A new method based on the iterative adaptive algorithm(IAA)and blocking matrix preprocessing(BMP)is proposed to study the suppression of multi-mainlobe interference.The algorithm is applied to precisely estimate the s...A new method based on the iterative adaptive algorithm(IAA)and blocking matrix preprocessing(BMP)is proposed to study the suppression of multi-mainlobe interference.The algorithm is applied to precisely estimate the spatial spectrum and the directions of arrival(DOA)of interferences to overcome the drawbacks associated with conventional adaptive beamforming(ABF)methods.The mainlobe interferences are identified by calculating the correlation coefficients between direction steering vectors(SVs)and rejected by the BMP pretreatment.Then,IAA is subsequently employed to reconstruct a sidelobe interference-plus-noise covariance matrix for the preferable ABF and residual interference suppression.Simulation results demonstrate the excellence of the proposed method over normal methods based on BMP and eigen-projection matrix perprocessing(EMP)under both uncorrelated and coherent circumstances.展开更多
New electric power systems characterized by a high proportion of renewable energy and power electronics equipment face significant challenges due to high-frequency(HF)electromagnetic interference from the high-speed s...New electric power systems characterized by a high proportion of renewable energy and power electronics equipment face significant challenges due to high-frequency(HF)electromagnetic interference from the high-speed switching of power converters.To address this situation,this paper offers an in-depth review of HF interference problems and challenges originating from power electronic devices.First,the root cause of HF electromagnetic interference,i.e.,the resonant response of the parasitic parameters of the system to high-speed switching transients,is analyzed,and various scenarios of HF interference in power systems are highlighted.Next,the types of HF interference are summarized,with a focus on common-mode interference in grounding systems.This paper thoroughly reviews and compares various suppression methods for conducted HF interference.Finally,the challenges involved and suggestions for addressing emerging HF interference problems from the perspective of both power electronics equipment and power systems are discussed.This review aims to offer a structured understanding of HF interference problems and their suppression techniques for researchers and practitioners.展开更多
Satellite communication plays an important role in 6G systems.However,satellite communication systems are more susceptible to intentional or unintentional interference signals than other communication systems because ...Satellite communication plays an important role in 6G systems.However,satellite communication systems are more susceptible to intentional or unintentional interference signals than other communication systems because of their working mechanism of transparent forwarding.For the purpose of eliminating the influence of interference,this paper develops an angle reciprocal interference suppression scheme based on the reconstruction of interferenceplus-noise covariance matrix(ARIS-RIN).Firstly,we utilize the reciprocity between the known beam central angle and the unknown signal arrival angle to estimate the angle of arrival(AOA)of desired signal due to the multi-beam coverage.Then,according to the priori known spatial spectrum distribution,the interferenceplus-noise covariance matrix(INCM)is reconstructed by integrating within the range except the direction of desired signal.In order to correct the estimation bias of the first two steps,the worst-case performance optimization technology is adopted in the process of solving the beamforming vector.Numerical simulation results show that the developed scheme:1)has a higher output signal-to-interference-plus-noise ratio(SINR)under arbitrary signal-to-noise ratio(SNR);2)still has good performance under small snapshots;3)is robuster and easier to be realized when comparing with minimum variance distortionless response(MVDR)and the traditional diagonal loading algorithms.展开更多
A measurement system for the scattering characteristics of warhead fragments based on high-speed imaging systems offers advantages such as simple deployment,flexible maneuverability,and high spatiotemporal resolution,...A measurement system for the scattering characteristics of warhead fragments based on high-speed imaging systems offers advantages such as simple deployment,flexible maneuverability,and high spatiotemporal resolution,enabling the acquisition of full-process data of the fragment scattering process.However,mismatches between camera frame rates and target velocities can lead to long motion blur tails of high-speed fragment targets,resulting in low signal-to-noise ratios and rendering conventional detection algorithms ineffective in dynamic strong interference testing environments.In this study,we propose a detection framework centered on dynamic strong interference disturbance signal separation and suppression.We introduce a mixture Gaussian model constrained under a joint spatialtemporal-transform domain Dirichlet process,combined with total variation regularization to achieve disturbance signal suppression.Experimental results demonstrate that the proposed disturbance suppression method can be integrated with certain conventional motion target detection tasks,enabling adaptation to real-world data to a certain extent.Moreover,we provide a specific implementation of this process,which achieves a detection rate close to 100%with an approximate 0%false alarm rate in multiple sets of real target field test data.This research effectively advances the development of the field of damage parameter testing.展开更多
