ZrCo alloy holds great promise for hydrogen isotope storage,yet its susceptibility to poisoning by impurity gases,especially CO,poses a challenge.This susceptibility arises due to the electron acceptor nature of the s...ZrCo alloy holds great promise for hydrogen isotope storage,yet its susceptibility to poisoning by impurity gases,especially CO,poses a challenge.This susceptibility arises due to the electron acceptor nature of the surface Co element and the formation of the d-πfeedback bond,thereby impeding the surface hydrogen dissociation.Accordingly,we propose a novel local activity modulation strategy,where substituent elements are sacrificed to protect the active Co sites for hydrogen dissociation.Considering CO absorption capacity,solid solubility,and hydrogen affinity,we selected V,Cr,and Mn as microalloying elements and successfully prepared the single-phase ZrCo_(0.97)(VCrMn)_(0.03)alloy.Compared to pristine ZrCo,ZrCo_(0.97)(VCrMn)_(0.03)demonstrates significantly enhanced poisoning resistance.Notably,the hydrogenation kinetics of ZrCo_(0.97)(VCrMn)_(0.03)is 2.4 times higher than that of ZrCo in 4 bar H_(2)+5000 ppm CO.Interestingly,the controllable in situ formation of the Co_(2)C phase shell structure during cycling further safeguards the surface reactivity of ZrCo_(0.97)(VCrMn)_(0.03).Consequently,its capacity retention ratio after 25 cycles has been improved to 74.5%from 55.3%of the ZrCo alloy.These findings suggest that micro-alloying engineering could be a promising strategy for surface activity modulation to enhance the anti-poisoning properties of hydrogen storage materials.展开更多
In this paper,we examine an illegal wireless communication network consisting of an illegal user receiving illegal signals from an illegal station and propose an active reconfigurable intelligent surface(ARIS)-assiste...In this paper,we examine an illegal wireless communication network consisting of an illegal user receiving illegal signals from an illegal station and propose an active reconfigurable intelligent surface(ARIS)-assisted multi-antenna jamming(MAJ)scheme denoted by ARIS-MAJ to interfere with the illegal signal transmission.In order to strike a balance between the jamming performance and the energy consumption,we consider a so-called jamming energy efficiency(JEE)which is defined as the ratio of achievable rate reduced by the jamming system to the corresponding power consumption.We formulate an optimization problem to maximize the JEE for the proposed ARIS-MAJ scheme by jointly optimizing the jammer’s beamforming vector and ARIS’s reflecting coefficients under the constraint that the jamming power received at the illegal user is lower than the illegal user’s detection threshold.To address the non-convex optimization problem,we propose the Dinkelbach-based alternating optimization(AO)algorithm by applying the semidefinite relaxation(SDR)algorithm with Gaussian randomization method.Numerical results validate that the proposed ARIS-MAJ scheme outperforms the passive reconfigurable intelligent surface(PRIS)-assisted multi-antenna jamming(PRIS-MAJ)scheme and the conventional multiantenna jamming scheme without RIS(NRIS-MAJ)in terms of the JEE.展开更多
Gelatinase A (MMP-2) is considered to play a critical role in cell migration and invasion. The proteinase is secreted from the cell as an inactive zymogen. In vivo it is postulated that activation of progelationase A ...Gelatinase A (MMP-2) is considered to play a critical role in cell migration and invasion. The proteinase is secreted from the cell as an inactive zymogen. In vivo it is postulated that activation of progelationase A (proMMP-2) takes place on the cell surface mediated by membrane-type matrix metalloproteinases (MT-MMPs). Recent studies have demonstrated that proMMP-2 is recruited to the cell surface by interacting with tissue inhibitor of metalloproteinases-2 (TIMP-2) bound to MT1MMP by forming a ternary complex. bee MT1-MMP closely located to the ternary complex then activates proMMP-2 on the cell surface. MT1-MMP is found in cultured invasive cancer cells at the invadopodia. The MTMMP/TIMP-2/ MMP- 2 system t bus provides localized expression of proteolysis of the extracellular matrix required for cell migration.展开更多
Boron is a very promising and highly attractive fuel because of high calorific value. However, the practical applications in explosives and propellants of boron have been limited by long ignition delay time and low co...Boron is a very promising and highly attractive fuel because of high calorific value. However, the practical applications in explosives and propellants of boron have been limited by long ignition delay time and low combustion efficiency. Herein, nano-Al and graphene fluoride(GF) as surface activated materials are employed to coat boron(B) particles to improve ignition and combustion performance. The reaction heat of nano-Al coated B/KNO_(3)and GF coated B/KNO_(3)are 1116.83 J/g and 862.69 J/g, respectively, which are higher than that of pure B/KNO_(3)(823.39 J/g). The ignition delay time of B/KNO_(3)could be reduced through nano-Al coating. The shortest ignition delay time is only 75 ms for B coated with nano-Al of 8 wt%, which is much shorter than that of pure B/KNO_(3)(109 ms). However, the ignition delay time of B/KNOcoated with GF has been increased from 109 to 187 ms. B coated with GF and nano-Al shown significantly influence on the pressure output and flame structure of B/KNO_(3). Furthermore, the effects of B/O ratios on the pressure output and ignition delay time have been further fully studied. For B/KNO_(3)coated with nano-Al and GF, the highest pressures are 88 KPa and 59 KPa for B/O ratio of 4:6, and the minimum ignition delay time are 94 ms and 148 ms for B/O ratio of 7:3. Based on the above results, the reaction process of boron coated with GF and nano-Al has been proposed to understand combustion mechanism.展开更多
YAG laser welding with surface activating flux has been investigated, and the influencing factors and mechanism are discussed. The results show that both surface activating flux and surface active element S have fanta...YAG laser welding with surface activating flux has been investigated, and the influencing factors and mechanism are discussed. The results show that both surface activating flux and surface active element S have fantastic effects on the YAG laser weld shape, that is to obviously increase the weld penetration and D/W ratio in various welding conditions. The mechanism is thought to be the change of weld pool surface tension temperature coefficient, thus, the change of fluid flow pattern in weld pool due to the flux.展开更多
