorithm is also applied to discretize k - c equations in this model. The eddy viscosity is calculated from the k-c turbulent model. The resulting model is mass and momentum conservative. The model is verified by two examples to simulate unsteady small amplitude free surface flows where non-hydrostatic pressures have a considerable effect on the velocity field, and then applied to simulate the tidal flow in the Bohai Sea.展开更多
The free surface flow generated by twin-cylinders in forced motion submerged beneath the free surface is studied based on the boundary element method. Two relative locations, namely, horizontal and vertical, are exami...The free surface flow generated by twin-cylinders in forced motion submerged beneath the free surface is studied based on the boundary element method. Two relative locations, namely, horizontal and vertical, are examined for the twin cylinders. In both cases, the twin cylinders are starting from rest and ultimately moving with the same constant speed through an accelerating process. Assuming that the fluid is inviscid and incompressible and the flow to be irrotational, the integral Laplace equation can be discretized based on the boundary element method. Fully-nonlinear boundary conditions are satisfied on the unknown free surface and the moving body surface. The free surface is traced by a Lagrangian technique. Regriding and remeshing are applied, which is crucial to quality of the numerical results. Single circular cylinder and elliptical cylinder are calculated by linear method and fully nonlinear method for accuracy checking and then fully nonlinear method is conducted on the twin cylinder cases, respectively. The generated wave elevation and the resultant force are analysed to discuss the influence of the gap between the two cylinders as well as the water depth. It is found that no matter the kind of distribution, when the moving cylinders are close to each other, they suffer hydrodynamic force with large absolute value in the direction of motion. The trend of force varying with the increase of gap can be clearly seen from numerical analysis. The vertically distributed twin cylinders seem to attract with each other while the horizontally distributed twin cylinders are opposite when they are close to each other.展开更多
In order to investigate the feasibility of pretreating the micro-polluted Yellow River raw water by constructed wetland, an experiment was conducted using a surface flow constructed wetland with composite plant bed. T...In order to investigate the feasibility of pretreating the micro-polluted Yellow River raw water by constructed wetland, an experiment was conducted using a surface flow constructed wetland with composite plant bed. The contamination removal efficiency and their trends in the wetland treatment system were studied under different hydraulic loading rates(HLR). The contamination removal efficiencies were compared according to the seasonal change under optimum HLR. The result shows that in the same season, under different hydraulic loadings ranging from 2 to 6 m3/(m2·d) at the same period, the best HLR is 4 m3/(m2·d) in the experimental system. The average removal rates of COD, TN, ammoniacal nitrogen(NH4+-N), and TP in the constructed wetland are 38.37%, 45.97%, 39.86% and 41.69%, respectively. According to China Standard for Surface Water Resources (GB3838-2002), mean effluent of COD, TN, NH4+-N and TP can nearly reach Grade Ⅲ, GradeⅤ, GradeⅠand GradeⅠ, respectively. Furthermore, treatment efficiency of the system in summer is obvious higher than that in other seasons. The expenditure of constructing the constructed wetland with the average treating capacity of 176 m3/d and lifetime of 20 years is 17075.00 RMB. The average disposal cost is summed up to 0.17 RMB/m3, which shows that the pretreatment of the micro-polluted Yellow River raw water by constructed wetland is feasible.展开更多
In this paper,we present a conservative semi-Lagrangian scheme designed for the numeri-cal solution of 3D hydrostatic free surface flows involving sediment transport on unstruc-tured Voronoi meshes.A high-order recons...In this paper,we present a conservative semi-Lagrangian scheme designed for the numeri-cal solution of 3D hydrostatic free surface flows involving sediment transport on unstruc-tured Voronoi meshes.A high-order reconstruction procedure is employed for obtaining a piecewise polynomial representation of the velocity field and sediment concentration within each control volume.This is subsequently exploited for the numerical integration of the Lagrangian trajectories needed for the discretization of the nonlinear convective and viscous terms.The presented method is fully conservative by construction,since the transported quantity or the vector field is integrated for each cell over the deformed vol-ume obtained at the foot of the characteristics that arises from all the vertexes defining the computational element.The semi-Lagrangian approach allows the numerical scheme to be unconditionally stable for what concerns the advection part of the governing equations.Furthermore,a semi-implicit discretization permits to relax the time step restriction due to the acoustic impedance,hence yielding a stability condition which depends only on the explicit discretization of the viscous terms.A decoupled approach is then employed for the hydrostatic fluid solver and the transport of suspended sediment,which is assumed to be passive.The accuracy and the robustness of the resulting conservative semi-Lagrangian scheme are assessed through a suite of test cases and compared against the analytical solu-tion whenever is known.The new numerical scheme can reach up to fourth order of accu-racy on general orthogonal meshes composed by Voronoi polygons.展开更多