The adaptive digital beamforming technique in the space-polarization domain suppresses the interference with forming the coupling nulls of space and polarization domain.When there is the interference in mainlobe,it wi...The adaptive digital beamforming technique in the space-polarization domain suppresses the interference with forming the coupling nulls of space and polarization domain.When there is the interference in mainlobe,it will cause serious mainlobe distortion,that the target detection suffers from.To overcome this problem and make radar cope with the complex multiple interferences scenarios,we propose a multiple mainlobe and/or sidelobe interferences suppression method for dual polarization array radar.Specifically,the proposed method consists of a signal preprocessing based on the proposed angle estimation with degree of polarization(DoP),and a filtering criterion based on the proposed linear constraint.The signal preprocessing provides the accurate estimated parameters of the interference,which contributes to the criterion for null-decoupling in the space-polarization domain of mainlobe.The proposed method can reduce the mainlobe distortion in the space-polarization domain while suppressing the multiple mainlobe and/or sidelobe interferences.The effectiveness of the proposed method is verified by simulations.展开更多
The influence of frequency modulation (FM) interfer- ence on correlation detection performance of the pseudo random code continuous wave (PRC-CW) radar is analyzed. It is found that the correlation output deterior...The influence of frequency modulation (FM) interfer- ence on correlation detection performance of the pseudo random code continuous wave (PRC-CW) radar is analyzed. It is found that the correlation output deteriorates greatly when the FM inter- ference power exceeds the anti-jamming limit of the radar. Accord- ing to the fact that the PRC-CW radar echo is a wideband pseudo random signal occupying the whole TF plane, while the FM in- terference only concentrates in a small portion, a new method is proposed based on adaptive short-time Fourier transform (STFT) and time-varying filtering for FM interference suppression. This method filters the received signal by using a binary mask to excise only the portion of the TF plane corrupted by the interference. Two types of interference, linear FM (LFM) and sinusoidal FM (SFM), under different signal-to-jamming ratio (S JR) are studied. It is shown that the proposed method can effectively suppress the FM interference and improve the performance of target detection.展开更多
The key to narrow-band interference excision in frequency domain is to determine the excision thresh- old in direct-sequence spread-spectrum (DS-SS) systems. The excision threshold is a non-linear function related t...The key to narrow-band interference excision in frequency domain is to determine the excision thresh- old in direct-sequence spread-spectrum (DS-SS) systems. The excision threshold is a non-linear function related to the number and the power of interference, and attempting to get the exact relation of threshold related to the number and the power of interference is almost impossible. The N-sigma algorithm determines the excision threshold using subsection function; however, the excision threshold determined by this method is not exact. A new method to determine the threshold of N-sigma algorithm is proposed. The new method modifies the scale factor N by use of the membership function. The threshold determined by this method is consecutive and smooth, and it is closer to the fact than that of the initial N-sigma algorithm. The GPS signal and single-tone (CW) interference (that is, typical narrow-band interference) are implemented in the simulation, and the results are presented to demonstrate the validity of the new algorithm.展开更多
To overcome the inter-carrier interference (ICI) of orthogonal frequency division multiplexing (OFDM) systems subject to unknown carrier frequency offset (CFO) and multipath, this paper develops a blind adaptive...To overcome the inter-carrier interference (ICI) of orthogonal frequency division multiplexing (OFDM) systems subject to unknown carrier frequency offset (CFO) and multipath, this paper develops a blind adaptive interference suppression scheme based on independent component analysis (ICA). Taking into account statistical independence of subcarriers' signals of OFDM, the signal recovery mechanism is investigated to achieve the goal of blind equalization. The received OFDM signals can be considered as the mixed observation signals. The effect of CFO and multipath corresponds to the mixing matrix in the problem of blind source separation (BSS) framework. In this paper, the ICA- based OFDM system model is built, and the proposed ICA-based detector is exploited to extract source signals from the observation of a received mixture based on the assumption of statistical independence between the sources. The blind separation technique can increase spectral efficiency and provide robustness performance against erroneous parameter estimation problem. Theoretical analysis and simulation results show that compared with the conventional pilot-based scheme, the improved performance of OFDM systems is obtained by the proposed ICA-based detection technique.展开更多
Interference suppression is a challenge for radar researchers, especially when mainlobe and sidelobe interference coexist. We present a comprehensive anti-interference approach based on a cognitive bistatic airborne r...Interference suppression is a challenge for radar researchers, especially when mainlobe and sidelobe interference coexist. We present a comprehensive anti-interference approach based on a cognitive bistatic airborne radar. The risk of interception is reduced by lowering the launch energy of the radar transmitting terminal in the direction of interference;main lobe and sidelobe interferences are suppressed via cooperation between the two radars. The interference received by a single radar is extracted from the overall radar signal using multiple signal classification(MUSIC), and the interference is cross-located using two different azimuthal angles. Neural networks allowing good, non-linear nonparametric approximations are used to predict the location of interference, and this information is then used to preset the transmitting notch antenna to reduce the likelihood of interception. To simultaneously suppress mainlobe and sidelobe interferences, a blocking matrix is used to mask mainlobe interference based on azimuthal information, and an adaptive process is used to suppress sidelobe interference. Mainlobe interference is eliminated using the data received by the two radars. Simulation verifies the performance of the model.展开更多
