期刊文献+
共找到112篇文章
< 1 2 6 >
每页显示 20 50 100
Steel Surface Defect Detection Using Learnable Memory Vision Transformer
1
作者 Syed Tasnimul Karim Ayon Farhan Md.Siraj Jia Uddin 《Computers, Materials & Continua》 SCIE EI 2025年第1期499-520,共22页
This study investigates the application of Learnable Memory Vision Transformers(LMViT)for detecting metal surface flaws,comparing their performance with traditional CNNs,specifically ResNet18 and ResNet50,as well as o... This study investigates the application of Learnable Memory Vision Transformers(LMViT)for detecting metal surface flaws,comparing their performance with traditional CNNs,specifically ResNet18 and ResNet50,as well as other transformer-based models including Token to Token ViT,ViT withoutmemory,and Parallel ViT.Leveraging awidely-used steel surface defect dataset,the research applies data augmentation and t-distributed stochastic neighbor embedding(t-SNE)to enhance feature extraction and understanding.These techniques mitigated overfitting,stabilized training,and improved generalization capabilities.The LMViT model achieved a test accuracy of 97.22%,significantly outperforming ResNet18(88.89%)and ResNet50(88.90%),aswell as the Token to TokenViT(88.46%),ViT without memory(87.18),and Parallel ViT(91.03%).Furthermore,LMViT exhibited superior training and validation performance,attaining a validation accuracy of 98.2%compared to 91.0%for ResNet 18,96.0%for ResNet50,and 89.12%,87.51%,and 91.21%for Token to Token ViT,ViT without memory,and Parallel ViT,respectively.The findings highlight the LMViT’s ability to capture long-range dependencies in images,an areawhere CNNs struggle due to their reliance on local receptive fields and hierarchical feature extraction.The additional transformer-based models also demonstrate improved performance in capturing complex features over CNNs,with LMViT excelling particularly at detecting subtle and complex defects,which is critical for maintaining product quality and operational efficiency in industrial applications.For instance,the LMViT model successfully identified fine scratches and minor surface irregularities that CNNs often misclassify.This study not only demonstrates LMViT’s potential for real-world defect detection but also underscores the promise of other transformer-based architectures like Token to Token ViT,ViT without memory,and Parallel ViT in industrial scenarios where complex spatial relationships are key.Future research may focus on enhancing LMViT’s computational efficiency for deployment in real-time quality control systems. 展开更多
关键词 Learnable Memory Vision Transformer(LMViT) Convolutional Neural Networks(CNN) metal surface defect detection deep learning computer vision image classification learnable memory gradient clipping label smoothing t-SNE visualization
在线阅读 下载PDF
A review of concrete bridge surface defect detection based on deep learning
2
作者 LIAO Yanna HUANG Chaoyang Abdel-Hamid SOLIMAN 《Optoelectronics Letters》 2025年第9期562-576,共15页
The detection of surface defects in concrete bridges using deep learning is of significant importance for reducing operational risks,saving maintenance costs,and driving the intelligent transformation of bridge defect... The detection of surface defects in concrete bridges using deep learning is of significant importance for reducing operational risks,saving maintenance costs,and driving the intelligent transformation of bridge defect detection.In contrast to the subjective and inefficient manual visual inspection,deep learning-based algorithms for concrete defect detection exhibit remarkable advantages,emerging as a focal point in recent research.This paper comprehensively analyzes the research progress of deep learning algorithms in the field of surface defect detection in concrete bridges in recent years.It introduces the early detection methods for surface defects in concrete bridges and the development of deep learning.Subsequently,it provides an overview of deep learning-based concrete bridge surface defect detection research from three aspects:image classification,object detection,and semantic segmentation.The paper summarizes the strengths and weaknesses of existing methods and the challenges they face.Additionally,it analyzes and prospects the development trends of surface defect detection in concrete bridges. 展开更多
关键词 deep learning detection surface defects intelligent transformation manual visual inspectiondeep concrete bridges reducing operational riskssaving concrete bridge concrete defect detection
原文传递
