期刊文献+
共找到7篇文章
< 1 >
每页显示 20 50 100
One-pot synthesis of poly vinyl alcohol(PVA) supported silver nanoparticles and its efficiency in catalytic reduction of methylene blue 被引量:2
1
作者 P.SAGITHA K.SARADA K.MURALEEDHARAN 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2016年第10期2693-2700,共8页
Stable silver nanoparticles were synthesized using polyvinyl alcohol (PVA) as reducing and capping agent. The method of steric stabilization was adopted for the incorporation of silver nanoparticles in the polymer m... Stable silver nanoparticles were synthesized using polyvinyl alcohol (PVA) as reducing and capping agent. The method of steric stabilization was adopted for the incorporation of silver nanoparticles in the polymer matrix. The successful incorporation of silver nanoparticles in a PVA matrix was confirmed by UV–Visible spectroscopy, transmission electron microscopy (TEM) and Fourier transform infrared (FT-IR) spectroscopy. The synthesized silver nanoparticles were characterized by a peak at 426 nm in the UV–Vis spectrum. TEM studies showed the formation of spherical shaped silver nanoparticles of 10-13 nm, following the reduction by UV irradiation. Catalytic properties were studied by means of UV-Visible spectroscopic analysis. The synthesized silver nanoparticles exhibited good catalytic properties in the reduction of methylene blue. 展开更多
关键词 PVA supported silver nanoparticles dye degradation reduction of methylene blue catalytic reduction
在线阅读 下载PDF
Visualization of atomic scale reaction dynamics of supported nanocatalysts during oxidation and ammonia synthesis using in-situ environmental(scanning) transmission electron microscopy
2
作者 Michael R.Ward Robert W.Mitchell +1 位作者 Edward D.Boyes Pratibha L.Gai 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第6期281-290,I0007,共11页
Reaction dynamics in gases at operating temperatures at the atomic level are the basis of heterogeneous gas-solid catalyst reactions and are crucial to the catalyst function.Supported noble metal nanocatalysts such as... Reaction dynamics in gases at operating temperatures at the atomic level are the basis of heterogeneous gas-solid catalyst reactions and are crucial to the catalyst function.Supported noble metal nanocatalysts such as platinum are of interest in fuel cells and as diesel oxidation catalysts for pollution control,and practical ruthenium nanocatalysts are explored for ammonia synthesis.Graphite and graphitic carbons are of interest as supports for the nanocatalysts.Despite considerable literature on the catalytic processes on graphite and graphitic supports,reaction dynamics of the nanocatalysts on the supports in different reactive gas environments and operating temperatures at the single atom level are not well understood.Here we present real time in-situ observations and analyses of reaction dynamics of Pt in oxidation,and practical Ru nanocatalysts in ammonia synthesis,on graphite and related supports under controlled reaction environments using a novel in-situ environmental(scanning) transmission electron microscope with single atom resolution.By recording snapshots of the reaction dynamics,the behaviour of the catalysts is imaged.The images reveal single metal atoms,clusters of a few atoms on the graphitic supports and the support function.These all play key roles in the mobility,sintering and growth of the catalysts.The experimental findings provide new structural insights into atomic scale reaction dynamics,morphology and stability of the nanocatalysts. 展开更多
关键词 In-situ visualization Atomic scale reaction dynamics In-situ environmental scanning transmission electron microscopy with single atom resolution supported nanoparticles Ammonia synthesis Oxidation reactions
在线阅读 下载PDF
Bimetallic nickel molybdate supported Pt catalyst for efficient removal of formaldehyde at low temperature 被引量:7
3
作者 Gang Huang Zhaoxiong Yan +3 位作者 Shuyuan Liu Tingting Luo Liang An Zhihua Xu 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2020年第1期173-183,共11页