α‐,β‐,δ‐,andγ‐MnO2nanocrystals are successfully prepared.We then evaluated the NH3selective catalytic reduction(SCR)performance of the MnO2catalysts with different phases.The NOx conversion efficiency decrease...α‐,β‐,δ‐,andγ‐MnO2nanocrystals are successfully prepared.We then evaluated the NH3selective catalytic reduction(SCR)performance of the MnO2catalysts with different phases.The NOx conversion efficiency decreased in the order:γ‐MnO2>α‐MnO2>δ‐MnO2>β‐MnO2.The NOx conversion with the use ofγ‐MnO2andα‐MnO2catalysts reached90%in the temperature range of140–200°C,while that based onβ‐MnO2reached only40%at200°C.Theγ‐MnO2andα‐MnO2nanowire crystal morphologies enabled good dispersion of the catalysts and resulted in a relatively high specific surface area.We found thatγ‐MnO2andα‐MnO2possessed stronger reducing abilities and more and stronger acidic sites than the other catalysts.In addition,more chemisorbed oxygen existed on the surface of theγ‐MnO2andα‐MnO2catalysts.Theγ‐MnO2andα‐MnO2catalysts showed excellent performance in the low‐temperature SCR of NO to N2with NH3.展开更多
A novel C/Pb composite has been successfully prepared by electmless plating to reduce the hydrogenevolution and achieve the high reversibility of the anode of lead-carbon battery (LCB). The depositedlead on the surf...A novel C/Pb composite has been successfully prepared by electmless plating to reduce the hydrogenevolution and achieve the high reversibility of the anode of lead-carbon battery (LCB). The depositedlead on the surface of C/Pb composite was found to be uniform and adherent to carbon surface. Becauselead has been stuck on the surface of C/Pb composite, the embedded structure suppresses the hydrogenevolution of lead-carbon anode and strengthens the connection between carbon additive and sponge lead.Compared with the blank anode, the lead-carbon anode with C/Pb composite displays excellent charge-discharge reversibility, which is attributed to the good connection between carbon additives and leadthat has been stuck on the surface of C/Pb composite during the preparation process. The addition of CIPb composite maintains a solid anode structure with high specific surface area and power volume, andthereby, it plays a significant role in the highly reversible lead-carbon anode.展开更多
Fluorosurfactants are the key ingredients in the formulations of aqueous film-forming foams(AFFFs)for extinguishing flammable liquids,thus developing high-efficient and low-toxic fluorosurfactants is desirable in AFFF...Fluorosurfactants are the key ingredients in the formulations of aqueous film-forming foams(AFFFs)for extinguishing flammable liquids,thus developing high-efficient and low-toxic fluorosurfactants is desirable in AFFFs application.Herein,a series of hyperbranched polymeric fluorosu rfactants(HPFs)were successfully synthesized through sequentially modifying hyperbranched polyethylenimine(PEI)with the hydrophilic poly(ethylene glycol)(PEG)chains and the hydrophobic C6/C4-based perfluoroalkyl chains,which were verified by FTIR,^(1)H-and^(19)F-NMR.The surface tensions of all the HPFs in water were measured,and the corresponding physicochemical parameters were interpreted.It was found that the surface activities of HPFs could be tuned through adjusting the ratio of PEG to perfluoroalkyl chains,the length of perfluoroalkyl chains,the molecular weight of PEI core,but not the PEG chain length.In the binary mixture of HPFs with the commercial small molecule fluorosurfactant Capstone^(TM)1157(C1157),a strong synergism led to the elevation of surface activity,which was attributed to the efficient encapsulation of C1157 vips by the compact hyperbranched HPFs as the hosts.The utilization of HPF/C1157 as fluorosurfactant ingredients in AFFF formulations could realize much higher fire-extinguishing efficiency towards flammable oils than the control AFFFs prepa red from the polymeric Capstone^(TM)1460 or the neat C1157.展开更多
Five new zwitterionic surfactants with long chain alkyl betaine structure incorporated with hydroxylpropyl group have been synthesized. Their structures were identified by elemental analysis, IR (HNMR)-H-1, and (CNMR)...Five new zwitterionic surfactants with long chain alkyl betaine structure incorporated with hydroxylpropyl group have been synthesized. Their structures were identified by elemental analysis, IR (HNMR)-H-1, and (CNMR)-C-13. Surface tension experiments showed that these surfactants have higher surface activity than those without hydroxypropyl group. The values of CMC and gamma(CMC) of these surfactants have been determined.展开更多
SrTiO_3 nano-crystal samples with floccule or flake crystal morphology,which were indexed as a perovskite-type crystal structure based on the results of XRD and TEM,were successfully prepared by one-step liquid reacti...SrTiO_3 nano-crystal samples with floccule or flake crystal morphology,which were indexed as a perovskite-type crystal structure based on the results of XRD and TEM,were successfully prepared by one-step liquid reaction method.And the growth mechanism of the SrTiO_3 nano-crystals under the liquid condition with/without adding the surface active agent was investigated.It was found that adding the surface active agent contributes to the processing in which the ions gathering bodies transit to a more stable phase through the chemical reaction and form the flake SrTiO_3 nano-crystals.展开更多
Surface chemical properties of typical commercial coal-based activated cokes were characterized by Xray photoelectron spectroscopy(XPS) and acid-base titration, and then the influence of surface chemical properties on...Surface chemical properties of typical commercial coal-based activated cokes were characterized by Xray photoelectron spectroscopy(XPS) and acid-base titration, and then the influence of surface chemical properties on catalytic performance of activated cokes of NO reduction with NH3 was investigated in a fixed-bed quartz micro reactor at 150 ℃. The results indicate that the selective catalytic reduction(SCR) activity of activated cokes with the increase of its surface acidic sites and oxygen content,obviously, a correlation between catalytic activity and surface acidic sites content by titration has higher linearity than catalytic activity and surface oxygen content by XPS. While basic sites content by acid-base titration have not correlation with SCR activity. It has been proposed that surface basic sites content measured by titration may not be on adjacent of acidic surface oxides and then cannot form of NO2-like species, thus the reaction of reduction of NO with NH3 have been retarded.展开更多