Enhanced surface defect detection of cylinder liners using Swin Transformer and YOLOv8
3
作者 Feng Pan Junqiang Li +3 位作者 Yonggang Yan Sihai Guan Bharat Biswal Yong Zhao 《Journal of Automation and Intelligence》 2025年第3期227-235,共9页
The service life of internal combustion engines is significantly influenced by surface defects in cylinder liners.To address the limitations of traditional detection methods,we propose an enhanced YOLOv8 model with Sw... The service life of internal combustion engines is significantly influenced by surface defects in cylinder liners.To address the limitations of traditional detection methods,we propose an enhanced YOLOv8 model with Swin Transformer as the backbone network.This approach leverages Swin Transformer's multi-head self-attention mechanism for improved feature extraction of defects spanning various scales.Integrated with the YOLOv8 detection head,our model achieves a mean average precision of 85.1%on our dataset,outperforming baseline methods by 1.4%.The model's effectiveness is further demonstrated on a steel-surface defect dataset,indicating its broad applicability in industrial surface defect detection.Our work highlights the potential of combining Swin Transformer and YOLOv8 for accurate and efficient defect detection. 展开更多
关键词 Cylinder liner surface defect detection Improved YOLOv8 Multiscale defects Swin Transformer
在线阅读 下载PDF
DDFNet:real-time salient object detection with dual-branch decoding fusion for steel plate surface defects
4
作者 Tao Wang Wang-zhe Du +5 位作者 Xu-wei Li Hua-xin Liu Yuan-ming Liu Xiao-miao Niu Ya-xing Liu Tao Wang 《Journal of Iron and Steel Research International》 2025年第8期2421-2433,共13页
A novel dual-branch decoding fusion convolutional neural network model(DDFNet)specifically designed for real-time salient object detection(SOD)on steel surfaces is proposed.DDFNet is based on a standard encoder–decod... A novel dual-branch decoding fusion convolutional neural network model(DDFNet)specifically designed for real-time salient object detection(SOD)on steel surfaces is proposed.DDFNet is based on a standard encoder–decoder architecture.DDFNet integrates three key innovations:first,we introduce a novel,lightweight multi-scale progressive aggregation residual network that effectively suppresses background interference and refines defect details,enabling efficient salient feature extraction.Then,we propose an innovative dual-branch decoding fusion structure,comprising the refined defect representation branch and the enhanced defect representation branch,which enhance accuracy in defect region identification and feature representation.Additionally,to further improve the detection of small and complex defects,we incorporate a multi-scale attention fusion module.Experimental results on the public ESDIs-SOD dataset show that DDFNet,with only 3.69 million parameters,achieves detection performance comparable to current state-of-the-art models,demonstrating its potential for real-time industrial applications.Furthermore,our DDFNet-L variant consistently outperforms leading methods in detection performance.The code is available at https://github.com/13140W/DDFNet. 展开更多
关键词 Steel plate surface defect Real-time detection Salient object detection Dual-branch decoder Multi-scale attention fusion Multi-scale residual fusion
原文传递
Steel surface defect detection based on lightweight YOLOv7
5
作者 SHI Tao WU Rongxin +1 位作者 ZHU Wenxu MA Qingliang 《Optoelectronics Letters》 2025年第5期306-313,共8页
Aiming at the problems of low detection efficiency and difficult positioning of traditional steel surface defect detection methods,a lightweight steel surface defect detection model based on you only look once version... Aiming at the problems of low detection efficiency and difficult positioning of traditional steel surface defect detection methods,a lightweight steel surface defect detection model based on you only look once version 7(YOLOv7)is proposed.First,a cascading style sheets(CSS)block module is proposed,which uses more lightweight operations to obtain redundant information in the feature map,reduces the amount of computation,and effectively improves the detection speed.Secondly,the improved spatial pyramid pooling with cross stage partial convolutions(SPPCSPC)structure is adopted to ensure that the model can also pay attention to the defect location information while predicting the defect category information,obtain richer defect features.In addition,the convolution operation in the original model is simplified,which significantly reduces the size of the model and helps to improve the detection speed.Finally,using efficient intersection over union(EIOU)loss to focus on high-quality anchors,speed up convergence and improve positioning accuracy.Experiments were carried out on the Northeastern University-defect(NEU-DET)steel surface defect dataset.Compared with the original YOLOv7 model,the number of parameters of this model was reduced by 40%,the frames per second(FPS)reached 112,and the average accuracy reached 79.1%,the detection accuracy and speed have been improved,which can meet the needs of steel surface defect detection. 展开更多
