The methods combined by test, field monitoring and theoretical analysis were adopted to do the systemic research on the rock mass from micro-structure to macro-deformation, and rheological model of Jinchuan rock mass ...The methods combined by test, field monitoring and theoretical analysis were adopted to do the systemic research on the rock mass from micro-structure to macro-deformation, and rheological model of Jinchuan rock mass was established to discuss the reasonable supporting time. Resuhs show that supporting after suitable stress and displacement release can benefit for the long-term stability of surrounding rock.展开更多
This paper has put forward a concept of optimal supporting time through analysing the influence of the supporting time in the heading face on the supporting result of surrounding rock.The method Of the optimal Support...This paper has put forward a concept of optimal supporting time through analysing the influence of the supporting time in the heading face on the supporting result of surrounding rock.The method Of the optimal Supporting time determined by graphical method is discussed, and the calculating formula for determining the optimal supporting time through the analysis method is derived.展开更多
To keep coal workers away from the hazardous area with frequent accidents such as the roof fall and rib spalling in an underground coalmine,we put forward the solution with robotized self-moving anchor-supporting unit...To keep coal workers away from the hazardous area with frequent accidents such as the roof fall and rib spalling in an underground coalmine,we put forward the solution with robotized self-moving anchor-supporting unit.The existing research shows that the surrounding rock of the roadway has self-stability,and the early or late support is not conducive to the safe and reliable support of the roadway,so there is a problem of support opportunity.In order to study the supporting effect and the optimal supporting time of the above solution,we established the mechanical coupling model of surrounding rock and advance support,and investigated the surrounding rock deformation and advance support pressure distribution under different reserved roof subsidence by using the numerical simulation software FLAC3D.The results show that the deformation of surrounding rock increases and finally tends to a stable level with the increase of pre settlement of roadway roof,and when the pre settlement of roof is between 8-15 mm,the vertical pressure of the top beam of advance support reaches the minimum value,about 0.58 MPa.Based on the above research,we put forward the optimum supporting time in roadway excavation,and summarized the evaluation method based on the mechanical coupling model of surrounding rock-advance support.展开更多
Recent advances in intelligent transportation system allow traffic safety studies to extend from historic data-based analyses to real-time applications. The study presents a new method to predict crash likelihood with...Recent advances in intelligent transportation system allow traffic safety studies to extend from historic data-based analyses to real-time applications. The study presents a new method to predict crash likelihood with traffic data collected by discrete loop detectors as well as the web-crawl weather data. Matched case-control method and support vector machines (SVMs) technique were employed to identify the risk status. The adaptive synthetic over-sampling technique was applied to solve the imbalanced dataset issues. Random forest technique was applied to select the contributing factors and avoid the over-fitting issues. The results indicate that the SVMs classifier could successfully classify 76.32% of the crashes on the test dataset and 87.52% of the crashes on the overall dataset, which were relatively satisfactory compared with the results of the previous studies. Compared with the SVMs classifier without the data, the SVMs classifier with the web-crawl weather data increased the crash prediction accuracy by 1.32% and decreased the false alarm rate by 1.72%, showing the potential value of the massive web weather data. Mean impact value method was employed to evaluate the variable effects, and the results are identical with the results of most of previous studies. The emerging technique based on the discrete traffic data and web weather data proves to be more applicable on real- time safety management on freeways.展开更多
In order to study dynamic laws of surface movements over coal mines due to mining activities,a dynamic prediction model of surface movements was established,based on the theory of support vector machines(SVM) and time...In order to study dynamic laws of surface movements over coal mines due to mining activities,a dynamic prediction model of surface movements was established,based on the theory of support vector machines(SVM) and times-series analysis.An engineering application was used to verify the correctness of the model.Measurements from observation stations were analyzed and processed to obtain equal-time interval surface movement data and subjected to tests of stationary,zero means and normality.Then the data were used to train the SVM model.A time series model was established to predict mining subsidence by rational choices of embedding dimensions and SVM parameters.MAPE and WIA were used as indicators to evaluate the accuracy of the model and for generalization performance.In the end,the model was used to predict future surface movements.Data from observation stations in Huaibei coal mining area were used as an example.The results show that the maximum absolute error of subsidence is 9 mm,the maximum relative error 1.5%,the maximum absolute error of displacement 7 mm and the maximum relative error 1.8%.The accuracy and reliability of the model meet the requirements of on-site engineering.The results of the study provide a new approach to investigate the dynamics of surface movements.展开更多