The magnetism and surface behaviour of Pt-Dy/γ-Al_2O_3 catalysts were studied respectively by means of a Faraday magnetic balance and the method of carbon disulfide.The ferromagnetic impurity in the support,γ-Al_2O_...The magnetism and surface behaviour of Pt-Dy/γ-Al_2O_3 catalysts were studied respectively by means of a Faraday magnetic balance and the method of carbon disulfide.The ferromagnetic impurity in the support,γ-Al_2O_3,at low temperature was corrected for the first time.The magnetic susceptibilities of the cat- alysts follow the sequence in different stage of preparation:χ_(uncalcined)<χ_(calcined)<χ_(reduced). The magnetic susceptibilities of the catalysts decrease as they adsorb hydrogen,cyclohexane or benzene. There is a correlation between the aromatization yield of cyclohexane or heptane on these catalysts and the magnetic susceptibility of the catalysts.Since addition of Dy increases the number of adsorption sites and the relevant proportions of weak adsorption sites,the abilities of sulfur-resistance and cyclohexane dehydrogenation are improved.In Pt-Dy/γ-A:_2O_3 catalysts,Dy improves the aromatization activity and stability of the catalyst and plays the role of the electron promoter.展开更多
The oxidation heat of coal is the direct reason leading to coal spontaneous combustion. When coal is exposed in oxygen atmosphere, the physical adsorption and chemisorption happened, and then which resulting chemical ...The oxidation heat of coal is the direct reason leading to coal spontaneous combustion. When coal is exposed in oxygen atmosphere, the physical adsorption and chemisorption happened, and then which resulting chemical reaction followed heat between coal and oxygen. Owing to the complexity and uncertain of molecular structure of coal,it was only reduced that bridge bonds, side chains and O 2 containing functional groups in coal may be prone to oxidation in last year, but not to deeply investigate into the structures and the type of the active radicals. In this paper, according to the last achievements in coal structure research, the hypomethylether bond, hypoalkyl bond of α carbon atom with hydroxyl and α carbon atom with hypomethy side chain and hypomethyl bonds linking up two aromatic hydrocarbon in bridge bonds, and methoxy,aldehyde and alkyls of α carbon atom with hydroxy in side bonds are inferred to be free radical easily to lead to oxidize coal under the ambient temperature and pressure. The order from strong to weak of oxide activation of the seven surface active groups is aldehyde side chains, hypomethylether bonds, hypoalkyl bonds of α carbon atom with hydroxyl, hypoalkyl bonds of α carbon atom with hypomethyl, hypomethyl bonds linking up two aromatic hydrocarbon,methoxy, alkyls side chains of α carbon atom with hydroxyl. Because of the two unsaturated molecular tracks of O 2, unpaired electron clouds of the part of surface active groups of coal enter molecular tracks of O 2 to lead to chemisorb on the conjugate effect and induced effect of surface active groups, and then chemical reaction followed heat happens in them. On the basis of change of bond energy, weighted average method is adopted to count the reaction heat value of each mol CO,CO 2 and H 2O. The property of coal spontaneous combustion is different for the different number and oxidability of the active structure in the coal resulting in the different oxidation heat.展开更多
The total concentrations and component profiles of polycyclic aromatic hydrocarbons(PAHs) in ambient air,surface soil and wheat grain collected from wheat fields near a large steel-smelting manufacturer in Northern ...The total concentrations and component profiles of polycyclic aromatic hydrocarbons(PAHs) in ambient air,surface soil and wheat grain collected from wheat fields near a large steel-smelting manufacturer in Northern China were determined.Based on the specific isomeric ratios of paired species in ambient air,principle component analysis and multivariate linear regression,the main emission source of local PAHs was identified as a mixture of industrial and domestic coal combustion,biomass burning and traffic exhaust.The total organic carbon(TOC) fraction was considerably correlated with the total and individual PAH concentrations in surface soil.The total concentrations of PAHs in wheat grain were relatively low,with dominant low molecular weight constituents,and the compositional profile was more similar to that in ambient air than in topsoil.Combined with more significant results from partial correlation and linear regression models,the contribution from air PAHs to grain PAHs may be greater than that from soil PAHs.展开更多
Ozonation of oxalate in aqueous phase was performed with a commercial activated carbon(AC)in this work. The effect of AC dosage and solution pH on the contribution of hydroxyl radicals(HOU) in bulk solution and ox...Ozonation of oxalate in aqueous phase was performed with a commercial activated carbon(AC)in this work. The effect of AC dosage and solution pH on the contribution of hydroxyl radicals(HOU) in bulk solution and oxidation on the AC surface to the removal of oxalate was studied. We found that the removal of oxalate was reduced by tert-butyl alcohol(tBA) with low dosages of AC,while it was hardly affected by tBA when the AC dosage was greater than 0.3 g/L. tBA also inhibited ozone decomposition when the AC dosage was no more than 0.05 g/L, but it did not work when the AC dosage was no less than 0.1 g/L. These observations indicate that HOUin bulk solution and oxidation on the AC surface both contribute to the removal of oxalate. HOU oxidation in bulk solution is significant when the dosage of AC is low, whereas surface oxidation is dominant when the dosage of AC is high. The oxalate removal decreased with increasing pH of the solution with an AC dosage of 0.5 g/L. The degradation of oxalate occurs mainly through surface oxidation in acid and neutral solution, but through HOUoxidation in basic bulk solution. A mechanism involving both HOUoxidation in bulk solution and surface oxidation was proposed for AC enhanced ozonation of oxalate.展开更多