Due to the mismatch of the circuit oscillators,there will always be a frequency offset between the transmitter and the receiver.In the adjacent channel interference(ACI)suppression system using the reconstruction and ...Due to the mismatch of the circuit oscillators,there will always be a frequency offset between the transmitter and the receiver.In the adjacent channel interference(ACI)suppression system using the reconstruction and cancellation method,the frequency offset decreases the accuracy of the reconstructed signal and introduces a time-varying term in the interference cancellation,resulting in poor performance of the ACI suppression.In this paper,the relationship between the normalized frequency offset,signal-to-noise ratio and the loss of interference suppression capability is analyzed through formula derivation and simulation.The validity of the frequency offset compensation method based on the pilot sequence is verified,and the relationship between the sequence length and the estimation accuracy is given.This paper provides necessary method reference and data support for the engineering of ACI suppression.展开更多
This paper presents an improved error function of dithered signed-error constant modulus algorithm (IDSE-CMA) for blind multiuser interference suppression in DS/CDMA systems. It uses a different error function to re...This paper presents an improved error function of dithered signed-error constant modulus algorithm (IDSE-CMA) for blind multiuser interference suppression in DS/CDMA systems. It uses a different error function to replace the former one in sign operation of the DSE-CMA and compares their performance in multiple access interference (MAI) suppression ability. Simulations indicate that the new algorithm has better performance than the similar CMA in terms of convergence speed and steady-state performance:展开更多
For direct sequence spread spectrum (DSSS) communication systems suffering interference, it is known that code-aided interference suppression technique outperforms all of the previous linear or nonlinear methods. In t...For direct sequence spread spectrum (DSSS) communication systems suffering interference, it is known that code-aided interference suppression technique outperforms all of the previous linear or nonlinear methods. In this paper, we proposed an improved code-aided technique which can improve the system performance greatly by using the eigenvector sign (EVS) spreading sequence which depends on the statistical characteristics of the interference and the thermal noise.展开更多
Subset Parallel Adaptive Volterra Filter (SPAVF) design algorithm is proposed in this letter. Contri-bution factor is introduced in SPAVF, and it can get rid of redundant elements efficiently in the extended input vec...Subset Parallel Adaptive Volterra Filter (SPAVF) design algorithm is proposed in this letter. Contri-bution factor is introduced in SPAVF, and it can get rid of redundant elements efficiently in the extended input vector. Computational weight can be reduced largely, and BER performance of SPAVF can be improved by getting rid of the influence of redundant elements in the input vector. Simulation result proves its advantage compared to AVF and PSVF.展开更多
A new cross-channel interference suppression method is proposed to decrease the cross-channel interference in beat signals based on the short time Fourier transform (STY3") and the inverse short time Fourier transf...A new cross-channel interference suppression method is proposed to decrease the cross-channel interference in beat signals based on the short time Fourier transform (STY3") and the inverse short time Fourier transform (ISTFT) when the dual-orthogonal polarimetric frequency-modulated continu- ous wave (FMCW) radar adopts the opposite-slope linear frequency modulation signal pair in the simultaneous measurement mode. The STFT is applied only on the signals in the cross-interference intervals in the four polarimetric channels to decrease the computation complexity. A mask matrix for suppressing the interference is constructed using the constant false alarm ratio (CFAR) detection on the spectrograms by the STFY. The simulative results show that the cross-channel interference is effi- ciently suppressed by the proposed method. The comparison between the proposed method and the rejection method verifies the improved performance of the proposed method.展开更多
The negative impact on communication performance in wireless multi-hop communication net-work caused by limited bandwidth,high bit eror rate (BER),fading,noise and interference is alleviated by an adaptive filtering...The negative impact on communication performance in wireless multi-hop communication net-work caused by limited bandwidth,high bit eror rate (BER),fading,noise and interference is alleviated by an adaptive filtering game based on frequency subbands selection and predetemined threshold.Such threshold is being obtained in Gaussian and multipath fading channel according to the frequency-matching principle and BER performance.The dynamic selection of subbands will obtain high use efficiency without the help of frequency hopping,and propound a new thought to improve band limited communication for wireless multi-hop communication network.The effectiveness of the adaptive filtering method has been verified by interleaving spread spectrum orthogonal frequency division multiplexing (ISS-OFDM) in different interference conditions,and the simulating results based on network simulator 2 (NS2) indicate that system BER can be improved greatly.展开更多
