The mechanism of the surface depression of the foam glass was studied. A method of powder sintering with plate glass as the raw material and carbon black as the foaming agent was adopted to investigate the influences ...The mechanism of the surface depression of the foam glass was studied. A method of powder sintering with plate glass as the raw material and carbon black as the foaming agent was adopted to investigate the influences of foaming temperature, soaking time, moisture content in the release agent, and flame preheating temperature on the surface depression of a foam glass blank. The results indicated that insufficient cooling rate and rapid foaming process that could not react synergistically with the surface tension and viscosity of the glass melt aroused the mismatching between the glass melt and the expansion or contraction of gas, resulting in upper surface depression of foam glass. Besides, the batch carbon black at high temperature reacted with residual water in advance to generate large amounts of gas and form the air space which could expand inside, leading to lower surface depression of foam glass.展开更多
This paper is concerned with the generation of gravity waves due to prescribed initial axisymmetric disturbances created at the surface of an ice sheet covering the ocean with a porous bottom.The ice cover is modeled ...This paper is concerned with the generation of gravity waves due to prescribed initial axisymmetric disturbances created at the surface of an ice sheet covering the ocean with a porous bottom.The ice cover is modeled as a thin elastic plate,and the bottom porosity is described by a real parameter.Using linear theory,the problem is formulated as an initial value problem for the velocity potential describing the motion.In the mathematical analysis,the Laplace and Hankel transform techniques have been used to obtain the depression of the ice-covered surface in the form of a multiple infnite integral.This integral is evaluated asymptotically by the method of stationary phase twice for a long time and a large distance from the origin.Simple numerical computations are performed to illustrate the efect of the ice-covered surface and bottom porosity on the surface elevation,phase velocity,and group velocity of the surface gravity waves.Mainly the far-feld behavior of the progressive waves is observed in two diferent cases,namely initial depression and an impulse concentrated at the origin.From graphical representations,it is clearly visible that the presence of ice cover and a porous bottom decreases the wave amplitude.Due to the porous bottom,the amplitude of phase velocity decreases,whereas the amplitude of group velocity increases.展开更多
This paper is concerned with the generation of waves due to initial disturbances at the upper surface of a two-layer fluid, as the upper layer is covered by an inertial surface and the lower layer extends infinitely d...This paper is concerned with the generation of waves due to initial disturbances at the upper surface of a two-layer fluid, as the upper layer is covered by an inertial surface and the lower layer extends infinitely downwards. The inertial surface is composed of thin but uniform distribution of non-interacting material. In the mathematical analysis, the Fourier and Laplace transform techniques have been utilized to obtain the depressions of the inertial surface and the interface in the form of infinite integrals. For initial disturbances concentrated at a point, the inertial surface depression and the interface depression are evaluated asymptotically for large time and distance by using the method of stationary phase. They are also depicted graphically for two types of initial disturbances and appropriate conclusions are made.展开更多
The forces acting on a gas tungsten arc (GTA) weld pool are analyzed. A model of static force condition for fullypenetrated weld pool is developed, and the criterion is set up to judge and evaluate the occurrence te...The forces acting on a gas tungsten arc (GTA) weld pool are analyzed. A model of static force condition for fullypenetrated weld pool is developed, and the criterion is set up to judge and evaluate the occurrence tendency of burn-through defect. Transient variations of the forces affecting the surfaces deformation and collapsing of weld pool are computed, and the percentages of their influencing roles are obtained. For specific material and workpiece thickness, the threshold values below which the burn-through phenomenon does not occur are determined, and compared with the experimental results.展开更多
基金Funded by National Science&Technology Pillar Program during the Twelfth Five-year Plan Period(No.2012BAJ20B02-03)
文摘The mechanism of the surface depression of the foam glass was studied. A method of powder sintering with plate glass as the raw material and carbon black as the foaming agent was adopted to investigate the influences of foaming temperature, soaking time, moisture content in the release agent, and flame preheating temperature on the surface depression of a foam glass blank. The results indicated that insufficient cooling rate and rapid foaming process that could not react synergistically with the surface tension and viscosity of the glass melt aroused the mismatching between the glass melt and the expansion or contraction of gas, resulting in upper surface depression of foam glass. Besides, the batch carbon black at high temperature reacted with residual water in advance to generate large amounts of gas and form the air space which could expand inside, leading to lower surface depression of foam glass.
文摘This paper is concerned with the generation of gravity waves due to prescribed initial axisymmetric disturbances created at the surface of an ice sheet covering the ocean with a porous bottom.The ice cover is modeled as a thin elastic plate,and the bottom porosity is described by a real parameter.Using linear theory,the problem is formulated as an initial value problem for the velocity potential describing the motion.In the mathematical analysis,the Laplace and Hankel transform techniques have been used to obtain the depression of the ice-covered surface in the form of a multiple infnite integral.This integral is evaluated asymptotically by the method of stationary phase twice for a long time and a large distance from the origin.Simple numerical computations are performed to illustrate the efect of the ice-covered surface and bottom porosity on the surface elevation,phase velocity,and group velocity of the surface gravity waves.Mainly the far-feld behavior of the progressive waves is observed in two diferent cases,namely initial depression and an impulse concentrated at the origin.From graphical representations,it is clearly visible that the presence of ice cover and a porous bottom decreases the wave amplitude.Due to the porous bottom,the amplitude of phase velocity decreases,whereas the amplitude of group velocity increases.
基金Supported by the DST Research Project No.SR/SY/MS:521/08and CSIR,New Delhi
文摘This paper is concerned with the generation of waves due to initial disturbances at the upper surface of a two-layer fluid, as the upper layer is covered by an inertial surface and the lower layer extends infinitely downwards. The inertial surface is composed of thin but uniform distribution of non-interacting material. In the mathematical analysis, the Fourier and Laplace transform techniques have been utilized to obtain the depressions of the inertial surface and the interface in the form of infinite integrals. For initial disturbances concentrated at a point, the inertial surface depression and the interface depression are evaluated asymptotically for large time and distance by using the method of stationary phase. They are also depicted graphically for two types of initial disturbances and appropriate conclusions are made.
基金The authors are grateful to the financial support for this project from the National Natural Science Foundation of China under Grant No. 50475131.
文摘The forces acting on a gas tungsten arc (GTA) weld pool are analyzed. A model of static force condition for fullypenetrated weld pool is developed, and the criterion is set up to judge and evaluate the occurrence tendency of burn-through defect. Transient variations of the forces affecting the surfaces deformation and collapsing of weld pool are computed, and the percentages of their influencing roles are obtained. For specific material and workpiece thickness, the threshold values below which the burn-through phenomenon does not occur are determined, and compared with the experimental results.