关键词 obtain redundant information defect detection steel surface cascading style sheets block module lightweight yolov lightweight operations spatial pyramid pooling steel surface defect detection
原文传递
MSCM-Net:Rail Surface Defect Detection Based on a Multi-Scale Cross-Modal Network
6
作者 Xin Wen Xiao Zheng Yu He 《Computers, Materials & Continua》 2025年第3期4371-4388,共18页
Detecting surface defects on unused rails is crucial for evaluating rail quality and durability to ensure the safety of rail transportation.However,existing detection methods often struggle with challenges such as com... Detecting surface defects on unused rails is crucial for evaluating rail quality and durability to ensure the safety of rail transportation.However,existing detection methods often struggle with challenges such as complex defect morphology,texture similarity,and fuzzy edges,leading to poor accuracy and missed detections.In order to resolve these problems,we propose MSCM-Net(Multi-Scale Cross-Modal Network),a multiscale cross-modal framework focused on detecting rail surface defects.MSCM-Net introduces an attention mechanism to dynamically weight the fusion of RGB and depth maps,effectively capturing and enhancing features at different scales for each modality.To further enrich feature representation and improve edge detection in blurred areas,we propose a multi-scale void fusion module that integrates multi-scale feature information.To improve cross-modal feature fusion,we develop a cross-enhanced fusion module that transfers fused features between layers to incorporate interlayer information.We also introduce a multimodal feature integration module,which merges modality-specific features from separate decoders into a shared decoder,enhancing detection by leveraging richer complementary information.Finally,we validate MSCM-Net on the NEU RSDDS-AUG RGB-depth dataset,comparing it against 12 leading methods,and the results show that MSCM-Net achieves superior performance on all metrics. 展开更多
关键词 surface defect detection multiscale framework cross-modal fusion edge detection
在线阅读 下载PDF
An Improved Aluminum Surface Defect Detection Algorithm Based on YOLOv8n
7
作者 Hao Qiu Shoudong Ni 《Computers, Materials & Continua》 2025年第8期2677-2697,共21页
In response to themissed and false detections that are easily caused by the large variety of and significant differences among aluminum surface defects,a detection algorithm based on an improved You Only Look Once(YOL... In response to themissed and false detections that are easily caused by the large variety of and significant differences among aluminum surface defects,a detection algorithm based on an improved You Only Look Once(YOLO)v8n network is proposed.First,a C2f_DWR_DRB module is constructed by introducing a dilation-wise residual(DWR)module and a dilated reparameterization block(DRB)to replace the C2f module at the high level of the backbone network,enriching the gradient flow information and increasing the effective receptive field(ERF).Second,an efficient local attention(ELA)mechanism is fused with the high-level screening-feature pyramid networks(HS-FPN)module,and an ELA_HSFPN is designed to replace the original feature fusion module,enhancing the ability of the network to cope with multiscale detection tasks.Moreover,a lightweight shared convolutional detection head(SCDH)is introduced to reduce the number of parameters and the computational complexity of the module while enhancing the performance and generalizability of the model.Finally,the soft intersection over union(SIoU)replaces the original loss function to improve the convergence speed and prediction accuracy of the model.Experimental results show that compared with that of the original YOLOv8n model,the mAP@0.5 of the improved algorithm is increased by 5.1%,the number of parameters and computational complexity are reduced by 33.3%and 32.1%,respectively,and the FPS is increased by 4.9%.Compared with other mainstream object detection algorithms,the improved algorithm still leads in terms of core indicators and has good generalizability for surface defects encountered in other industrial scenarios. 展开更多