Recently, the code division multiple access (CDMA) waveform exists in the large area across the world. However, when using the CDMA system as the illuminator of opportunity for the passive bistatic radar (PBR), th...Recently, the code division multiple access (CDMA) waveform exists in the large area across the world. However, when using the CDMA system as the illuminator of opportunity for the passive bistatic radar (PBR), there exists interference not only from the base station used as the illuminator of opportunity but also from other base stations with the same frequency. And be cause in the CDMA system, the signal transmitted by each base station is different, using the direct signal of one base station can not cancel the interference from other base stations. A CDMA based PBR using an element linear array antenna as both the reference antenna and surveillance antenna is introduced. To deal with the interference in this PBR system, an adaptive temporal cancellation algorithm is used to remove the interference from the base station used as the illuminator of opportunity firstly. And then a robust adaptive beamformer is used to suppress the interference from other base stations. Finally, the preliminary experiment re sults demonstrate the feasibility of using CDMA signals as a radar waveform.展开更多
Passive detection of low-slow-small(LSS)targets is easily interfered by direct signal and multipath clutter,and the traditional clutter suppression method has the contradiction between step size and convergence rate.I...Passive detection of low-slow-small(LSS)targets is easily interfered by direct signal and multipath clutter,and the traditional clutter suppression method has the contradiction between step size and convergence rate.In this paper,a frequency domain clutter suppression algorithm based on sparse adaptive filtering is proposed.The pulse compression operation between the error signal and the input reference signal is added to the cost function as a sparsity constraint,and the criterion for filter weight updating is improved to obtain a purer echo signal.At the same time,the step size and penalty factor are brought into the adaptive iteration process,and the input data is used to drive the adaptive changes of parameters such as step size.The proposed algorithm has a small amount of calculation,which improves the robustness to parameters such as step size,reduces the weight error of the filter and has a good clutter suppression performance.展开更多
The polarization filter using three orthogonal linear polarization antennas can suppress more disturbances than the polarization filter using two orthogonal linear polarization antennas in HF ground wave radar. But th...The polarization filter using three orthogonal linear polarization antennas can suppress more disturbances than the polarization filter using two orthogonal linear polarization antennas in HF ground wave radar. But the algorithm of the threedimension filter is relatively complicated and not suitable for real-time processing. It can't use linear and nonlinear polarization vector translation technique directly. A modified polarization filter which is simple and has same suppressing ability as the three-dimension polarization filter is given. It only has half parameters of the primary one. Some problems about estimation of polarization parameters and selection of disturbances are discussed. A method of holding the phase of radar backscatter signal constantly is put forward so that unstationary disturbance signal can be processed.展开更多
In non-homogeneous environment, traditional space-time adaptive processing doesn't effectively suppress interference and detect target, because the secondary data don' t exactly reflect the statistical characteristi...In non-homogeneous environment, traditional space-time adaptive processing doesn't effectively suppress interference and detect target, because the secondary data don' t exactly reflect the statistical characteristic of the range cell under test. A ravel methodology utilizing the direct data domain approach to space-time adaptive processing ( STAP ) in airbome radar non-homogeneous environments is presented. The deterministic least squares adaptive signal processing technique operates on a "snapshot-by-snapshot" basis to dethrone the adaptive adaptive weights for nulling interferences and estimating signal of interest (SOI). Furthermore, this approach eliminates the requirement for estimating the covariance through the data of neighboring range cell, which eliminates calculating the inverse of covariance, and can be implemented to operate in real-time. Simulation results illustrate the efficiency of interference suppression in non-homogeneous environment.展开更多
A surface electromyography(sEMG)signal acquisition circuit based on high-order filtering is designed.We use a two-stage adjustable amplifier and a high-order Sallen-Key bandpass filter to solve the problems of non-adj...A surface electromyography(sEMG)signal acquisition circuit based on high-order filtering is designed.We use a two-stage adjustable amplifier and a high-order Sallen-Key bandpass filter to solve the problems of non-adjustable amplification gain and low filtering order in traditional acquisition circuits.The experimental results show that the designed sEMG signal acquisition device can eliminate power frequency interference effectively,the stopband drop of the filtering part reaches approximately-100 dB/dec,which can effectively extract useful signals between 20-500 Hz,and the amplification gain reaches 60 dB.展开更多
基金The National Natural Science Foundation of China(No.U19B2031).
