Formaldehyde(HCHO) and carbon monoxide(CO) are both common air pollutants and hazardous to human body. It is imperative to develop the catalyst that is able to efficiently remove these pollutants. In this work, we act...Formaldehyde(HCHO) and carbon monoxide(CO) are both common air pollutants and hazardous to human body. It is imperative to develop the catalyst that is able to efficiently remove these pollutants. In this work, we activated Pt-MnO_(2)under different conditions for highly active oxidation of HCHO and CO, and the catalyst activated under CO displayed superior performance. A suite of complementary characterizations revealed that the catalyst activated with CO created the highly dispersed Pt nanoparticles to maintain a more positively charged state of Pt, which appropriately weakens the Mn-O bonding strength in the adjacent region of Pt for efficient supply of active oxygen during the reaction. Compared with other catalysts activated under different conditions, the CO-activated Pt-MnO_(2)displays much higher activity for oxidation of HCHO and CO. This research contributes to elucidating the mechanism for regulating the oxidation activity of Pt-based catalyst.展开更多
α‐,β‐,δ‐,andγ‐MnO2nanocrystals are successfully prepared.We then evaluated the NH3selective catalytic reduction(SCR)performance of the MnO2catalysts with different phases.The NOx conversion efficiency decrease...α‐,β‐,δ‐,andγ‐MnO2nanocrystals are successfully prepared.We then evaluated the NH3selective catalytic reduction(SCR)performance of the MnO2catalysts with different phases.The NOx conversion efficiency decreased in the order:γ‐MnO2>α‐MnO2>δ‐MnO2>β‐MnO2.The NOx conversion with the use ofγ‐MnO2andα‐MnO2catalysts reached90%in the temperature range of140–200°C,while that based onβ‐MnO2reached only40%at200°C.Theγ‐MnO2andα‐MnO2nanowire crystal morphologies enabled good dispersion of the catalysts and resulted in a relatively high specific surface area.We found thatγ‐MnO2andα‐MnO2possessed stronger reducing abilities and more and stronger acidic sites than the other catalysts.In addition,more chemisorbed oxygen existed on the surface of theγ‐MnO2andα‐MnO2catalysts.Theγ‐MnO2andα‐MnO2catalysts showed excellent performance in the low‐temperature SCR of NO to N2with NH3.展开更多
基金supported by the National Natural Science Foundation of China (Nos. 22025604, 21976196, 21972170 and 22072184)。
文摘Formaldehyde(HCHO) and carbon monoxide(CO) are both common air pollutants and hazardous to human body. It is imperative to develop the catalyst that is able to efficiently remove these pollutants. In this work, we activated Pt-MnO_(2)under different conditions for highly active oxidation of HCHO and CO, and the catalyst activated under CO displayed superior performance. A suite of complementary characterizations revealed that the catalyst activated with CO created the highly dispersed Pt nanoparticles to maintain a more positively charged state of Pt, which appropriately weakens the Mn-O bonding strength in the adjacent region of Pt for efficient supply of active oxygen during the reaction. Compared with other catalysts activated under different conditions, the CO-activated Pt-MnO_(2)displays much higher activity for oxidation of HCHO and CO. This research contributes to elucidating the mechanism for regulating the oxidation activity of Pt-based catalyst.
基金supported by the National Natural Science Foundation of China(51502221)~~
文摘α‐,β‐,δ‐,andγ‐MnO2nanocrystals are successfully prepared.We then evaluated the NH3selective catalytic reduction(SCR)performance of the MnO2catalysts with different phases.The NOx conversion efficiency decreased in the order:γ‐MnO2>α‐MnO2>δ‐MnO2>β‐MnO2.The NOx conversion with the use ofγ‐MnO2andα‐MnO2catalysts reached90%in the temperature range of140–200°C,while that based onβ‐MnO2reached only40%at200°C.Theγ‐MnO2andα‐MnO2nanowire crystal morphologies enabled good dispersion of the catalysts and resulted in a relatively high specific surface area.We found thatγ‐MnO2andα‐MnO2possessed stronger reducing abilities and more and stronger acidic sites than the other catalysts.In addition,more chemisorbed oxygen existed on the surface of theγ‐MnO2andα‐MnO2catalysts.Theγ‐MnO2andα‐MnO2catalysts showed excellent performance in the low‐temperature SCR of NO to N2with NH3.