[Objective] The research aimed to study winter operation process of the surface flow constructed wetland in "rianjin area. [Method] In view of climate characteristics in Tianjin, by the way of running under the ice, ...[Objective] The research aimed to study winter operation process of the surface flow constructed wetland in "rianjin area. [Method] In view of climate characteristics in Tianjin, by the way of running under the ice, winter operation experiment of the surface flow constructed wetland in Tianjin was conducted, with the expectation to get some useful process parameters to run such systems in North China in winter. [ Result] Although purification effect of the sewage by surface flow constructed wetland in winter was worse than that in other seasons ( average reduction of about 20%), surface flow constructed wetland running under the ice was feasible in Tianjin area. When surface flow constructed wetland in North China ran under ice in winter, it was suggested that the outlet must be located in a low position to prevent to be completely frozen, and running water depth should not be less than 50 -60 cm. The hydraulic load could be raised on the basis of reflux, and hydraulic retention time should maintain less than 4 d to keep water-soil interface not freezing. Inlet water depth should be increased as much as possible to improve temperature in the system. V Conclusion1 The research could provide reference for promotion and application of the surface flow constructed wetland in North China.展开更多
The three-dimensional Navier-Stokes equations were solved with the fractional step method where the hydrostatic pressure component was determined first, while the non-hydrostatic component of the pressure was computed...The three-dimensional Navier-Stokes equations were solved with the fractional step method where the hydrostatic pressure component was determined first, while the non-hydrostatic component of the pressure was computed from the pressure Poisson equation in which the coefficient matrix is positive definite and symmetric. The eddy viscosity was calculated from the efficient k-ε turbulence model. The resulting model is computationally efficient and unrestricted to the CFL condition. Computations with and without hydrostatic approximation were compared for the same cases to test the validity of the conventional hydrostatic pressure assumption. The model was verified against analytical solutions and experimental data, with excellent agreement.展开更多
A two-dimensional hybrid numerical model, FEM-LES-VOF, for free surface flows is proposed in this study, which is a combination of three-step Taylor-Galerkin finite element method, large eddy simulation with the Smago...A two-dimensional hybrid numerical model, FEM-LES-VOF, for free surface flows is proposed in this study, which is a combination of three-step Taylor-Galerkin finite element method, large eddy simulation with the Smagorinsky sub-grid model and Computational Lagrangian-Eulerian Advection Remap Volume of Fluid (CLEAR-VOF) method. The present FEM-LES-VOF model allows the fluid flows involving violent free surface and turbulence subject to complex boundary configuration to be simulated in a straightforward manner with unstructured grids in the context of finite element method. Numerical simulation of a benchmark problem of dam breaking is conducted to verify the present model. Comparisons with experimental data show that the proposed model works well and is capable of producing reliable predictions for free surface flows. Using the FEM-LES-VOF model, the free surface flow over a semi-circular obstruction is investigated. The simulation results are compared with available experimental and numerical results. Good performance of the FEM-LES-VOF model is demonstrated again. Moreover, the numerical studies show that the turbulence plays an important role in the evolution of free surface when the reflected wave propagates upstream during the fluid flow passing the submerged obstacle.展开更多