文摘A new method based on the iterative adaptive algorithm(IAA)and blocking matrix preprocessing(BMP)is proposed to study the suppression of multi-mainlobe interference.The algorithm is applied to precisely estimate the spatial spectrum and the directions of arrival(DOA)of interferences to overcome the drawbacks associated with conventional adaptive beamforming(ABF)methods.The mainlobe interferences are identified by calculating the correlation coefficients between direction steering vectors(SVs)and rejected by the BMP pretreatment.Then,IAA is subsequently employed to reconstruct a sidelobe interference-plus-noise covariance matrix for the preferable ABF and residual interference suppression.Simulation results demonstrate the excellence of the proposed method over normal methods based on BMP and eigen-projection matrix perprocessing(EMP)under both uncorrelated and coherent circumstances.
基金supported by the science and technology project of State Grid Shanghai Municipal Electric Power Company(No.52094023003L).
文摘New electric power systems characterized by a high proportion of renewable energy and power electronics equipment face significant challenges due to high-frequency(HF)electromagnetic interference from the high-speed switching of power converters.To address this situation,this paper offers an in-depth review of HF interference problems and challenges originating from power electronic devices.First,the root cause of HF electromagnetic interference,i.e.,the resonant response of the parasitic parameters of the system to high-speed switching transients,is analyzed,and various scenarios of HF interference in power systems are highlighted.Next,the types of HF interference are summarized,with a focus on common-mode interference in grounding systems.This paper thoroughly reviews and compares various suppression methods for conducted HF interference.Finally,the challenges involved and suggestions for addressing emerging HF interference problems from the perspective of both power electronics equipment and power systems are discussed.This review aims to offer a structured understanding of HF interference problems and their suppression techniques for researchers and practitioners.
基金supported by the National Natural Science Foundation of China under Grants No.61671367 and 62471381the Research Foundation of Science and Technology on Communication Networks Laboratory,and the National Key Laboratory of Wireless Communications Foundation under Grant No.IFN202401.
文摘Satellite communication plays an important role in 6G systems.However,satellite communication systems are more susceptible to intentional or unintentional interference signals than other communication systems because of their working mechanism of transparent forwarding.For the purpose of eliminating the influence of interference,this paper develops an angle reciprocal interference suppression scheme based on the reconstruction of interferenceplus-noise covariance matrix(ARIS-RIN).Firstly,we utilize the reciprocity between the known beam central angle and the unknown signal arrival angle to estimate the angle of arrival(AOA)of desired signal due to the multi-beam coverage.Then,according to the priori known spatial spectrum distribution,the interferenceplus-noise covariance matrix(INCM)is reconstructed by integrating within the range except the direction of desired signal.In order to correct the estimation bias of the first two steps,the worst-case performance optimization technology is adopted in the process of solving the beamforming vector.Numerical simulation results show that the developed scheme:1)has a higher output signal-to-interference-plus-noise ratio(SINR)under arbitrary signal-to-noise ratio(SNR);2)still has good performance under small snapshots;3)is robuster and easier to be realized when comparing with minimum variance distortionless response(MVDR)and the traditional diagonal loading algorithms.
