期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Enhancing oxidation reaction over Pt-MnO_(2) catalyst by activation of surface oxygen
1
作者 Ruoting Shan Zhenteng Sheng +6 位作者 Shuo Hu Hongfei Xiao Yuhua Zhang Jianghao Zhang Li Wang Changbin Zhang Jinlin Li 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2023年第12期117-125,共9页
Formaldehyde(HCHO) and carbon monoxide(CO) are both common air pollutants and hazardous to human body. It is imperative to develop the catalyst that is able to efficiently remove these pollutants. In this work, we act... Formaldehyde(HCHO) and carbon monoxide(CO) are both common air pollutants and hazardous to human body. It is imperative to develop the catalyst that is able to efficiently remove these pollutants. In this work, we activated Pt-MnO_(2)under different conditions for highly active oxidation of HCHO and CO, and the catalyst activated under CO displayed superior performance. A suite of complementary characterizations revealed that the catalyst activated with CO created the highly dispersed Pt nanoparticles to maintain a more positively charged state of Pt, which appropriately weakens the Mn-O bonding strength in the adjacent region of Pt for efficient supply of active oxygen during the reaction. Compared with other catalysts activated under different conditions, the CO-activated Pt-MnO_(2)displays much higher activity for oxidation of HCHO and CO. This research contributes to elucidating the mechanism for regulating the oxidation activity of Pt-based catalyst. 展开更多
关键词 Pt/MnO_(2)catalysts HCHO abatement CO abatement Catalytic oxidation Activation of surface oxygen
原文传递
Effects of surface physicochemical properties on NH_3-SCR activity of MnO_2 catalysts with different crystal structures 被引量:16
2
作者 PiJun Gong JunLin Xie +4 位作者 De Fang Da Han Feng He FengXiang Li Kai Qi 《Chinese Journal of Catalysis》 CSCD 北大核心 2017年第11期1925-1934,共10页
α‐,β‐,δ‐,andγ‐MnO2nanocrystals are successfully prepared.We then evaluated the NH3selective catalytic reduction(SCR)performance of the MnO2catalysts with different phases.The NOx conversion efficiency decrease... α‐,β‐,δ‐,andγ‐MnO2nanocrystals are successfully prepared.We then evaluated the NH3selective catalytic reduction(SCR)performance of the MnO2catalysts with different phases.The NOx conversion efficiency decreased in the order:γ‐MnO2>α‐MnO2>δ‐MnO2>β‐MnO2.The NOx conversion with the use ofγ‐MnO2andα‐MnO2catalysts reached90%in the temperature range of140–200°C,while that based onβ‐MnO2reached only40%at200°C.Theγ‐MnO2andα‐MnO2nanowire crystal morphologies enabled good dispersion of the catalysts and resulted in a relatively high specific surface area.We found thatγ‐MnO2andα‐MnO2possessed stronger reducing abilities and more and stronger acidic sites than the other catalysts.In addition,more chemisorbed oxygen existed on the surface of theγ‐MnO2andα‐MnO2catalysts.Theγ‐MnO2andα‐MnO2catalysts showed excellent performance in the low‐temperature SCR of NO to N2with NH3. 展开更多
关键词 MNO2 Crystal structure surfaceactive oxygen Selective catalytic reduction Physicochemical property
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部