An overlapping moving particle semi-implicit (MPS) method is applied for 3-D free surface flows based on our in-house particle solver MLParticle-SJTU. In this method, the coarse particles are distributed in the whol...An overlapping moving particle semi-implicit (MPS) method is applied for 3-D free surface flows based on our in-house particle solver MLParticle-SJTU. In this method, the coarse particles are distributed in the whole domain and the fine particles are distributed in the local region of interest at the same time. With the fine particles being generated and removed dynamically, an algorithm of generating particles based on the 3-D overlapping volume is developed. Then, a 3-D dam break flow with an obstacle is simulated to validate the overlapping MPS. The qualitative comparison among experimental data and the results obtained by the VOF and the MPS shows that the shape of the free surface obtained by the overlapping MPS is more accurate than that obtained by the UNI-coarse and close to that obtained by the UNI-fine in the overlapping domain. In addition, the water height and the impact pressure at Pi are also in an overall agreement with experimental data. Finally, the CPU time required by the overlapping MPS is about half of that required by the UNl-fine.展开更多
A numerical simulation model based on an open source Computational Fluid Dynamics (CFD) package-Open Field Operation and Manipulation (OpenFOAM) has been developed to study highly nonlinear steady and unsteady fre...A numerical simulation model based on an open source Computational Fluid Dynamics (CFD) package-Open Field Operation and Manipulation (OpenFOAM) has been developed to study highly nonlinear steady and unsteady free surface flows. A two-fluid formulation is used in this model and the free surface is captured using the classical Volume Of Fluid (VOF) method. The incompressible Euler/Navier-Stokes equations are solved using a finite volume method on unstructured polyhedral cells. Both steady and unsteady free surface flows are simulated, which include: (1) a submerged NACA0012 2-D hydrofoil moving at a constant speed, (2) the Wigley hull moving at a constant speed, (3) numerical wave tank, (4) green water overtopping a fixed 2-D deck, (5) green water impact on a fixed 3-D body without or with a vertical wall on the deck. The numerical results obtained have been compared with the experimental measurements and other CFD results, and the agreements are satisfactory. The present numerical model can thus be used to simulate highly nonlinear steady and unsteady free surface flows.展开更多
A high-resolution finite element scheme is developed for the computation offree surface problems. The present higher-order accuracy scheme is obtained through the introductionof the difference of almost equal amount o...A high-resolution finite element scheme is developed for the computation offree surface problems. The present higher-order accuracy scheme is obtained through the introductionof the difference of almost equal amount of diffusion and antidiffusion, where the antidiffusion isformulated as approximation to diffusion making use of consecutive gradient. The non-oscillatoryproperties are secured by limiters to preserve positivity constraints. The implement of the schemeis based on semi-discrete form and can be considered as reconstruction of the coefficient matrix ofalgebraic system, so, it can he conveniently used by either structured or unstructured meshes. Thepower and flexibility of the present high resolution VOF-FEM approach is validated by examplesincluding convective transport, dam breaking flow, and stilling basin flow in hydraulic engineering.展开更多
基金Supported by National Natural Science Foundation of China (Grant No.51875545)Innovation Grant of Changchun Institute of Optics+2 种基金Fine Mechanics and Physics (CIOMP)CAS Project for Young Scientists in Basic Research of China (Grant No.YSBR-066)Science and Technology Development Program of Jilin Province of China (Grant No.SKL202302020)。
文摘This paper presents a topology optimization approach for the surface flows on variable design domains.Via this approach,the matching between the pattern of a surface flow and the 2-manifold used to define the pattern can be optimized,where the 2-manifold is implicitly defined on another fixed 2-manifold named as the base manifold.The fiber bundle topology optimization approach is developed based on the description of the topological structure of the surface flow by using the differential geometry concept of the fiber bundle.The material distribution method is used to achieve the evolution of the pattern of the surface flow.The evolution of the implicit 2-manifold is realized via a homeomorphous map.The design variable of the pattern of the surface flow and that of the implicit 2-manifold are regularized by two sequentially implemented surface-PDE filters.The two surface-PDE filters are coupled,because they are defined on the implicit 2-manifold and base manifold,respectively.The surface Navier-Stokes equations,defined on the implicit 2-manifold,are used to describe the surface flow.The fiber bundle topology optimization problem is analyzed using the continuous adjoint method implemented on the first-order Sobolev space.Several numerical examples have been provided to demonstrate this approach,where the combination of the viscous dissipation and pressure drop is used as the design objective.