Numerical analysis of the optimal supporting time and long-term stability index of the surrounding rocks in the underground plant of Xiangjiaba hydro-power station was carried out based on the rheological theory. Firs...Numerical analysis of the optimal supporting time and long-term stability index of the surrounding rocks in the underground plant of Xiangjiaba hydro-power station was carried out based on the rheological theory. Firstly,the mechanical parameters of each rock group were identified from the experimental data; secondly,the rheological calculation and analysis for the cavern in stepped excavation without supporting were made; finally,the optimal time for supporting at the characteristic point in a typical section was obtained while the creep rate and displacement after each excavation step has satisfied the criterion of the optimal supporting time. Excavation was repeated when the optimal time for supporting was identified,and the long-term stability creep time and the maximum creep deformation of the characteristic point were determined in accordance with the criterion of long-term stability index. It is shown that the optimal supporting time of the characteristic point in the underground plant of Xiangjiaba hydro-power station is 5-8 d,the long-term stability time of the typical section is 126 d,and the corresponding largest creep deformation is 24.30 mm. While the cavern is supported,the cavern deformation is significantly reduced and the stress states of the surrounding rock masses are remarkably improved.展开更多
Through the description of the deformational features of the surrounding rockaround high stress engineering soft rock roadways,the coupling stabilization principle ofinner and outer structures in surrounding rock was ...Through the description of the deformational features of the surrounding rockaround high stress engineering soft rock roadways,the coupling stabilization principle ofinner and outer structures in surrounding rock was put forward.The supporting principlesof high stress engineering soft rock roadway (high resistance and yielding support,timelysupport,high strength and high stiffness supports) were proposed,which were applied inengineering practices,and obtained better achievements.展开更多
IN 1946 I got to know Wei Shuwan, who is now my wife, through a friend. Back then I was a mechanic for Central Aviation in Kunming, Yunnan Province, and Shuwan was working at the Baihong Photo Studio in the same city....IN 1946 I got to know Wei Shuwan, who is now my wife, through a friend. Back then I was a mechanic for Central Aviation in Kunming, Yunnan Province, and Shuwan was working at the Baihong Photo Studio in the same city. Shuwan was a gentle, kind young woman who was from Fujian Province like myself. We liked each other and got married in April of the same year. In展开更多
To improve the equivalent inertia of DC microgrids(DCMGs),a unified control is proposed for the first time for a bi-directional DC-DC converter based super-capacitor(SC)system,whereby power smoothing and SC terminal v...To improve the equivalent inertia of DC microgrids(DCMGs),a unified control is proposed for the first time for a bi-directional DC-DC converter based super-capacitor(SC)system,whereby power smoothing and SC terminal voltage regulation can be achieved in a DCMG simultaneously.The proposed control displays good plug-and-play features using only local measurements.For quantitative analysis and effective design of the critical parameter of unified control,two indices,equivalent power supporting time and inertia contributed by the unified controlled SC system,are introduced firstly.Then,with a simple but effective reduced-order model of a DCMG,analytical solutions are obtained for the two indices.In addition,a systematic design method is presented for the proposed unified control.Finally,to verify the proposed unified control,a switching model is developed for a typical DCMG in PSCAD/EMTDC,and theoretical analyses are conducted for different operating conditions.展开更多
文摘The methods combined by test, field monitoring and theoretical analysis were adopted to do the systemic research on the rock mass from micro-structure to macro-deformation, and rheological model of Jinchuan rock mass was established to discuss the reasonable supporting time. Resuhs show that supporting after suitable stress and displacement release can benefit for the long-term stability of surrounding rock.
文摘This paper has put forward a concept of optimal supporting time through analysing the influence of the supporting time in the heading face on the supporting result of surrounding rock.The method Of the optimal Supporting time determined by graphical method is discussed, and the calculating formula for determining the optimal supporting time through the analysis method is derived.
基金National Key Basic Research and Development Program Fund project(Grant No.2014CB046306)the Central University Funding Project for Basic Scientific Research Operations(Grant No.2009QJ16)
文摘To keep coal workers away from the hazardous area with frequent accidents such as the roof fall and rib spalling in an underground coalmine,we put forward the solution with robotized self-moving anchor-supporting unit.The existing research shows that the surrounding rock of the roadway has self-stability,and the early or late support is not conducive to the safe and reliable support of the roadway,so there is a problem of support opportunity.In order to study the supporting effect and the optimal supporting time of the above solution,we established the mechanical coupling model of surrounding rock and advance support,and investigated the surrounding rock deformation and advance support pressure distribution under different reserved roof subsidence by using the numerical simulation software FLAC3D.The results show that the deformation of surrounding rock increases and finally tends to a stable level with the increase of pre settlement of roadway roof,and when the pre settlement of roof is between 8-15 mm,the vertical pressure of the top beam of advance support reaches the minimum value,about 0.58 MPa.Based on the above research,we put forward the optimum supporting time in roadway excavation,and summarized the evaluation method based on the mechanical coupling model of surrounding rock-advance support.