文摘A measurement system for the scattering characteristics of warhead fragments based on high-speed imaging systems offers advantages such as simple deployment,flexible maneuverability,and high spatiotemporal resolution,enabling the acquisition of full-process data of the fragment scattering process.However,mismatches between camera frame rates and target velocities can lead to long motion blur tails of high-speed fragment targets,resulting in low signal-to-noise ratios and rendering conventional detection algorithms ineffective in dynamic strong interference testing environments.In this study,we propose a detection framework centered on dynamic strong interference disturbance signal separation and suppression.We introduce a mixture Gaussian model constrained under a joint spatialtemporal-transform domain Dirichlet process,combined with total variation regularization to achieve disturbance signal suppression.Experimental results demonstrate that the proposed disturbance suppression method can be integrated with certain conventional motion target detection tasks,enabling adaptation to real-world data to a certain extent.Moreover,we provide a specific implementation of this process,which achieves a detection rate close to 100%with an approximate 0%false alarm rate in multiple sets of real target field test data.This research effectively advances the development of the field of damage parameter testing.
基金supported by the National Natural Science Foundation of China(6190149661871385)。
文摘The adaptive digital beamforming technique in the space-polarization domain suppresses the interference with forming the coupling nulls of space and polarization domain.When there is the interference in mainlobe,it will cause serious mainlobe distortion,that the target detection suffers from.To overcome this problem and make radar cope with the complex multiple interferences scenarios,we propose a multiple mainlobe and/or sidelobe interferences suppression method for dual polarization array radar.Specifically,the proposed method consists of a signal preprocessing based on the proposed angle estimation with degree of polarization(DoP),and a filtering criterion based on the proposed linear constraint.The signal preprocessing provides the accurate estimated parameters of the interference,which contributes to the criterion for null-decoupling in the space-polarization domain of mainlobe.The proposed method can reduce the mainlobe distortion in the space-polarization domain while suppressing the multiple mainlobe and/or sidelobe interferences.The effectiveness of the proposed method is verified by simulations.
文摘The influence of frequency modulation (FM) interfer- ence on correlation detection performance of the pseudo random code continuous wave (PRC-CW) radar is analyzed. It is found that the correlation output deteriorates greatly when the FM inter- ference power exceeds the anti-jamming limit of the radar. Accord- ing to the fact that the PRC-CW radar echo is a wideband pseudo random signal occupying the whole TF plane, while the FM in- terference only concentrates in a small portion, a new method is proposed based on adaptive short-time Fourier transform (STFT) and time-varying filtering for FM interference suppression. This method filters the received signal by using a binary mask to excise only the portion of the TF plane corrupted by the interference. Two types of interference, linear FM (LFM) and sinusoidal FM (SFM), under different signal-to-jamming ratio (S JR) are studied. It is shown that the proposed method can effectively suppress the FM interference and improve the performance of target detection.
文摘The key to narrow-band interference excision in frequency domain is to determine the excision thresh- old in direct-sequence spread-spectrum (DS-SS) systems. The excision threshold is a non-linear function related to the number and the power of interference, and attempting to get the exact relation of threshold related to the number and the power of interference is almost impossible. The N-sigma algorithm determines the excision threshold using subsection function; however, the excision threshold determined by this method is not exact. A new method to determine the threshold of N-sigma algorithm is proposed. The new method modifies the scale factor N by use of the membership function. The threshold determined by this method is consecutive and smooth, and it is closer to the fact than that of the initial N-sigma algorithm. The GPS signal and single-tone (CW) interference (that is, typical narrow-band interference) are implemented in the simulation, and the results are presented to demonstrate the validity of the new algorithm.
基金supported by a grant from the national High Technology Research and development Program of China(863 Program)(No.2012AA01A502)National Natural Science Foundation of China(No.61179006)Science and Technology Support Program of Sichuan Province(No.2014GZX0004)
文摘To overcome the inter-carrier interference (ICI) of orthogonal frequency division multiplexing (OFDM) systems subject to unknown carrier frequency offset (CFO) and multipath, this paper develops a blind adaptive interference suppression scheme based on independent component analysis (ICA). Taking into account statistical independence of subcarriers' signals of OFDM, the signal recovery mechanism is investigated to achieve the goal of blind equalization. The received OFDM signals can be considered as the mixed observation signals. The effect of CFO and multipath corresponds to the mixing matrix in the problem of blind source separation (BSS) framework. In this paper, the ICA- based OFDM system model is built, and the proposed ICA-based detector is exploited to extract source signals from the observation of a received mixture based on the assumption of statistical independence between the sources. The blind separation technique can increase spectral efficiency and provide robustness performance against erroneous parameter estimation problem. Theoretical analysis and simulation results show that compared with the conventional pilot-based scheme, the improved performance of OFDM systems is obtained by the proposed ICA-based detection technique.