基金Supported by Deep Purification Technology Project of Mixed Mode Wetland for Sewage Plant Waster Water in Dryland(2006AA6Z325)~~
文摘[Objective] The effect of baffled surface flow wetlands on water purification was studied in order to provide a reference for the ecological restoration of polluted river.[Method] Contents of some indexes like DO,TN,TP,NH+4-N,CODCr,SS,SD,etc.were determined in the band baffled surface flow wetlands with total area of 7 400 m2 at JiaLu riverside.[Result] Baffled surface flow wetlands could improve the effluent quality significantly,could enhance transparency and dissolved oxygen content and also could decrease SS content.The removal rate of TN was kept at more than 73% in summer and decreased to 23% in early winter;The removal rate of TP was little influenced by temperature,and it was kept at more than 77% in summer and still kept at more than 69% in autumn and winter;The removal rate of NH+4-N was kept at more than 83% in summer and decreased slightly in autumn and winter,but still kept at more than 75%;The removal rate of CODCr ranged from 14% to 50%.[Conclusion] Baffled surface flow wetlands could effectively improve the purification effect of surface flow wetlands,which is a feasible way for ecological restoration.
文摘A numerical model for shallow water flow has been developed based on the unsteady Reynolds-averaged Navier-Stokes equations with the hydrodynamic pressure instead of hydrostatic pressure assumption. The equations are transformed into the σ-coordinate system and the eddy viscosity is calculated with the standard k-ε turbulence model. The control volume method is used to discrete the equations, and the boundary conditions at the bed for shallow water models only include vertical diffusion terms expressed with wall functions. And the semi-implicit method for pressure linked equation arithmetic is adopted to solve the equations. The model is applied to the 2D vertical plane flow of a current over two steep-sided trenches for which experiment data are available for comparison and good agreement is obtained. And the model is used to predicting the flow in a channel with a steep-sided submerged breakwater at the bottom, and the streamline is drawn.
基金supported by the Fundamental Research Funds for the Central Universities
文摘A constrained interpolation profile CIP-based numerical tank is developed to simulate violent free surface flows.The numerical simulation is performed by the CIP-based Cartesian grid method,which is described in the present paper.The tangent of hyperbola for interface capturing(THINC) scheme is applied for capturing complex free surfaces.The new model is capable of simulating a flow with violently varied free surface.A series of computations are conducted to assess the developed algorithm and its versatility.These tests include the collapse of water column with and without an obstacle,sloshing in a fixed tank,the generation of regular waves in a tank,the generation of extreme waves in a tank.Excellent agreements are obtained when numerical results are compared with available analytical,experimental,and other numerical results.
基金financially supported by the Science and Technology Project of the Ministry of Transport(Grant No.2013328352570)
文摘In order to accurately simulate strong three-dimensional (3-D) free surface flows and sediment transport, the fully 3- D non-hydrostatic pressure models are developed based on the incompressible Navier-Stokes equations and convection-diffusion equation of sediment concentration with the mixing triangle and quadrilateral grids. The governing equations are discretized with the unstructured finite volume method in order to provide conservation properties of mass and momentum, and flexibility with practical application. It is shown that it is first-order accurate on nonuniform plane two-dimensional (2-D) grids and second-order accurate on uniform plane grids. A third-order approximation of the vertical velocity at the top-layer is applied. In such a way, free surface zero stress boundary condition is satisfied maturely, and very few vertical layers are needed to give an accurate solution even for complex discontinuous flow and short wave simulation. The model is applied to four examples to simulate strong 3-D free surface flows and sediment transport where non-hydrostatic pressures have a considerable effect on the velocity field. The newly developed model is verified against analytical solutions with an excellent agreement.
基金the National Natural Science Foundation of China(Grant Nos.11972340,11932019,and 11621202).