Efficient removal of formaldehyde from indoor environments is of significance for human health.In this work,a typical binary transition metal oxide that could provide various oxidation states,β-NiMoO4,was employed as... Efficient removal of formaldehyde from indoor environments is of significance for human health.In this work,a typical binary transition metal oxide that could provide various oxidation states,β-NiMoO4,was employed as a support to immobilize the active Pt component(Pt/NiMoO4)for catalytic formaldehyde elimination at low ambient temperature(15℃).The results showed that the hydrothermal preparation temperature and time had a noticeable impact on the morphology and catalytic activity of the samples.The catalyst prepared with hydrothermal temperature of 150℃for 4 hr(Pt-150-4)exhibited superior catalytic activity and stability mainly due to its distinctly porous structure,relative abundance of adsorbed surface hydroxyls/water,and high oxidation ability,which resulted from the interaction of Pt with Ni and Mo of the bimetallic NiMoO4 support.Our results might shed light on the rational design of multifunctional catalysts for removal of indoor air pollutants at low ambient temperature. 展开更多
关键词 Catalytic oxidation HCHO removal supported Pt nanoparticles NiMoO4 nanoflakes Ambient temperature Porous structure
原文传递
Sustainable solid-state synthesis of uniformly distributed PdAg alloy nanoparticles for electrocatalytic hydrogen oxidation and evolution 被引量:1
4
作者 Caili Xu Qian Chen +3 位作者 Rong Ding Shengtian Huang Yun Zhang Guangyin Fan 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 2021年第2期251-258,共8页
New sustainable syntheses based on solid-state strategies have sparked enormous attention and provided novel routes for the synthesis of supported metallic alloy nanocatalysts(SMACs).Despite considerable recent progre... New sustainable syntheses based on solid-state strategies have sparked enormous attention and provided novel routes for the synthesis of supported metallic alloy nanocatalysts(SMACs).Despite considerable recent progress in this field,most of the developed methods suffer from either complex operations or poorly controlled morphology,which seriously limits their practical applications.Here,we have developed a sustainable strategy for the synthesis of PdAg alloy nanoparticles(NPs)with an ultrafine size and good dispersion on various carbon matrices by directly grinding the precursors in an agate mortar at room temperature.Interestingly,no solvents or organic reagents are used in the synthesis procedure.This simple and green synthesis procedure provides alloy NPs with clean surfaces and thus an abundance of accessible active sites.Based on the combination of this property and the synergistic and alloy effects between Pd and Ag atoms,which endow the NPs with high intrinsic activity,the PdAg/C samples exhibit excellent activities as electrocatalysts for both the hydrogen oxidation and evolution reactions(HOR and HER)in a basic medium.Pd9Ag1/C showed the highest activity in the HOR with the largest j0,m value of 26.5 A g Pd^–1 and j0,s value of 0.033 mA cmPd^–2,as well as in the HER,with the lowest overpotential of 68 mV at 10 mA cm^–2.As this synthetic method can be easily adapted to other systems,the present scalable solid-state strategy may open opportunity for the general synthesis of a wide range of well-defined SMACs for diverse applications. 展开更多
关键词 Solid-state synthesis supported metallic alloy nanoparticles ELECTROCATALYSIS Hydrogen oxidation reaction Hydrogen evolution reaction
在线阅读 下载PDF
Zr(Ⅳ) surface sites determine CH3OH formation rate on Cu/ZrO2/SiO2-CO2 hydrogenation catalysts 被引量:2
5
作者 Erwin Lam Kim Larmier +3 位作者 Shohei Tada Patrick Wolf Olga V. Safonova Christophe Copéret 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2019年第11期1741-1748,共8页
Cu/ZrO2/SiO2 are efficient catalysts for the selective hydrogenation of CO2 to CH3OH. In order to understand the role of ZrO2 in these mixed-oxides based catalysts, in situ X-ray absorption spectroscopy has been carri... Cu/ZrO2/SiO2 are efficient catalysts for the selective hydrogenation of CO2 to CH3OH. In order to understand the role of ZrO2 in these mixed-oxides based catalysts, in situ X-ray absorption spectroscopy has been carried out on the Cu and Zr K-edge. Under reaction conditions, Cu remains metallic, while Zr is present in three types of coordination environment associated with 1) bulk ZrO2, 2) coordinatively saturated and 3) unsaturated Zr(Ⅳ) surface sites. The amount of coordinatively unsaturated Zr surface sites can be quantified by linear combination fit of reference X-Ray absorption near edge structure (XANES) spectra and its amount correlates with CH3OH formation rates, thus indicating the importance of Zr(Ⅳ) Lewis acid surface sites in driving the selectivity toward CH3OH. This finding is consistent with the proposed mechanism, where CO2 is hydrogenated at the interface between the Cu nanoparticles that split H2 and Zr(Ⅳ) surface sites that stabilizes reaction intermediates. 展开更多