Complex organics contained in dye wastewater are difficult to degrade and often require electrochemical advanced oxidation processes(EAOPs) to treat it. Surface activation of the electrode used in such treatment is ...Complex organics contained in dye wastewater are difficult to degrade and often require electrochemical advanced oxidation processes(EAOPs) to treat it. Surface activation of the electrode used in such treatment is an important factor determining the success of the process.The performance of boron-doped nanocrystalline diamond(BD-NCD) film electrode for decolorization of Acid Yellow(AY-36) azo dye with respect to the surface activation by electrochemical polarization was studied. Anodic polarization found to be more suitable as electrode pretreatment compared to cathodic one. After anodic polarization, the originally H-terminated surface of BD-NCD was changed into O-terminated, making it more hydrophilic.Due to the oxidation of surface functional groups and some portion of sp2 carbon in the BD-NCD film during anodic polarization, the electrode was successfully being activated showing lower background current, wider potential window and considerably less surface activity compared to the non-polarized one. Consequently, electrooxidation(EO) capability of the anodically-polarized BD-NCD to degrade AY-36 dye was significantly enhanced, capable of nearly total decolorization and chemical oxygen demand(COD) removal even after several times of re-using. The BD-NCD film electrode favored acidic condition for the dye degradation; and the presence of chloride ion in the solution was found to be more advantageous than sulfate active species.展开更多
Passive surface-wave utilization has been intensively studied as a means of compensating for the short-age of low-frequency information in active surface-wave measurement, In general, passive surface-wave methods cann...Passive surface-wave utilization has been intensively studied as a means of compensating for the short-age of low-frequency information in active surface-wave measurement, In general, passive surface-wave methods cannot provide phase velocities up to several tens of hertz; thus, active surface-wave methods are often required in order to increase the frequency range, To reduce the amount of field work, we pro-pose a strategy for a high-frequency passive surface-wave survey that imposes active sources during con-tinuous passive surface-wave observation; we call our strategy "mixed-source surface-wave (MSW) measurement," Short-duration (within 10 min) passive surface waves and mixed-source surface waves were recorded at three sites with different noise levels: namely, inside a school, along a road, and along a railway, Spectral analysis indicates that the high-frequency energy is improved by imposing active sources during continuous passive surface-wave observation, The spatial autocorrelation (SPAC) method and the multichannel analysis of passive surface waves (MAPS) method based on cross-correlations were performed on the recorded time sequences, The results demonstrate the flexibility and applicability of the proposed method for high-frequency phase velocity analysis, We suggest that it will be constructive to perform MSW measurement in a seismic investigation, rather than exclusively performing either active surface-wave measurement or passive surface-wave measurement,展开更多
The lack of the early phase gelation property has limited the application of anhydrite as building material products. The use of additives, however, activates the anhydrite surfaces and results in the occurrence of ea...The lack of the early phase gelation property has limited the application of anhydrite as building material products. The use of additives, however, activates the anhydrite surfaces and results in the occurrence of early phase gelation. Under different surface modification conditions,the solubility of anhydrite in water has been measured and it has indicated a correlation between the anhydrite surface activity and its solubility in water. This relationship can be utilized to further study the anhydrite surface activation.展开更多
In this work, surface activation of automotive polymers using atmospheric pressure plasmas was investigated. The aim was to increase the polar fraction of the surface energy of both plane and convex polymer devices wi...In this work, surface activation of automotive polymers using atmospheric pressure plasmas was investigated. The aim was to increase the polar fraction of the surface energy of both plane and convex polymer devices with a radius in the range of 30 mm. For this purpose, a fittable low temperature atmospheric pressure plasma source based on capacitively coupled multi-pin electrodes was set up and applied. Each single electrode generates a treatment spot of approximately 2 cm2 with a tunable power density of up to 1.4 W/cm2. The surface energy was evaluated by contact angle measurements. After treatment at a low energy density of 1.01 J/cm2, the polar fraction of the surface energy of the investigated polymers was increased by a factor of 3.3 to 132, depending on the polymer materials. It was shown that by applying the presented fittable plasma source, this effect is independent of the surface radius of the polymer sample.展开更多
(2-acrylamido) ethyl tetradecyl dimethylammonium bromide (AMC14AB) was polymerized in aqueous solu- tion to form the homopolymer P(AMC14AB). The physicochemical properties of P(AMC14AB) in aqueous solution wer...(2-acrylamido) ethyl tetradecyl dimethylammonium bromide (AMC14AB) was polymerized in aqueous solu- tion to form the homopolymer P(AMC14AB). The physicochemical properties of P(AMC14AB) in aqueous solution were mainly studied with fluorescent probe method, surface tension measurement and conductom- etry. The experimental results show that the aggregation morphology of P(AMC14AB) in aqueous solution is unimolecular micelle as expected. Being different from conventional multimolecular micelle systems, the unimolecular micelle system of P(AMC14AB) not only shows critical micellar concentration (CMC=0), (i.e. once added to pure water, the surface tension decreases immediately in spite how small the density is), but also the surface tension stays almost the same with the concentration increasing. That is to say, there is no mutational point on the relationship curve between surface tension and concentration. Furthermore, the unimolecular micelle system of P(AMC14AB) has no Krafft temperature, i.e. at any temperature, so long as it is dissolved in water, the unimolecular micelles will form. Besides this, for the solubilization of hydrophobic organic substances, the unimolecular micelle system of P(AMC14AB) is obviously different from the common multimolecular micelle system, having no turning point on the relationship curve between toluene solubi- lizaion amount and P(AMC14AB) concentration, and the solubilizing ability of the unimolecular-micelle system of P(AMC14AB) for hydrophobic organic substances is much higher than that of the conventional multimolecular micelle solutions of common surfactants, such as centyl trimethyl ammonium bromide.展开更多