文摘It is known that free-surface flows with small slopes can be described by classical lubrication theory.By replacing the assumption of quasi-parallel flows with local wedge flows,the classical lubrication theory has been generalized to the situation with finite surface slopes and vanishing fluxes,e.g.,steady capillary flows with moving contact lines.In this work,this theory is further extended by imposing the contribution of finite fluxes,which can be modeled by a source/sink flow in a wedge.The resulting lubrication equation is used to investigate the surface morphologies observed in dip coating of an inclined plate,including the Landau-Levich-Derjaguin film,dimple and capillary shock.Dependence of these structures on the inclination angle and relative speed with respect to the plate is discussed in detail.Numerical solutions of the lubrication equation agree well with available asymptotic theory.
基金Supported by the National Natural Science Foundation of China(Nos.41306019,U1133001)the open grant of LTO SCSIO/CAS(No.LTO201305)+4 种基金the Sanya and CAS Cooperation Project(No.2013YD77)the NSFC Innovative Group(No.41421005)the NSFC-Shandong Joint Fund for Marine Science Research Centers(No.U1406401)the Pilot Strategic Project of CAS(No.XDA11020101)the Knowledge Innovation Engineering Frontier Project of SIDSSE(No.SIDSSE-201205)
文摘The formation of mesoscale eddies and the structure of the surface flow field in the Luzon Strait area were examined using in-situ CTD data, Argo float data, and multi-satellite remote sensing data collected from May to August 2009. The results show that vigorous water exchange between Kuroshio water and South China Sea (SCS) water began to emerge over the 200 m water column throughout the strait. Based on an objective definition of surface currents, float A69 tracked an anti-cyclonic eddy southwest of Taiwan Island under a Lagrangian current measurement. The salinity inside the anti-cyclonic eddy was higher than in typical SCS water but lower than in Kuroshio mainstream water, indicating that this eddy was induced by Kuroshio frontal intrusion through the Luzun Strait and into the SCS. From hydrographic data, we propose that continuous horizontal diffusion with high-salinity characteristics in the subsurface layer could extend to 119°E or even further west. The high-temperature filament, large positive sea level anomaly and clockwise geostrophic current all confirmed the existence of this warm eddy in May and June. A strongly negative wind stress curl maintained the eddy until it died. The surface flow field during July and August was rather complicated. Float A83 described an east-west orientated shuttle run in the 20°N section that was not reported by previous studies. At the same time, float A80 indicated a Kuroshio bend into the north-central region of Luzon Strait but it did not cross 120.5°E. The water mass rejoining the Kuroshio mainstream from the southern tip of Taiwan Island was less saline, indicating an entrainment of water from SCS by the Kuroshio bend.
文摘The construction of an integrated numerical model is presented in this paper to deal with the interactions between vegetated surface and saturated subsurface flows. A numerical model is built by integrating the previously developed quasi-three-dimensional (Q3D) vegetated surface flow model with a two-dimensional (2D) saturated groundwater flow model. The vegetated surface flow model is constructed by coupling the explicit finite volume solution of 2D shallow water equations (SWEs) with the implicit finite difference solution of Navier-Stokes equations (NSEs) for vertical velocity distribution. The subsurface model is based on the explicit finite volume solution of 2D saturated groundwater flow equations (SGFEs). The ground and vegetated surface water interaction is achieved by introducing source-sink terms into the continuity equations. Two solutions are tightly coupled in a single code. The integrated model is applied to four test cases, and the results are satisfactory.
基金supported by National High Technical Research and Development Program of China (863 program) under GrantNo.2009AA062801National Natural Science Foundation of China under Grant No.60973063+2 种基金Beijing Natural Science Foundation of China under Grant No.4092028China Fundamental Research Funds for the Central Universities under Grant No.FRF-TP-09-016BNew Century Personnel Plan for the Ministry of Education of China under Grant No.NCET-10-0221
文摘Simulating turbulent liquids with breaking waves and splashes is among the most desired features in fluid animation. Lagrangian methods such as Smoothed Particle Hydrodynamics method (SPH) are a promising way to capture such properties. However, the Particle-based liquid surface simulation has not been applied very well since its consumption is way too large. This paper derives the governing equations in SPH approaches and parallelizes the dynamics-based surface simulation with the MapReduce program models which apply the SPH approach in Cloud Computing. Compared to the serial methods, this approach obtained a 3.11 times speedup on the experimental platform.