关键词 CO2 hydrogenation ZrO2/SiO2 supported Cu nanoparticles Lewis acidic surface sites In situ X-ray absorption spectroscopy
在线阅读 下载PDF
Nanoparticle Exsolution on Perovskite Oxides:Insights into Mechanism,Characteristics and Novel Strategies
6
作者 Yo Han Kim Hyeongwon Jeong +6 位作者 Bo‑Ram Won Hyejin Jeon Chan‑ho Park Dayoung Park Yeeun Kim Somi Lee Jae‑ha Myung 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第2期312-346,共35页
Supported nanoparticles have attracted considerable attention as a promising catalyst for achieving unique properties in numerous applications,including fuel cells,chemical conversion,and batteries.Nanocatalysts demon... Supported nanoparticles have attracted considerable attention as a promising catalyst for achieving unique properties in numerous applications,including fuel cells,chemical conversion,and batteries.Nanocatalysts demonstrate high activity by expanding the number of active sites,but they also intensify deactivation issues,such as agglomeration and poisoning,simultaneously.Exsolution for bottomup synthesis of supported nanoparticles has emerged as a breakthrough technique to overcome limitations associated with conventional nanomaterials.Nanoparticles are uniformly exsolved from perovskite oxide supports and socketed into the oxide support by a one-step reduction process.Their uniformity and stability,resulting from the socketed structure,play a crucial role in the development of novel nanocatalysts.Recently,tremendous research efforts have been dedicated to further controlling exsolution particles.To effectively address exsolution at a more precise level,understanding the underlying mechanism is essential.This review presents a comprehensive overview of the exsolution mechanism,with a focus on its driving force,processes,properties,and synergetic strategies,as well as new pathways for optimizing nanocatalysts in diverse applications. 展开更多
关键词 supported nanoparticle EXSOLUTION In situ growth MECHANISM Perovskite oxide CATALYST
在线阅读 下载PDF
A generalized formula for two-dimensional diffusion of CO in graphene nanoslits with different Pt loadings
7
作者 Chenglong Qiu Yinbin Wang +5 位作者 Yuejin Li Xiang Sun Guilin Zhuang Zihao Yao Shengwei Deng Jianguo Wang 《Green Energy & Environment》 SCIE CSCD 2020年第3期322-332,共11页
Catalytic performance of supported metal catalysts not only depends on the reactivity of metal,but also the adsorption and diffusion properties of gas molecules which are usually affected by many factors,such as tempe... Catalytic performance of supported metal catalysts not only depends on the reactivity of metal,but also the adsorption and diffusion properties of gas molecules which are usually affected by many factors,such as temperature,pressure,properties of metal clusters and substrates,etc.To explore the impact of each of these macroscopic factors,we simulated the movement of CO molecules confined in graphene nanoslits with or without supported Pt nanoparticles.The results of molecular dynamics simulations show that the diffusion of gas molecules is accelerated with high temperature,low pressure or low surface-atom number of supported metals.Notably,the supported metal nanoparticles greatly affect the gas diffusion due to the adsorption of gas molecules.Furthermore,to bridge a quantitative relationship between microscopic simulation and macroscopic properties,a generalized formula is derived from the simulation data to calculate the diffusion coefficient.This work helps to advise the diffusion modulation of gas molecules via structural design of catalysts and regulation of reaction conditions. 展开更多
关键词 Gas diffusion Graphene nanoslits supported Pt nanoparticles Molecular dynamics simulation
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部