文摘Interference suppression is a challenge for radar researchers, especially when mainlobe and sidelobe interference coexist. We present a comprehensive anti-interference approach based on a cognitive bistatic airborne radar. The risk of interception is reduced by lowering the launch energy of the radar transmitting terminal in the direction of interference;main lobe and sidelobe interferences are suppressed via cooperation between the two radars. The interference received by a single radar is extracted from the overall radar signal using multiple signal classification(MUSIC), and the interference is cross-located using two different azimuthal angles. Neural networks allowing good, non-linear nonparametric approximations are used to predict the location of interference, and this information is then used to preset the transmitting notch antenna to reduce the likelihood of interception. To simultaneously suppress mainlobe and sidelobe interferences, a blocking matrix is used to mask mainlobe interference based on azimuthal information, and an adaptive process is used to suppress sidelobe interference. Mainlobe interference is eliminated using the data received by the two radars. Simulation verifies the performance of the model.
基金supported by the National Key R&D Program of China under grant 2018YFB1801903the National Natural Science Foundation of China under grants U19B2014,61771107,62071094,61701075,61601064,and 61531009。
文摘Due to the mismatch of the circuit oscillators,there will always be a frequency offset between the transmitter and the receiver.In the adjacent channel interference(ACI)suppression system using the reconstruction and cancellation method,the frequency offset decreases the accuracy of the reconstructed signal and introduces a time-varying term in the interference cancellation,resulting in poor performance of the ACI suppression.In this paper,the relationship between the normalized frequency offset,signal-to-noise ratio and the loss of interference suppression capability is analyzed through formula derivation and simulation.The validity of the frequency offset compensation method based on the pilot sequence is verified,and the relationship between the sequence length and the estimation accuracy is given.This paper provides necessary method reference and data support for the engineering of ACI suppression.
基金Project supported by National Natural Science Foundation of Chi-na(Grant No .60172018)
文摘This paper presents an improved error function of dithered signed-error constant modulus algorithm (IDSE-CMA) for blind multiuser interference suppression in DS/CDMA systems. It uses a different error function to replace the former one in sign operation of the DSE-CMA and compares their performance in multiple access interference (MAI) suppression ability. Simulations indicate that the new algorithm has better performance than the similar CMA in terms of convergence speed and steady-state performance:
基金the National Natural Science Foundation of China (No. 60772100)
文摘For direct sequence spread spectrum (DSSS) communication systems suffering interference, it is known that code-aided interference suppression technique outperforms all of the previous linear or nonlinear methods. In this paper, we proposed an improved code-aided technique which can improve the system performance greatly by using the eigenvector sign (EVS) spreading sequence which depends on the statistical characteristics of the interference and the thermal noise.
文摘Subset Parallel Adaptive Volterra Filter (SPAVF) design algorithm is proposed in this letter. Contri-bution factor is introduced in SPAVF, and it can get rid of redundant elements efficiently in the extended input vector. Computational weight can be reduced largely, and BER performance of SPAVF can be improved by getting rid of the influence of redundant elements in the input vector. Simulation result proves its advantage compared to AVF and PSVF.
基金Supported by the National Natural Science Foundation of China for Youth(No.41301397)
文摘A new cross-channel interference suppression method is proposed to decrease the cross-channel interference in beat signals based on the short time Fourier transform (STY3") and the inverse short time Fourier transform (ISTFT) when the dual-orthogonal polarimetric frequency-modulated continu- ous wave (FMCW) radar adopts the opposite-slope linear frequency modulation signal pair in the simultaneous measurement mode. The STFT is applied only on the signals in the cross-interference intervals in the four polarimetric channels to decrease the computation complexity. A mask matrix for suppressing the interference is constructed using the constant false alarm ratio (CFAR) detection on the spectrograms by the STFY. The simulative results show that the cross-channel interference is effi- ciently suppressed by the proposed method. The comparison between the proposed method and the rejection method verifies the improved performance of the proposed method.