基金financially supported by the National Key Research and Development Program of China(2022YFE03170002)the National Natural Science Foundation of China(52071286,U203020852171223)。
文摘ZrCo alloy holds great promise for hydrogen isotope storage,yet its susceptibility to poisoning by impurity gases,especially CO,poses a challenge.This susceptibility arises due to the electron acceptor nature of the surface Co element and the formation of the d-πfeedback bond,thereby impeding the surface hydrogen dissociation.Accordingly,we propose a novel local activity modulation strategy,where substituent elements are sacrificed to protect the active Co sites for hydrogen dissociation.Considering CO absorption capacity,solid solubility,and hydrogen affinity,we selected V,Cr,and Mn as microalloying elements and successfully prepared the single-phase ZrCo_(0.97)(VCrMn)_(0.03)alloy.Compared to pristine ZrCo,ZrCo_(0.97)(VCrMn)_(0.03)demonstrates significantly enhanced poisoning resistance.Notably,the hydrogenation kinetics of ZrCo_(0.97)(VCrMn)_(0.03)is 2.4 times higher than that of ZrCo in 4 bar H_(2)+5000 ppm CO.Interestingly,the controllable in situ formation of the Co_(2)C phase shell structure during cycling further safeguards the surface reactivity of ZrCo_(0.97)(VCrMn)_(0.03).Consequently,its capacity retention ratio after 25 cycles has been improved to 74.5%from 55.3%of the ZrCo alloy.These findings suggest that micro-alloying engineering could be a promising strategy for surface activity modulation to enhance the anti-poisoning properties of hydrogen storage materials.
基金supported in part by the National Natural Science Foundation of China under Grant 62071253,Grant 62371252 and Grant 62271268in part by the Jiangsu Provincial Key Research and Development Program under Grant BE2022800in part by the Jiangsu Provincial 333 Talent Project.
文摘In this paper,we examine an illegal wireless communication network consisting of an illegal user receiving illegal signals from an illegal station and propose an active reconfigurable intelligent surface(ARIS)-assisted multi-antenna jamming(MAJ)scheme denoted by ARIS-MAJ to interfere with the illegal signal transmission.In order to strike a balance between the jamming performance and the energy consumption,we consider a so-called jamming energy efficiency(JEE)which is defined as the ratio of achievable rate reduced by the jamming system to the corresponding power consumption.We formulate an optimization problem to maximize the JEE for the proposed ARIS-MAJ scheme by jointly optimizing the jammer’s beamforming vector and ARIS’s reflecting coefficients under the constraint that the jamming power received at the illegal user is lower than the illegal user’s detection threshold.To address the non-convex optimization problem,we propose the Dinkelbach-based alternating optimization(AO)algorithm by applying the semidefinite relaxation(SDR)algorithm with Gaussian randomization method.Numerical results validate that the proposed ARIS-MAJ scheme outperforms the passive reconfigurable intelligent surface(PRIS)-assisted multi-antenna jamming(PRIS-MAJ)scheme and the conventional multiantenna jamming scheme without RIS(NRIS-MAJ)in terms of the JEE.
文摘Gelatinase A (MMP-2) is considered to play a critical role in cell migration and invasion. The proteinase is secreted from the cell as an inactive zymogen. In vivo it is postulated that activation of progelationase A (proMMP-2) takes place on the cell surface mediated by membrane-type matrix metalloproteinases (MT-MMPs). Recent studies have demonstrated that proMMP-2 is recruited to the cell surface by interacting with tissue inhibitor of metalloproteinases-2 (TIMP-2) bound to MT1MMP by forming a ternary complex. bee MT1-MMP closely located to the ternary complex then activates proMMP-2 on the cell surface. MT1-MMP is found in cultured invasive cancer cells at the invadopodia. The MTMMP/TIMP-2/ MMP- 2 system t bus provides localized expression of proteolysis of the extracellular matrix required for cell migration.
基金supported by the National Natural Science Foundation of China (11872341 and 22075261)。
文摘Boron is a very promising and highly attractive fuel because of high calorific value. However, the practical applications in explosives and propellants of boron have been limited by long ignition delay time and low combustion efficiency. Herein, nano-Al and graphene fluoride(GF) as surface activated materials are employed to coat boron(B) particles to improve ignition and combustion performance. The reaction heat of nano-Al coated B/KNO_(3)and GF coated B/KNO_(3)are 1116.83 J/g and 862.69 J/g, respectively, which are higher than that of pure B/KNO_(3)(823.39 J/g). The ignition delay time of B/KNO_(3)could be reduced through nano-Al coating. The shortest ignition delay time is only 75 ms for B coated with nano-Al of 8 wt%, which is much shorter than that of pure B/KNO_(3)(109 ms). However, the ignition delay time of B/KNOcoated with GF has been increased from 109 to 187 ms. B coated with GF and nano-Al shown significantly influence on the pressure output and flame structure of B/KNO_(3). Furthermore, the effects of B/O ratios on the pressure output and ignition delay time have been further fully studied. For B/KNO_(3)coated with nano-Al and GF, the highest pressures are 88 KPa and 59 KPa for B/O ratio of 4:6, and the minimum ignition delay time are 94 ms and 148 ms for B/O ratio of 7:3. Based on the above results, the reaction process of boron coated with GF and nano-Al has been proposed to understand combustion mechanism.