基金financially supported by the Science and Technology Project of the Ministry of Transport(Grant No.2013328352570)partly supported by the National Natural Science Foundation of China(Grant No.51209112)
文摘A higher-efficient three-dimensional non-hydrostatic model is developed to simulate small amplitude free surface flows based on a staggered unstructured grid. In this model, a fractional step algorithm is adopted to solve the Navier-Stokes equations in two major steps. A top-layer pressure method is proposed to minimize the number of vertical layers and subsequently the computational cost. Three classical examples of small amplitude free surface flows are used to demonstrate the capability and efficiency of the model. The satisfactory results demonstrated the capability and efficiency of modelling a range of small amplitude free surface flows with only a small number of vertical layers.
基金financially supported by the Science and Technology Project of the Ministry of Transport (Grant No. 2011329224170)
文摘A staggered finite-volume technique for non-hydrostatic, small amplitude free surface flow governed by the incompressible Navier-Stokes equations is presented there is a proper balance between accuracy and computing time. The advection and horizontal diffusion terms in the momentum equation are discretized by an integral interpolation method on the orthogonal unstructured staggered mesh and, while it has the attractive property of being conservative. The pressure-correction algorithm is employed for the non-hydrostatic pressure in order to achieve second-order temporal accuracy. A conservative scalar transport algorithm is also applied to discretize k - c equations in this model. The eddy viscosity is calculated from the k-c turbulent model. The resulting model is mass and momentum conservative. The model is verified by two examples to simulate unsteady small amplitude free surface flows where non-hydrostatic pressures have a considerable effect on the velocity field, and then applied to simulate the tidal flow in the Bohai Sea.
基金Foundation item: Supported by the Lloyd's Register Foundation, the Fundamental Research Funds for the Central Universities (Gram No. HEUCF140115), the National Natural Science Foundation of China (11102048, 11302057), the Research Funds for State Key Laboratory of Ocean Engineering in Shanghai Jiao Tong University (Grant No. 1310), and the Specialized Research Fund for the Doctoral Program of Higher Education of China (20132304120028).
文摘The free surface flow generated by twin-cylinders in forced motion submerged beneath the free surface is studied based on the boundary element method. Two relative locations, namely, horizontal and vertical, are examined for the twin cylinders. In both cases, the twin cylinders are starting from rest and ultimately moving with the same constant speed through an accelerating process. Assuming that the fluid is inviscid and incompressible and the flow to be irrotational, the integral Laplace equation can be discretized based on the boundary element method. Fully-nonlinear boundary conditions are satisfied on the unknown free surface and the moving body surface. The free surface is traced by a Lagrangian technique. Regriding and remeshing are applied, which is crucial to quality of the numerical results. Single circular cylinder and elliptical cylinder are calculated by linear method and fully nonlinear method for accuracy checking and then fully nonlinear method is conducted on the twin cylinder cases, respectively. The generated wave elevation and the resultant force are analysed to discuss the influence of the gap between the two cylinders as well as the water depth. It is found that no matter the kind of distribution, when the moving cylinders are close to each other, they suffer hydrodynamic force with large absolute value in the direction of motion. The trend of force varying with the increase of gap can be clearly seen from numerical analysis. The vertically distributed twin cylinders seem to attract with each other while the horizontally distributed twin cylinders are opposite when they are close to each other.
基金the National High Technology Research and Development Program of China(863 Program)(Grant No.2006AA06Z303).