基金supported by the National Natural Science Foundation (71301119)the Shanghai Natural Science Foundation (12ZR1434100)
文摘Recent advances in intelligent transportation system allow traffic safety studies to extend from historic data-based analyses to real-time applications. The study presents a new method to predict crash likelihood with traffic data collected by discrete loop detectors as well as the web-crawl weather data. Matched case-control method and support vector machines (SVMs) technique were employed to identify the risk status. The adaptive synthetic over-sampling technique was applied to solve the imbalanced dataset issues. Random forest technique was applied to select the contributing factors and avoid the over-fitting issues. The results indicate that the SVMs classifier could successfully classify 76.32% of the crashes on the test dataset and 87.52% of the crashes on the overall dataset, which were relatively satisfactory compared with the results of the previous studies. Compared with the SVMs classifier without the data, the SVMs classifier with the web-crawl weather data increased the crash prediction accuracy by 1.32% and decreased the false alarm rate by 1.72%, showing the potential value of the massive web weather data. Mean impact value method was employed to evaluate the variable effects, and the results are identical with the results of most of previous studies. The emerging technique based on the discrete traffic data and web weather data proves to be more applicable on real- time safety management on freeways.
基金supported by the Research and Innovation Program for College and University Graduate Students in Jiangsu Province (No.CX10B-141Z)the National Natural Science Foundation of China (No. 41071273)
文摘In order to study dynamic laws of surface movements over coal mines due to mining activities,a dynamic prediction model of surface movements was established,based on the theory of support vector machines(SVM) and times-series analysis.An engineering application was used to verify the correctness of the model.Measurements from observation stations were analyzed and processed to obtain equal-time interval surface movement data and subjected to tests of stationary,zero means and normality.Then the data were used to train the SVM model.A time series model was established to predict mining subsidence by rational choices of embedding dimensions and SVM parameters.MAPE and WIA were used as indicators to evaluate the accuracy of the model and for generalization performance.In the end,the model was used to predict future surface movements.Data from observation stations in Huaibei coal mining area were used as an example.The results show that the maximum absolute error of subsidence is 9 mm,the maximum relative error 1.5%,the maximum absolute error of displacement 7 mm and the maximum relative error 1.8%.The accuracy and reliability of the model meet the requirements of on-site engineering.The results of the study provide a new approach to investigate the dynamics of surface movements.
基金Projects(50911130366, 50979030) supported by the National Natural Science Foundation of ChinaProject(2008BAB29B01) supported by the National Key Technology R&D Program of China
文摘Numerical analysis of the optimal supporting time and long-term stability index of the surrounding rocks in the underground plant of Xiangjiaba hydro-power station was carried out based on the rheological theory. Firstly,the mechanical parameters of each rock group were identified from the experimental data; secondly,the rheological calculation and analysis for the cavern in stepped excavation without supporting were made; finally,the optimal time for supporting at the characteristic point in a typical section was obtained while the creep rate and displacement after each excavation step has satisfied the criterion of the optimal supporting time. Excavation was repeated when the optimal time for supporting was identified,and the long-term stability creep time and the maximum creep deformation of the characteristic point were determined in accordance with the criterion of long-term stability index. It is shown that the optimal supporting time of the characteristic point in the underground plant of Xiangjiaba hydro-power station is 5-8 d,the long-term stability time of the typical section is 126 d,and the corresponding largest creep deformation is 24.30 mm. While the cavern is supported,the cavern deformation is significantly reduced and the stress states of the surrounding rock masses are remarkably improved.
基金Supported by the National Natural Science Fundation of China (50674045)the National "973" Planning Project(2007CB209403)
文摘Through the description of the deformational features of the surrounding rockaround high stress engineering soft rock roadways,the coupling stabilization principle ofinner and outer structures in surrounding rock was put forward.The supporting principlesof high stress engineering soft rock roadway (high resistance and yielding support,timelysupport,high strength and high stiffness supports) were proposed,which were applied inengineering practices,and obtained better achievements.
文摘IN 1946 I got to know Wei Shuwan, who is now my wife, through a friend. Back then I was a mechanic for Central Aviation in Kunming, Yunnan Province, and Shuwan was working at the Baihong Photo Studio in the same city. Shuwan was a gentle, kind young woman who was from Fujian Province like myself. We liked each other and got married in April of the same year. In
基金supported in part by the National Nature Science Foundation(No.51977142)National Key R&D Program of China(No.2020YFB1506803)Tianjin Natural Science Foundation(No.20JCQNJC00350)。
文摘To improve the equivalent inertia of DC microgrids(DCMGs),a unified control is proposed for the first time for a bi-directional DC-DC converter based super-capacitor(SC)system,whereby power smoothing and SC terminal voltage regulation can be achieved in a DCMG simultaneously.The proposed control displays good plug-and-play features using only local measurements.For quantitative analysis and effective design of the critical parameter of unified control,two indices,equivalent power supporting time and inertia contributed by the unified controlled SC system,are introduced firstly.Then,with a simple but effective reduced-order model of a DCMG,analytical solutions are obtained for the two indices.In addition,a systematic design method is presented for the proposed unified control.Finally,to verify the proposed unified control,a switching model is developed for a typical DCMG in PSCAD/EMTDC,and theoretical analyses are conducted for different operating conditions.