文摘YAG laser welding with surface activating flux has been investigated, and the influencing factors and mechanism are discussed. The results show that both surface activating flux and surface active element S have fantastic effects on the YAG laser weld shape, that is to obviously increase the weld penetration and D/W ratio in various welding conditions. The mechanism is thought to be the change of weld pool surface tension temperature coefficient, thus, the change of fluid flow pattern in weld pool due to the flux.
基金supported by the National Natural Science Foundation of China(51502221)~~
文摘α‐,β‐,δ‐,andγ‐MnO2nanocrystals are successfully prepared.We then evaluated the NH3selective catalytic reduction(SCR)performance of the MnO2catalysts with different phases.The NOx conversion efficiency decreased in the order:γ‐MnO2>α‐MnO2>δ‐MnO2>β‐MnO2.The NOx conversion with the use ofγ‐MnO2andα‐MnO2catalysts reached90%in the temperature range of140–200°C,while that based onβ‐MnO2reached only40%at200°C.Theγ‐MnO2andα‐MnO2nanowire crystal morphologies enabled good dispersion of the catalysts and resulted in a relatively high specific surface area.We found thatγ‐MnO2andα‐MnO2possessed stronger reducing abilities and more and stronger acidic sites than the other catalysts.In addition,more chemisorbed oxygen existed on the surface of theγ‐MnO2andα‐MnO2catalysts.Theγ‐MnO2andα‐MnO2catalysts showed excellent performance in the low‐temperature SCR of NO to N2with NH3.
基金the financial support provided by the National Natural Science Foundation of China (No.21573093)the National Key Research and Development Program (No.2017YFB0307501)Guangdong Innovative and Entrepreneurial Research Team Program (No.2013C092)
文摘A novel C/Pb composite has been successfully prepared by electmless plating to reduce the hydrogenevolution and achieve the high reversibility of the anode of lead-carbon battery (LCB). The depositedlead on the surface of C/Pb composite was found to be uniform and adherent to carbon surface. Becauselead has been stuck on the surface of C/Pb composite, the embedded structure suppresses the hydrogenevolution of lead-carbon anode and strengthens the connection between carbon additive and sponge lead.Compared with the blank anode, the lead-carbon anode with C/Pb composite displays excellent charge-discharge reversibility, which is attributed to the good connection between carbon additives and leadthat has been stuck on the surface of C/Pb composite during the preparation process. The addition of CIPb composite maintains a solid anode structure with high specific surface area and power volume, andthereby, it plays a significant role in the highly reversible lead-carbon anode.
基金the Key Research and Development Project of the Ministry of Science and Technology of China(No.2022YFC3004900)。
文摘Fluorosurfactants are the key ingredients in the formulations of aqueous film-forming foams(AFFFs)for extinguishing flammable liquids,thus developing high-efficient and low-toxic fluorosurfactants is desirable in AFFFs application.Herein,a series of hyperbranched polymeric fluorosu rfactants(HPFs)were successfully synthesized through sequentially modifying hyperbranched polyethylenimine(PEI)with the hydrophilic poly(ethylene glycol)(PEG)chains and the hydrophobic C6/C4-based perfluoroalkyl chains,which were verified by FTIR,^(1)H-and^(19)F-NMR.The surface tensions of all the HPFs in water were measured,and the corresponding physicochemical parameters were interpreted.It was found that the surface activities of HPFs could be tuned through adjusting the ratio of PEG to perfluoroalkyl chains,the length of perfluoroalkyl chains,the molecular weight of PEI core,but not the PEG chain length.In the binary mixture of HPFs with the commercial small molecule fluorosurfactant Capstone^(TM)1157(C1157),a strong synergism led to the elevation of surface activity,which was attributed to the efficient encapsulation of C1157 vips by the compact hyperbranched HPFs as the hosts.The utilization of HPF/C1157 as fluorosurfactant ingredients in AFFF formulations could realize much higher fire-extinguishing efficiency towards flammable oils than the control AFFFs prepa red from the polymeric Capstone^(TM)1460 or the neat C1157.
文摘Five new zwitterionic surfactants with long chain alkyl betaine structure incorporated with hydroxylpropyl group have been synthesized. Their structures were identified by elemental analysis, IR (HNMR)-H-1, and (CNMR)-C-13. Surface tension experiments showed that these surfactants have higher surface activity than those without hydroxypropyl group. The values of CMC and gamma(CMC) of these surfactants have been determined.
文摘SrTiO_3 nano-crystal samples with floccule or flake crystal morphology,which were indexed as a perovskite-type crystal structure based on the results of XRD and TEM,were successfully prepared by one-step liquid reaction method.And the growth mechanism of the SrTiO_3 nano-crystals under the liquid condition with/without adding the surface active agent was investigated.It was found that adding the surface active agent contributes to the processing in which the ions gathering bodies transit to a more stable phase through the chemical reaction and form the flake SrTiO_3 nano-crystals.