关键词 Aluminum surface defects YOLOv8n object detection attention mechanism
在线阅读 下载PDF
CSC-YOLO:An Image Recognition Model for Surface Defect Detection of Copper Strip and Plates
8
作者 ZHANG Guo CHEN Tao WANG Jianping 《Journal of Shanghai Jiaotong university(Science)》 2025年第5期1037-1049,共13页
In order to meet the requirements of accurate identification of surface defects on copper strip in industrial production,a detection model of surface defects based on machine vision,CSC-YOLO,is proposed.The model uses... In order to meet the requirements of accurate identification of surface defects on copper strip in industrial production,a detection model of surface defects based on machine vision,CSC-YOLO,is proposed.The model uses YOLOv4-tiny as the benchmark network.First,K-means clustering is introduced into the benchmark network to obtain anchor frames that match the self-built dataset.Second,a cross-region fusion module is introduced in the backbone network to solve the difficult target recognition problem by fusing contextual semantic information.Third,the spatial pyramid pooling-efficient channel attention network(SPP-E)module is introduced in the path aggregation network(PANet)to enhance the extraction of features.Fourth,to prevent the loss of channel information,a lightweight attention mechanism is introduced to improve the performance of the network.Finally,the performance of the model is improved by adding adjustment factors to correct the loss function for the dimensional characteristics of the surface defects.CSC-YOLO was tested on the self-built dataset of surface defects in copper strip,and the experimental results showed that the mAP of the model can reach 93.58%,which is a 3.37% improvement compared with the benchmark network,and FPS,although decreasing compared with the benchmark network,reached 104.CSC-YOLO takes into account the real-time requirements of copper strip production.The comparison experiments with Faster RCNN,SSD300,YOLOv3,YOLOv4,Resnet50-YOLOv4,YOLOv5s,YOLOv7,and other algorithms show that the algorithm obtains a faster computation speed while maintaining a higher detection accuracy. 展开更多
关键词 copper strip surface defect detection K-means clustering cross-region fusion module spatial pyramid pooling-efficient channel attention network(SPP-E)module YOLOv4-tiny
原文传递
Application of multi-scale feature extraction to surface defect classification of hot-rolled steels 被引量:9
9
作者 Ke Xu Yong-hao Ai Xiu-yong Wu 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2013年第1期37-41,共5页
Feature extraction is essential to the classification of surface defect images. The defects of hot-rolled steels distribute in different directions. Therefore, the methods of multi-scale geometric analysis (MGA) wer... Feature extraction is essential to the classification of surface defect images. The defects of hot-rolled steels distribute in different directions. Therefore, the methods of multi-scale geometric analysis (MGA) were employed to decompose the image into several directional subba^ds at several scales. Then, the statistical features of each subband were calculated to produce a high-dimensional feature vector, which was reduced to a lower-dimensional vector by graph embedding algorithms. Finally, support vector machine (SVM) was used for defect classification. The multi-scale feature extraction method was implemented via curvelet transform and kernel locality preserving projections (KLPP). Experiment results show that the proposed method is effective for classifying the surface defects of hot-rolled steels and the total classification rate is up to 97.33%. 展开更多
关键词 hot rolling strip metal surface defects CLASSIFICATION feature extraction
在线阅读 下载PDF
Surface Defects of Cold-Rolled Ti-IF Steel Sheets due to Non-Metallic Inclusions 被引量:8
10
作者 CUI Heng1, WU Hua-jie1, YUE Feng1, WU Wei-shuang1, WANG Min1, BAO Yan-ping1, CHEN Bin2, JI Chen-xi2 (1. Engineering Research Institute, University of Science and Technology Beijing, Beijing 100083, China 2. Shougang Research Institute of Technology, Beijing 100043, China) 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2011年第S2期335-340,共6页