基金Supported by the National Nature Science Foundation of China(No.61302074)the Specialized Research Fund for the Doctoral Program of Higher Education(No.20122301120004)+1 种基金the Natural Science Foundation of Heilongjiang Province(No.QC2013C061)Research Foundation of Education Bureau of Heilongjiang Province(No.12531480)
文摘The negative impact on communication performance in wireless multi-hop communication net-work caused by limited bandwidth,high bit eror rate (BER),fading,noise and interference is alleviated by an adaptive filtering game based on frequency subbands selection and predetemined threshold.Such threshold is being obtained in Gaussian and multipath fading channel according to the frequency-matching principle and BER performance.The dynamic selection of subbands will obtain high use efficiency without the help of frequency hopping,and propound a new thought to improve band limited communication for wireless multi-hop communication network.The effectiveness of the adaptive filtering method has been verified by interleaving spread spectrum orthogonal frequency division multiplexing (ISS-OFDM) in different interference conditions,and the simulating results based on network simulator 2 (NS2) indicate that system BER can be improved greatly.
基金supported by the National Advanced Research Foundation of China (2010AAJ144)
文摘Recently, the code division multiple access (CDMA) waveform exists in the large area across the world. However, when using the CDMA system as the illuminator of opportunity for the passive bistatic radar (PBR), there exists interference not only from the base station used as the illuminator of opportunity but also from other base stations with the same frequency. And be cause in the CDMA system, the signal transmitted by each base station is different, using the direct signal of one base station can not cancel the interference from other base stations. A CDMA based PBR using an element linear array antenna as both the reference antenna and surveillance antenna is introduced. To deal with the interference in this PBR system, an adaptive temporal cancellation algorithm is used to remove the interference from the base station used as the illuminator of opportunity firstly. And then a robust adaptive beamformer is used to suppress the interference from other base stations. Finally, the preliminary experiment re sults demonstrate the feasibility of using CDMA signals as a radar waveform.
文摘Passive detection of low-slow-small(LSS)targets is easily interfered by direct signal and multipath clutter,and the traditional clutter suppression method has the contradiction between step size and convergence rate.In this paper,a frequency domain clutter suppression algorithm based on sparse adaptive filtering is proposed.The pulse compression operation between the error signal and the input reference signal is added to the cost function as a sparsity constraint,and the criterion for filter weight updating is improved to obtain a purer echo signal.At the same time,the step size and penalty factor are brought into the adaptive iteration process,and the input data is used to drive the adaptive changes of parameters such as step size.The proposed algorithm has a small amount of calculation,which improves the robustness to parameters such as step size,reduces the weight error of the filter and has a good clutter suppression performance.
文摘The polarization filter using three orthogonal linear polarization antennas can suppress more disturbances than the polarization filter using two orthogonal linear polarization antennas in HF ground wave radar. But the algorithm of the threedimension filter is relatively complicated and not suitable for real-time processing. It can't use linear and nonlinear polarization vector translation technique directly. A modified polarization filter which is simple and has same suppressing ability as the three-dimension polarization filter is given. It only has half parameters of the primary one. Some problems about estimation of polarization parameters and selection of disturbances are discussed. A method of holding the phase of radar backscatter signal constantly is put forward so that unstationary disturbance signal can be processed.
文摘In non-homogeneous environment, traditional space-time adaptive processing doesn't effectively suppress interference and detect target, because the secondary data don' t exactly reflect the statistical characteristic of the range cell under test. A ravel methodology utilizing the direct data domain approach to space-time adaptive processing ( STAP ) in airbome radar non-homogeneous environments is presented. The deterministic least squares adaptive signal processing technique operates on a "snapshot-by-snapshot" basis to dethrone the adaptive adaptive weights for nulling interferences and estimating signal of interest (SOI). Furthermore, this approach eliminates the requirement for estimating the covariance through the data of neighboring range cell, which eliminates calculating the inverse of covariance, and can be implemented to operate in real-time. Simulation results illustrate the efficiency of interference suppression in non-homogeneous environment.
基金Science and Technology Plan Project of Weinan City(No.2020ZDYF-JCYJ-177)Power Supply Technology Innovation Team of Shaanxi Railway Engineering Vocational and Technical College(No.KJTD201901)Graduate Program Funded Project of Shaanxi Railway Engineering Vocational and Technical College Scientific Research Fund(No.KY2018-77)。
文摘A surface electromyography(sEMG)signal acquisition circuit based on high-order filtering is designed.We use a two-stage adjustable amplifier and a high-order Sallen-Key bandpass filter to solve the problems of non-adjustable amplification gain and low filtering order in traditional acquisition circuits.The experimental results show that the designed sEMG signal acquisition device can eliminate power frequency interference effectively,the stopband drop of the filtering part reaches approximately-100 dB/dec,which can effectively extract useful signals between 20-500 Hz,and the amplification gain reaches 60 dB.