期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Copolymerization of 1-butene and 1-hexene with supported titanium catalyst
1
作者 ZHAO Yongxian SHAO Huafeng +2 位作者 WANG Bo YAO Wei HUANG Baochen 《Frontiers of Chemical Science and Engineering》 SCIE EI CSCD 2007年第3期304-309,共6页
With TiCl4/MgCl2(Ti)and Al(i-Bu)3(Al)as catalysts,the thermoplastic copolymer of 1-butene(Bt)and 1-hexene(He)was synthesized successfully.The effects of Bt/He,Ti/(He+Bt),Al/Ti,temperature and reaction time on conversi... With TiCl4/MgCl2(Ti)and Al(i-Bu)3(Al)as catalysts,the thermoplastic copolymer of 1-butene(Bt)and 1-hexene(He)was synthesized successfully.The effects of Bt/He,Ti/(He+Bt),Al/Ti,temperature and reaction time on conversion,catalyst efficiency(CE),intrinsic viscosity([g])and insoluble content were studied.The copolymer was analyzed with Fourier transform-infrared(FTIR)and nuclear magnetic resonance(1H-NMR).Results showed that the optimal polymerization conditions were:He/Bt=0.25,temperature 40℃–50℃,Al/Ti=400–500,Ti/(Bt+He)=3x10-5-4x10-5,time 4 h.Intrinsic viscosity was found to increase with increasing Ti/(Bt+He)and decreasing Al/Ti and polymerization temperature.When the molar content of He,Al/Ti and polymerization temperature increased,the insoluble content in CH2Cl2 of copolymers decreased.When Ti/(Bt+He)and reaction time increased,the insoluble con-tent in CH2Cl2 of copolymers also increased.The crystal-lization and stereoregularity of poly(1-butene)decreased with the addition of He. 展开更多
关键词 1-BUTENE 1-HEXENE supported titanium catalyst COPOLYMERIZATION thermoplastic elastomer
原文传递
High-precision Thickness Setting Models for Titanium Alloy Plate Cold Rolling without Tension 被引量:2
2
作者 WANG Xiaochen YANG Quan +2 位作者 HE Fei SUN Youzhao XIAO Huifang 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2015年第2期422-429,共8页
Due to its highly favorable physical and chemical properties,titanium and titanium alloy are widely used in a variety of industries.Because of the low output of a single batch,plate cold rolling without tension is the... Due to its highly favorable physical and chemical properties,titanium and titanium alloy are widely used in a variety of industries.Because of the low output of a single batch,plate cold rolling without tension is the most common rolling production method for titanium alloy.This method is lack of on-line thickness closed-loop control,with carefully thickness setting models for precision.A set of high-precision thickness setting models are proposed to suit the production method.Because of frequent variations in rolling specification,a model structural for the combination of analytical models and statistical models is adopted to replace the traditional self-learning method.The deformation resistance and friction factor,the primary factors which affect model precision,are considered as the objectives of statistical modeling.Firstly,the coefficient fitting of deformation resistance analytical model based on over-determined equations set is adopted.Additionally,a support vector machine(SVM)is applied to the modeling of the deformation resistance and friction factor.The setting models are applied to a 1450 plate-coiling mill for titanium alloy plate rolling,and then thickness precision is found consistently to be within 3%,exceeding the precision of traditional setting models with a self-learning method based on a large number of stable rolling data.Excellent application performance is obtained.The proposed research provides a set of high-precision thickness setting models which are well adapted to the characteristics of titanium alloy plate cold rolling without tension. 展开更多
关键词 titanium alloy cold rolling deformation resistance friction factor support vector machine
在线阅读 下载PDF
Engineering titanium oxide-based support for electrocatalysis
3
作者 Ke Chen Tao Shen +4 位作者 Yun Lu Yezhou Hu Jingyu Wang Jian Zhang Deli Wang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第4期168-183,共16页
The corrosion and weaker interaction with metal catalysts of common carbon supports during electrocatalysis push the development of alternative supports materials. Titanium oxide-based materials have been widely explo... The corrosion and weaker interaction with metal catalysts of common carbon supports during electrocatalysis push the development of alternative supports materials. Titanium oxide-based materials have been widely explored as electrocatalysts supports in consideration of their chemical stability, strong interactions with metal catalyst and wider applications in electrocatalytic reactions as well as the improved electronic conductivity. This review summarizes recent research advances in engineering titanium oxide-based supports for the catalysts in electrocatalysis field to provide guidance for designing high performance non-carbon supported electrocatalysts. Typically, the titanium oxide-based supports are classified into shaped TiO_(2), doped TiO_(2), titanium suboxide and TiO_(2)-carbon composites according to the modification methods and corresponding preparation methods. Then the engineering strategies and electrocatalytic applications are discussed in detail. Finally, the challenges, future research directions and perspectives of titanium oxide-based supports for electrocatalysis are presented for practical applications. 展开更多
关键词 titanium oxide support ELECTROCATALYSIS Strong metal-support interaction Electrochemical reactions
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部