Surface defects of the cold-rolled sheets of Ti-IF steel were studied and analyzed. After analyzing surface defects of cold-rolled sheets, such as shelling defects, holes and sliver defects by SEM/EDS, a variety of in... Surface defects of the cold-rolled sheets of Ti-IF steel were studied and analyzed. After analyzing surface defects of cold-rolled sheets, such as shelling defects, holes and sliver defects by SEM/EDS, a variety of inclusions were found. In addition, the distribution of macro-inclusions in slabs was analyzed by MIDAS method. The results show the macroscopic inclusion bands of head slabs and normal slabs are in 1/8 slab thickness regions of both inner arc side and outer arc side. The formation process of the defects in the cold-rolled sheets was simulated with an experimental cold-rolling machine for comparison. The results show that there were three kinds of inclusions underneath the surface defects: Al2O3, SiO2 and particles from slag entrainment, which were the main reason for defect formation during cold rolling. 展开更多
关键词 Ti-IF steel cold-rolled sheet surface defects INCLUSION
原文传递
Building surface defects by doping with transition metal on ultrafine TiO_2 to enhance the photocatalytic H_2 production activity 被引量:7
11
作者 Qi‐Feng Liu Qian Zhang +2 位作者 Bing‐Rui Liu Shiyou Li Jing‐Jun Ma 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2018年第3期542-548,共7页
Inefficient charge separation and limited light absorption are two critical issues associated with high‐efficiency photocatalytic H2production using TiO2.Surface defects within a certain concentration range in photoc... Inefficient charge separation and limited light absorption are two critical issues associated with high‐efficiency photocatalytic H2production using TiO2.Surface defects within a certain concentration range in photocatalyst materials are beneficial for photocatalytic activity.In this study,surface defects(oxygen vacancies and metal cation replacement defects)were induced with a facile and effective approach by surface doping with low‐cost transition metals(Co,Ni,Cu,and Mn)on ultrafine TiO2.The obtained surface‐defective TiO2exhibited a3–4‐fold improved activity compared to that of the original ultrafine TiO2.In addition,a H2production rate of3.4μmol/h was obtained using visible light(λ>420nm)irradiation.The apparent quantum yield(AQY)at365nm reached36.9%over TiO2‐Cu,significantly more than the commercial P25TiO2.The enhancement of photocatalytic H2production activity can be attributed to improved rapid charge separation efficiency andexpanded light absorption window.This hydrothermal treatment with transition metal was proven to be a very facile and effective method for obtaining surface defects. 展开更多
关键词 Construction of surface defects Ultrafine TiO2 Low‐cost transition metal surface doping Photocatalytic H2 production
在线阅读 下载PDF
Application of a new feature extraction and optimization method to surface defect recognition of cold rolled strips 被引量:6
12
作者 Guifang Wu Ke Xu Jinwu Xu 《Journal of University of Science and Technology Beijing》 CSCD 2007年第5期437-442,共6页
Considering that the surface defects of cold rolled strips are hard to be recognized by human eyes under high-speed circumstances, an automatic recognition technique was discussed. Spectrum images of defects can be go... Considering that the surface defects of cold rolled strips are hard to be recognized by human eyes under high-speed circumstances, an automatic recognition technique was discussed. Spectrum images of defects can be got by fast Fourier transform (FFF) and sum of valid pixels (SVP), and its optimized center region, which concentrates nearly all energies, are extracted as an original feature set. Using genetic algorithm to optimize the feature set, an optimized feature set with 51 features can be achieved. Using the optimized feature set as an input vector of neural networks, the recognition effects of LVQ neural networks have been studied. Experiment results show that the new method can get a higher classification rate and can settle the automatic recognition problem of surface defects on cold rolled strips ideally. 展开更多
关键词 cold rolled strip surface defect neural networks fast Fourier transform (FFT) feature extraction and optimization genetic algorithm feature set
在线阅读 下载PDF
Formation and control of the surface defect in hypo-peritectic steel during continuous casting:A review 被引量:3
13
作者 Quanhui Li Peng Lan +3 位作者 Haijie Wang Hongzhou Ai Deli Chen Haida Wang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2023年第12期2281-2296,共16页