文摘In order to investigate the feasibility of pretreating the micro-polluted Yellow River raw water by constructed wetland, an experiment was conducted using a surface flow constructed wetland with composite plant bed. The contamination removal efficiency and their trends in the wetland treatment system were studied under different hydraulic loading rates(HLR). The contamination removal efficiencies were compared according to the seasonal change under optimum HLR. The result shows that in the same season, under different hydraulic loadings ranging from 2 to 6 m3/(m2·d) at the same period, the best HLR is 4 m3/(m2·d) in the experimental system. The average removal rates of COD, TN, ammoniacal nitrogen(NH4+-N), and TP in the constructed wetland are 38.37%, 45.97%, 39.86% and 41.69%, respectively. According to China Standard for Surface Water Resources (GB3838-2002), mean effluent of COD, TN, NH4+-N and TP can nearly reach Grade Ⅲ, GradeⅤ, GradeⅠand GradeⅠ, respectively. Furthermore, treatment efficiency of the system in summer is obvious higher than that in other seasons. The expenditure of constructing the constructed wetland with the average treating capacity of 176 m3/d and lifetime of 20 years is 17075.00 RMB. The average disposal cost is summed up to 0.17 RMB/m3, which shows that the pretreatment of the micro-polluted Yellow River raw water by constructed wetland is feasible.
基金support of MIUR-PRIN Project 2017,No.2017KKJP4X“Innovative numerical methods for evolutionary partial differential equations and applications”.
文摘In this paper,we present a conservative semi-Lagrangian scheme designed for the numeri-cal solution of 3D hydrostatic free surface flows involving sediment transport on unstruc-tured Voronoi meshes.A high-order reconstruction procedure is employed for obtaining a piecewise polynomial representation of the velocity field and sediment concentration within each control volume.This is subsequently exploited for the numerical integration of the Lagrangian trajectories needed for the discretization of the nonlinear convective and viscous terms.The presented method is fully conservative by construction,since the transported quantity or the vector field is integrated for each cell over the deformed vol-ume obtained at the foot of the characteristics that arises from all the vertexes defining the computational element.The semi-Lagrangian approach allows the numerical scheme to be unconditionally stable for what concerns the advection part of the governing equations.Furthermore,a semi-implicit discretization permits to relax the time step restriction due to the acoustic impedance,hence yielding a stability condition which depends only on the explicit discretization of the viscous terms.A decoupled approach is then employed for the hydrostatic fluid solver and the transport of suspended sediment,which is assumed to be passive.The accuracy and the robustness of the resulting conservative semi-Lagrangian scheme are assessed through a suite of test cases and compared against the analytical solu-tion whenever is known.The new numerical scheme can reach up to fourth order of accu-racy on general orthogonal meshes composed by Voronoi polygons.
基金Supported by Special Project of the Science Research in Public Service Industry,Ministry of Water Resources,China(2011-BH140002)
文摘[Objective] The research aimed to study winter operation process of the surface flow constructed wetland in "rianjin area. [Method] In view of climate characteristics in Tianjin, by the way of running under the ice, winter operation experiment of the surface flow constructed wetland in Tianjin was conducted, with the expectation to get some useful process parameters to run such systems in North China in winter. [ Result] Although purification effect of the sewage by surface flow constructed wetland in winter was worse than that in other seasons ( average reduction of about 20%), surface flow constructed wetland running under the ice was feasible in Tianjin area. When surface flow constructed wetland in North China ran under ice in winter, it was suggested that the outlet must be located in a low position to prevent to be completely frozen, and running water depth should not be less than 50 -60 cm. The hydraulic load could be raised on the basis of reflux, and hydraulic retention time should maintain less than 4 d to keep water-soil interface not freezing. Inlet water depth should be increased as much as possible to improve temperature in the system. V Conclusion1 The research could provide reference for promotion and application of the surface flow constructed wetland in North China.
文摘The three-dimensional Navier-Stokes equations were solved with the fractional step method where the hydrostatic pressure component was determined first, while the non-hydrostatic component of the pressure was computed from the pressure Poisson equation in which the coefficient matrix is positive definite and symmetric. The eddy viscosity was calculated from the efficient k-ε turbulence model. The resulting model is computationally efficient and unrestricted to the CFL condition. Computations with and without hydrostatic approximation were compared for the same cases to test the validity of the conventional hydrostatic pressure assumption. The model was verified against analytical solutions and experimental data, with excellent agreement.