基金the High Technology Research and Development Program of China(No.2011AA060803)the Beijing Key Laboratory Annual Program(No.Z121103009212039)
文摘Surface chemical properties of typical commercial coal-based activated cokes were characterized by Xray photoelectron spectroscopy(XPS) and acid-base titration, and then the influence of surface chemical properties on catalytic performance of activated cokes of NO reduction with NH3 was investigated in a fixed-bed quartz micro reactor at 150 ℃. The results indicate that the selective catalytic reduction(SCR) activity of activated cokes with the increase of its surface acidic sites and oxygen content,obviously, a correlation between catalytic activity and surface acidic sites content by titration has higher linearity than catalytic activity and surface oxygen content by XPS. While basic sites content by acid-base titration have not correlation with SCR activity. It has been proposed that surface basic sites content measured by titration may not be on adjacent of acidic surface oxides and then cannot form of NO2-like species, thus the reaction of reduction of NO with NH3 have been retarded.
文摘The magnetism and surface behaviour of Pt-Dy/γ-Al_2O_3 catalysts were studied respectively by means of a Faraday magnetic balance and the method of carbon disulfide.The ferromagnetic impurity in the support,γ-Al_2O_3,at low temperature was corrected for the first time.The magnetic susceptibilities of the cat- alysts follow the sequence in different stage of preparation:χ_(uncalcined)<χ_(calcined)<χ_(reduced). The magnetic susceptibilities of the catalysts decrease as they adsorb hydrogen,cyclohexane or benzene. There is a correlation between the aromatization yield of cyclohexane or heptane on these catalysts and the magnetic susceptibility of the catalysts.Since addition of Dy increases the number of adsorption sites and the relevant proportions of weak adsorption sites,the abilities of sulfur-resistance and cyclohexane dehydrogenation are improved.In Pt-Dy/γ-A:_2O_3 catalysts,Dy improves the aromatization activity and stability of the catalyst and plays the role of the electron promoter.
文摘The oxidation heat of coal is the direct reason leading to coal spontaneous combustion. When coal is exposed in oxygen atmosphere, the physical adsorption and chemisorption happened, and then which resulting chemical reaction followed heat between coal and oxygen. Owing to the complexity and uncertain of molecular structure of coal,it was only reduced that bridge bonds, side chains and O 2 containing functional groups in coal may be prone to oxidation in last year, but not to deeply investigate into the structures and the type of the active radicals. In this paper, according to the last achievements in coal structure research, the hypomethylether bond, hypoalkyl bond of α carbon atom with hydroxyl and α carbon atom with hypomethy side chain and hypomethyl bonds linking up two aromatic hydrocarbon in bridge bonds, and methoxy,aldehyde and alkyls of α carbon atom with hydroxy in side bonds are inferred to be free radical easily to lead to oxidize coal under the ambient temperature and pressure. The order from strong to weak of oxide activation of the seven surface active groups is aldehyde side chains, hypomethylether bonds, hypoalkyl bonds of α carbon atom with hydroxyl, hypoalkyl bonds of α carbon atom with hypomethyl, hypomethyl bonds linking up two aromatic hydrocarbon,methoxy, alkyls side chains of α carbon atom with hydroxyl. Because of the two unsaturated molecular tracks of O 2, unpaired electron clouds of the part of surface active groups of coal enter molecular tracks of O 2 to lead to chemisorb on the conjugate effect and induced effect of surface active groups, and then chemical reaction followed heat happens in them. On the basis of change of bond energy, weighted average method is adopted to count the reaction heat value of each mol CO,CO 2 and H 2O. The property of coal spontaneous combustion is different for the different number and oxidability of the active structure in the coal resulting in the different oxidation heat.
基金supported by the Natural Science Foundation Committee of China(No.41390240)the National Basic Research Program of China(No.2014CB441101)+1 种基金the Science&Technology Basic Special Fund of China(No.2013FY111100-04)“111”Project(No.B14001)of Peking University(PKU)
文摘The total concentrations and component profiles of polycyclic aromatic hydrocarbons(PAHs) in ambient air,surface soil and wheat grain collected from wheat fields near a large steel-smelting manufacturer in Northern China were determined.Based on the specific isomeric ratios of paired species in ambient air,principle component analysis and multivariate linear regression,the main emission source of local PAHs was identified as a mixture of industrial and domestic coal combustion,biomass burning and traffic exhaust.The total organic carbon(TOC) fraction was considerably correlated with the total and individual PAH concentrations in surface soil.The total concentrations of PAHs in wheat grain were relatively low,with dominant low molecular weight constituents,and the compositional profile was more similar to that in ambient air than in topsoil.Combined with more significant results from partial correlation and linear regression models,the contribution from air PAHs to grain PAHs may be greater than that from soil PAHs.
基金supported by the National Natural Science Foundation of China (No. 21177130)the National Key Technology R&D Program (No. 2011BAC06B09)the Chinese Academy of Sciences Visiting Professorships for Senior International Scientists (No. 2009G2-28)
文摘Ozonation of oxalate in aqueous phase was performed with a commercial activated carbon(AC)in this work. The effect of AC dosage and solution pH on the contribution of hydroxyl radicals(HOU) in bulk solution and oxidation on the AC surface to the removal of oxalate was studied. We found that the removal of oxalate was reduced by tert-butyl alcohol(tBA) with low dosages of AC,while it was hardly affected by tBA when the AC dosage was greater than 0.3 g/L. tBA also inhibited ozone decomposition when the AC dosage was no more than 0.05 g/L, but it did not work when the AC dosage was no less than 0.1 g/L. These observations indicate that HOUin bulk solution and oxidation on the AC surface both contribute to the removal of oxalate. HOU oxidation in bulk solution is significant when the dosage of AC is low, whereas surface oxidation is dominant when the dosage of AC is high. The oxalate removal decreased with increasing pH of the solution with an AC dosage of 0.5 g/L. The degradation of oxalate occurs mainly through surface oxidation in acid and neutral solution, but through HOUoxidation in basic bulk solution. A mechanism involving both HOUoxidation in bulk solution and surface oxidation was proposed for AC enhanced ozonation of oxalate.