Hypo-peritectic steels are widely used in various industrial fields because of their high strength,high toughness,high processability,high weldability,and low material cost.However,surface defects are liable to occur ... Hypo-peritectic steels are widely used in various industrial fields because of their high strength,high toughness,high processability,high weldability,and low material cost.However,surface defects are liable to occur during continuous casting,which includes depression,longitudinal cracks,deep oscillation marks,and severe level fluctuation with slag entrapment.The high-efficiency production of hypo-peritectic steels by continuous casting is still a great challenge due to the limited understanding of the mechanism of peritectic solidification.This work reviews the definition and classification of hypo-peritectic steels and introduces the formation tendency of common surface defects related to peritectic solidification.New achievements in the mechanism of peritectic reaction and transformation have been listed.Finally,countermeasures to avoiding surface defects of hypo-peritectic steels duiring continuous casting are summarized.Enlightening certain points in the continuous casting of hypo-peritectic steels and the development of new techniques to overcome the present problems will be a great aid to researchers. 展开更多
关键词 hypo-peritectic steel continuous casting surface defect massive transformation grain coarsening DEPRESSION longitudinal crack level fluctuation oscillation mark
在线阅读 下载PDF
DLF-YOLOF:an improved YOLOF-based surface defect detection for steel plate 被引量:3
14
作者 Guang-hu Liu Mao-xiang Chu +1 位作者 Rong-fen Gong Ze-hao Zheng 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2024年第2期442-451,共10页
Surface defects can affect the quality of steel plate.Many methods based on computer vision are currently applied to surface defect detection of steel plate.However,their real-time performance and object detection of ... Surface defects can affect the quality of steel plate.Many methods based on computer vision are currently applied to surface defect detection of steel plate.However,their real-time performance and object detection of small defect are still unsatisfactory.An improved object detection network based on You Only Look One-level Feature(YOLOF)is proposed to show excellent performance in surface defect detection of steel plate,called DLF-YOLOF.First,the anchor-free detector is used to reduce the network hyperparameters.Secondly,deformable convolution network and local spatial attention module are introduced into the feature extraction network to increase the contextual information in the feature maps.Also,the soft non-maximum suppression is used to improve detection accuracy significantly.Finally,data augmentation is performed for small defect objects during training to improve detection accuracy.Experiments show the average precision and average precision for small objects are 42.7%and 33.5%at a detection speed of 62 frames per second on a single GPU,respectively.This shows that DLF-YOLOF has excellent performance to meet the needs of industrial real-time detection. 展开更多
关键词 Steel surface defects detection YOLOF Anchor-free detector Small object detection Real-time detection
原文传递
Surface defects in 4H-SiC homoepitaxial layers 被引量:3
15
作者 Lixia Zhao 《Nanotechnology and Precision Engineering》 CAS CSCD 2020年第4期229-234,共6页
Although a high-quality homoepitaxial layer of 4H‑silicon carbide(4H-SiC)can be obtained on a 4°off-axis substrate using chemical vapor deposition,the reduction of defects is still a focus of research.In this stu... Although a high-quality homoepitaxial layer of 4H‑silicon carbide(4H-SiC)can be obtained on a 4°off-axis substrate using chemical vapor deposition,the reduction of defects is still a focus of research.In this study,several kinds of surface defects in the 4H-SiC homoepitaxial layer are systemically investigated,including triangles,carrots,surface pits,basal plane dislocations,and step bunching.Themorphologies and structures of surface defects are further discussed via optical microscopy and potassium hydroxide-based defect selective etching analysis.Through research and analysis,we found that the origin of surface defects in the 4H-SiC homoepitaxial layer can be attributed to two aspects:the propagation of substrate defects,such as scratches,dislocation,and inclusion,and improper process parameters during epitaxial growth,such as in-situ etch,C/Si ratio,and growth temperature.It is believed that the surface defects in the 4H-SiC homoepitaxial layer can be significantly decreased by precisely controlling the chemistry on the deposition surface during the growth process. 展开更多