基金the National Natural Science Foundation of China (Grant No. 50409015)the Program forChangjiang Scholars and Innovative Research Team inUniversity (Grant No. IRT0420) the 40th ChinaPostdoctoral Science Foundation
文摘A two-dimensional hybrid numerical model, FEM-LES-VOF, for free surface flows is proposed in this study, which is a combination of three-step Taylor-Galerkin finite element method, large eddy simulation with the Smagorinsky sub-grid model and Computational Lagrangian-Eulerian Advection Remap Volume of Fluid (CLEAR-VOF) method. The present FEM-LES-VOF model allows the fluid flows involving violent free surface and turbulence subject to complex boundary configuration to be simulated in a straightforward manner with unstructured grids in the context of finite element method. Numerical simulation of a benchmark problem of dam breaking is conducted to verify the present model. Comparisons with experimental data show that the proposed model works well and is capable of producing reliable predictions for free surface flows. Using the FEM-LES-VOF model, the free surface flow over a semi-circular obstruction is investigated. The simulation results are compared with available experimental and numerical results. Good performance of the FEM-LES-VOF model is demonstrated again. Moreover, the numerical studies show that the turbulence plays an important role in the evolution of free surface when the reflected wave propagates upstream during the fluid flow passing the submerged obstacle.
基金supported by the National Natural Science Foundation of China(Grant Nos.51379125,51490675,11432009 and 51579145)
文摘An overlapping moving particle semi-implicit (MPS) method is applied for 3-D free surface flows based on our in-house particle solver MLParticle-SJTU. In this method, the coarse particles are distributed in the whole domain and the fine particles are distributed in the local region of interest at the same time. With the fine particles being generated and removed dynamically, an algorithm of generating particles based on the 3-D overlapping volume is developed. Then, a 3-D dam break flow with an obstacle is simulated to validate the overlapping MPS. The qualitative comparison among experimental data and the results obtained by the VOF and the MPS shows that the shape of the free surface obtained by the overlapping MPS is more accurate than that obtained by the UNI-coarse and close to that obtained by the UNI-fine in the overlapping domain. In addition, the water height and the impact pressure at Pi are also in an overall agreement with experimental data. Finally, the CPU time required by the overlapping MPS is about half of that required by the UNl-fine.
基金supported by the National Natural Science Foundation of China (Grant Nos. 50739004, 11072154)the Foundation of State Key Laboratory of Ocean Engineering, Shanghai Jiao Tong University (Grant No. GKZD 010053-11)
文摘A numerical simulation model based on an open source Computational Fluid Dynamics (CFD) package-Open Field Operation and Manipulation (OpenFOAM) has been developed to study highly nonlinear steady and unsteady free surface flows. A two-fluid formulation is used in this model and the free surface is captured using the classical Volume Of Fluid (VOF) method. The incompressible Euler/Navier-Stokes equations are solved using a finite volume method on unstructured polyhedral cells. Both steady and unsteady free surface flows are simulated, which include: (1) a submerged NACA0012 2-D hydrofoil moving at a constant speed, (2) the Wigley hull moving at a constant speed, (3) numerical wave tank, (4) green water overtopping a fixed 2-D deck, (5) green water impact on a fixed 3-D body without or with a vertical wall on the deck. The numerical results obtained have been compared with the experimental measurements and other CFD results, and the agreements are satisfactory. The present numerical model can thus be used to simulate highly nonlinear steady and unsteady free surface flows.
文摘A high-resolution finite element scheme is developed for the computation offree surface problems. The present higher-order accuracy scheme is obtained through the introductionof the difference of almost equal amount of diffusion and antidiffusion, where the antidiffusion isformulated as approximation to diffusion making use of consecutive gradient. The non-oscillatoryproperties are secured by limiters to preserve positivity constraints. The implement of the schemeis based on semi-discrete form and can be considered as reconstruction of the coefficient matrix ofalgebraic system, so, it can he conveniently used by either structured or unstructured meshes. Thepower and flexibility of the present high resolution VOF-FEM approach is validated by examplesincluding convective transport, dam breaking flow, and stilling basin flow in hydraulic engineering.