基金financially supported by "National" Science Council of Taiwan by Grant NSC 99-2221-E-009-042Ministry of Economic Affairs of Taiwan by Grant 101-EC-17-A-08-S1-208
文摘Complex organics contained in dye wastewater are difficult to degrade and often require electrochemical advanced oxidation processes(EAOPs) to treat it. Surface activation of the electrode used in such treatment is an important factor determining the success of the process.The performance of boron-doped nanocrystalline diamond(BD-NCD) film electrode for decolorization of Acid Yellow(AY-36) azo dye with respect to the surface activation by electrochemical polarization was studied. Anodic polarization found to be more suitable as electrode pretreatment compared to cathodic one. After anodic polarization, the originally H-terminated surface of BD-NCD was changed into O-terminated, making it more hydrophilic.Due to the oxidation of surface functional groups and some portion of sp2 carbon in the BD-NCD film during anodic polarization, the electrode was successfully being activated showing lower background current, wider potential window and considerably less surface activity compared to the non-polarized one. Consequently, electrooxidation(EO) capability of the anodically-polarized BD-NCD to degrade AY-36 dye was significantly enhanced, capable of nearly total decolorization and chemical oxygen demand(COD) removal even after several times of re-using. The BD-NCD film electrode favored acidic condition for the dye degradation; and the presence of chloride ion in the solution was found to be more advantageous than sulfate active species.
文摘Passive surface-wave utilization has been intensively studied as a means of compensating for the short-age of low-frequency information in active surface-wave measurement, In general, passive surface-wave methods cannot provide phase velocities up to several tens of hertz; thus, active surface-wave methods are often required in order to increase the frequency range, To reduce the amount of field work, we pro-pose a strategy for a high-frequency passive surface-wave survey that imposes active sources during con-tinuous passive surface-wave observation; we call our strategy "mixed-source surface-wave (MSW) measurement," Short-duration (within 10 min) passive surface waves and mixed-source surface waves were recorded at three sites with different noise levels: namely, inside a school, along a road, and along a railway, Spectral analysis indicates that the high-frequency energy is improved by imposing active sources during continuous passive surface-wave observation, The spatial autocorrelation (SPAC) method and the multichannel analysis of passive surface waves (MAPS) method based on cross-correlations were performed on the recorded time sequences, The results demonstrate the flexibility and applicability of the proposed method for high-frequency phase velocity analysis, We suggest that it will be constructive to perform MSW measurement in a seismic investigation, rather than exclusively performing either active surface-wave measurement or passive surface-wave measurement,
文摘The lack of the early phase gelation property has limited the application of anhydrite as building material products. The use of additives, however, activates the anhydrite surfaces and results in the occurrence of early phase gelation. Under different surface modification conditions,the solubility of anhydrite in water has been measured and it has indicated a correlation between the anhydrite surface activity and its solubility in water. This relationship can be utilized to further study the anhydrite surface activation.
基金supported by the European Regional Development Funds(EFRE)and the Workgroup Innovative Projects of Lower Saxony(AGiP) in the Frame of the Lower Saxony Innovation Network for Plasma Technology(NIP),Project Funding Reference Number W2-80029388
文摘In this work, surface activation of automotive polymers using atmospheric pressure plasmas was investigated. The aim was to increase the polar fraction of the surface energy of both plane and convex polymer devices with a radius in the range of 30 mm. For this purpose, a fittable low temperature atmospheric pressure plasma source based on capacitively coupled multi-pin electrodes was set up and applied. Each single electrode generates a treatment spot of approximately 2 cm2 with a tunable power density of up to 1.4 W/cm2. The surface energy was evaluated by contact angle measurements. After treatment at a low energy density of 1.01 J/cm2, the polar fraction of the surface energy of the investigated polymers was increased by a factor of 3.3 to 132, depending on the polymer materials. It was shown that by applying the presented fittable plasma source, this effect is independent of the surface radius of the polymer sample.
文摘(2-acrylamido) ethyl tetradecyl dimethylammonium bromide (AMC14AB) was polymerized in aqueous solu- tion to form the homopolymer P(AMC14AB). The physicochemical properties of P(AMC14AB) in aqueous solution were mainly studied with fluorescent probe method, surface tension measurement and conductom- etry. The experimental results show that the aggregation morphology of P(AMC14AB) in aqueous solution is unimolecular micelle as expected. Being different from conventional multimolecular micelle systems, the unimolecular micelle system of P(AMC14AB) not only shows critical micellar concentration (CMC=0), (i.e. once added to pure water, the surface tension decreases immediately in spite how small the density is), but also the surface tension stays almost the same with the concentration increasing. That is to say, there is no mutational point on the relationship curve between surface tension and concentration. Furthermore, the unimolecular micelle system of P(AMC14AB) has no Krafft temperature, i.e. at any temperature, so long as it is dissolved in water, the unimolecular micelles will form. Besides this, for the solubilization of hydrophobic organic substances, the unimolecular micelle system of P(AMC14AB) is obviously different from the common multimolecular micelle system, having no turning point on the relationship curve between toluene solubi- lizaion amount and P(AMC14AB) concentration, and the solubilizing ability of the unimolecular-micelle system of P(AMC14AB) for hydrophobic organic substances is much higher than that of the conventional multimolecular micelle solutions of common surfactants, such as centyl trimethyl ammonium bromide.