关键词 4H silicon carbide surface defect Chemical vapor deposition REDUCTION
在线阅读 下载PDF
Tuning the crystallite size of monoclinic ZrO_(2) to reveal critical roles of surface defects on m–ZrO_(2) catalyst for direct synthesis of isobutene from syngas 被引量:2
16
作者 Xuemei Wu Minghui Tan +7 位作者 Bing Xu Shengying Zhao Qingxiang Ma Yingluo He Chunyang Zeng Guohui Yang Noritatsu Tsubaki Yisheng Tan 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2021年第7期211-219,共9页
The effects of crystallite size on the physicochemical properties and surface defects of pure monoclinic ZrO_(2) catalysts for isobutene synthesis were studied.We prepared a series of monoclinic ZrO_(2) catalysts with... The effects of crystallite size on the physicochemical properties and surface defects of pure monoclinic ZrO_(2) catalysts for isobutene synthesis were studied.We prepared a series of monoclinic ZrO_(2) catalysts with different crystallite size by changing calcination temperature and evaluated their catalytic performance for isobutene synthesis from syngas.ZrO_(2) with small crystalline size showed higher CO conversion and isobutene selectivity,while samples with large crystalline size preferred to form dimethyl ether(DME)instead of hydrocarbons,much less to isobutene.Oxygen defects(ODefects)analyzed by X-ray photoelectron spectroscopy(XPS)provided evidence that more ODefectsoccupied on the surface of ZrO_(2) catalysts with smaller crystalline size.Electron paramagnetic resonance(EPR)and ultraviolet–visible diffuse reflectance(UV–vis DRS)confirmed the presence of high concentration of surface defects and Zr3+on mZrO_(2)-5.9 sample,respectively.In situ diffuse reflectance infrared Fourier transform spectroscopy(in situ DRIFTS)analysis indicated that the adsorption strength of formed formate species on catalyst reduced as the crystalline size decreased.These results suggested that surface defects were responsible for CO activation and further influenced the adsorption strength of surface species,and thus the products distribution changed.This study provides an in-depth insight for active sites regulation of ZrO_(2) catalyst in CO hydrogenation reaction. 展开更多
关键词 SYNGAS ISOBUTENE ZrO_(2)catalyst Crystallite size surface defects
在线阅读 下载PDF
A fast detection algorithm for ceramic ball surface defects based on fringe reflection 被引量:3
17
作者 SUN Ying FU Lu-hua WANG Zhong 《Journal of Measurement Science and Instrumentation》 CAS CSCD 2020年第1期28-37,共10页
A ceramic ball is a basic part widely used in precision bearings.There is no perfect testing equipment for ceramic ball surface defects at present.A fast visual detection algorithm for ceramic ball surface defects bas... A ceramic ball is a basic part widely used in precision bearings.There is no perfect testing equipment for ceramic ball surface defects at present.A fast visual detection algorithm for ceramic ball surface defects based on fringe reflection is designed.By means of image preprocessing,grayscale value accumulative differential positioning,edge detection,pixel-value row difference and template matching,the algorithm can locate feature points and judge whether the spherical surface has defects by the number of points.Taking black silicon nitride ceramic balls with a diameter of 6.35 mm as an example,the defect detection time for a single gray scale image is 0.78 s,and the detection limit is 16.5μm. 展开更多
关键词 ceramic ball surface defect fringe reflection visual detection algorithm
在线阅读 下载PDF
Surface defect-rich ceria quantum dots anchored on sulfur-doped carbon nitride nanotubes with enhanced charge separation for solar hydrogen production 被引量:2
18
作者 Mengru Li Changfeng Chen +3 位作者 Liping Xu Yushuai Jia Yan Liu Xin Liu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第1期51-59,I0003,共10页
Designing defect-engineered semiconductor heterojunctions can effectively promote the charge carrier separation.Herein,novel ceria(CeO2) quantum dots(QDs) decorated sulfur-doped carbon nitride nanotubes(SCN NTs) were ... Designing defect-engineered semiconductor heterojunctions can effectively promote the charge carrier separation.Herein,novel ceria(CeO2) quantum dots(QDs) decorated sulfur-doped carbon nitride nanotubes(SCN NTs) were synthesized via a thermal polycondensation coupled in situ depositionprecipitation method without use of template or surfactant.The structure and morphology studies indicate that ultrafine CeO2 QDs are well distributed inside and outside of SCN NTs offering highly dispersed active sites and a large contact interface between two components.This leads to the promoted formation of rich Ce^(3+) ion and oxygen vacancies as confirmed by XPS.The photocatalytic performance can be facilely modulated by the content of CeO2 QDs introduced in SCN matrix while bare CeO2 does not show activity of hydrogen production.The optimal catalyst with 10% of CeO2 loading yields a hydrogen evolution rate of 2923.8 μmol h-1 g-1 under visible light,remarkably higher than that of bare SCN and their physical mixtures.Further studies reveal that the abundant surface defects and the created 0 D/1 D junctions play a critical role in improving the separation and transfer of charge carriers,leading to superior solar hydrogen production and good stability. 展开更多
关键词 Photocatalytic hydrogen evolution Ceria quantum dots Sulfur-doped carbon nitride nanotubes surface defects Charge separation
在线阅读 下载PDF
Multi-class classification method for steel surface defects with feature noise 被引量:2
19
作者 Mao-xiang Chu Yao Feng +1 位作者 Yong-hui Yang Xin Deng 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2021年第3期303-315,共13页
Defect classification is the key task of a steel surface defect detection system.The current defect classification algorithms have not taken the feature noise into consideration.In order to reduce the adverse impact o... Defect classification is the key task of a steel surface defect detection system.The current defect classification algorithms have not taken the feature noise into consideration.In order to reduce the adverse impact of feature noise,an anti-noise multi-class classification method was proposed for steel surface defects.On the one hand,a novel anti-noise support vector hyper-spheres(ASVHs)classifier was formulated.For N types of defects,the ASVHs classifier built N hyper-spheres.These hyper-spheres were insensitive to feature and label noise.On the other hand,in order to reduce the costs of online time and storage space,the defect samples were pruned by support vector data description with parameter iteration adjustment strategy.In the end,the ASVHs classifier was built with sparse defect samples set and auxiliary information.Experimental results show that the novel multi-class classification method has high efficiency and accuracy for corrupted defect samples in steel surface. 展开更多
关键词 Steel surface defect Multi-class classification Anti-noise support vector hyper-sphere Parameter iteration adjustment Feature noise
原文传递
Molecular Dynamics Simulation of Tensile Deformation and Fracture of γ-TiAl with and without Surface Defects 被引量:10
20
作者 H.N.Wu D.S.Xu +1 位作者 H.Wang R.Yang 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2016年第10期1033-1042,共10页
Molecular dynamics simulation of uniaxial tension along [001] has been performed to study the influence of various surface defects on the initiation of plastic deformation and fracture of γ-TiAl single crystals.The r... Molecular dynamics simulation of uniaxial tension along [001] has been performed to study the influence of various surface defects on the initiation of plastic deformation and fracture of γ-TiAl single crystals.The results indicate that brittle fracture occurs in perfect bulk; surfaces and edges will be detrimental to the strength of materials and provide dislocation nucleation site. The defects on surfaces and edges cause further weakening with various effects depending on defect type, size, position and orientation,while the edge dimples are the most influential. For γ-TiAl rods with surface dimples, dislocations nucleate from an edge of the rod when dimples are small, dimple dislocation nucleation occurs only when the dimples are larger than a strain rate dependent critical size. The dislocations nucleated upon [001]tension are super dislocations with Burger vectors 〈011] or 1/2 〈 112] containing four 1/6 〈 112 〉 partials. The effects of surface scratches are orientation and shape sensitive. Scratches parallel to the loading direction have little influence, while sharp ones perpendicular to the loading direction may cause crack and thus should be avoided. This simulation also shows that, any type of surface defect would lower strength,and cause crack in some cases. But some may facilitate dislocation nucleation and improve ductility of TiAl if well controlled. 展开更多
关键词 Intermetallic compounds Superdislocation Fracture surface defects Molecular dynamics
原文传递
上一页 1 2 6 下一页 到第
使用帮助 返回顶部