期刊文献+
共找到224篇文章
< 1 2 12 >
每页显示 20 50 100
Catalyst–Support Interaction in Polyaniline‑Supported Ni_(3)Fe Oxide to Boost Oxygen Evolution Activities for Rechargeable Zn‑Air Batteries
1
作者 Xiaohong Zou Qian Lu +8 位作者 Mingcong Tang Jie Wu Kouer Zhang Wenzhi Li Yunxia Hu Xiaomin Xu Xiao Zhang Zongping Shao Liang An 《Nano-Micro Letters》 SCIE EI CAS 2025年第1期176-190,共15页
Catalyst–support interaction plays a crucial role in improving the catalytic activity of oxygen evolution reaction(OER).Here we modulate the catalyst–support interaction in polyaniline-supported Ni_(3)Fe oxide(Ni_(3... Catalyst–support interaction plays a crucial role in improving the catalytic activity of oxygen evolution reaction(OER).Here we modulate the catalyst–support interaction in polyaniline-supported Ni_(3)Fe oxide(Ni_(3)Fe oxide/PANI)with a robust hetero-interface,which significantly improves oxygen evolution activities with an overpotential of 270 mV at 10 mA cm^(-2)and specific activity of 2.08 mA cm_(ECSA)^(-2)at overpotential of 300 mV,3.84-fold that of Ni_(3)Fe oxide.It is revealed that the catalyst–support interaction between Ni_(3)Fe oxide and PANI support enhances the Ni–O covalency via the interfacial Ni–N bond,thus promoting the charge and mass transfer on Ni_(3)Fe oxide.Considering the excellent activity and stability,rechargeable Zn-air batteries with optimum Ni_(3)Fe oxide/PANI are assembled,delivering a low charge voltage of 1.95 V to cycle for 400 h at 10 mA cm^(-2).The regulation of the effect of catalyst–support interaction on catalytic activity provides new possibilities for the future design of highly efficient OER catalysts. 展开更多
关键词 catalyst-support interaction supported catalysts HETEROINTERFACE Oxygen evolution reaction Zn-air batteries
在线阅读 下载PDF
Insight into catalytic performance and reaction mechanism for toluene total oxidation over Cu-Ce supported catalyst
2
作者 Xuan Liang Jin Zhang +4 位作者 Juntai Tian Zenghua Xie Yue Liu Peng Liu Daiqi Ye 《Journal of Environmental Sciences》 2025年第3期476-487,共12页
Herein,three supported catalysts,CuO/Al_(2)O_(3),CeO_(2)/Al_(2)O_(3),and CuO-CeO_(2)/Al_(2)O_(3),were synthesized by the convenient impregnation method to reveal the effect of CeO_(2)addition on catalytic performance ... Herein,three supported catalysts,CuO/Al_(2)O_(3),CeO_(2)/Al_(2)O_(3),and CuO-CeO_(2)/Al_(2)O_(3),were synthesized by the convenient impregnation method to reveal the effect of CeO_(2)addition on catalytic performance and reaction mechanism for toluene oxidation.Compared with CuO/Al_(2)O_(3),the T_(50)and T_(90)(the temperatures at 50%and 90%toluene conversion,respectively)of CuO-CeO_(2)/Al_(2)O_(3)were reduced by 33 and 39°C,respectively.N_(2)adsorptiondesorption experiment,XRD,SEM,EDS mapping,Raman,EPR,H_(2)-TPR,O_(2)-TPD,XPS,NH_(3)-TPD,Toluene-TPD,and in-situ DRIFTS were conducted to characterize these catalysts.The excellent catalytic performance of CuO-CeO_(2)/Al_(2)O_(3)could be attributed to its strong coppercerium interaction and high oxygen vacancies concentration.Moreover,in-situ DRIFTS proved that CuO-CeO_(2)/Al_(2)O_(3)promoted the conversion of toluene to benzoate and accelerated the deep degradation path of toluene.This work provided valuable insights into the development of efficient and economical catalysts for volatile organic compounds. 展开更多
关键词 Cu-Ce supported catalyst Copper-cerium interaction Oxygen vacancies Toluene oxidation Reaction mechanism
原文传递
Exploiting supported vanadium catalyst for single-walled carbon nanotube synthesis
3
作者 Fangqian Han Hao An +3 位作者 Qianru Wu Jifu Bi Feng Ding Maoshuai He 《Journal of Materials Science & Technology》 2025年第22期240-246,共7页
Single-walled carbon nanotubes(SWNTs)with enriched(n,m)species are in high demand for various advanced applications.Since the SWNT structure is largely influenced by the chemistry of the active catalyst during growth ... Single-walled carbon nanotubes(SWNTs)with enriched(n,m)species are in high demand for various advanced applications.Since the SWNT structure is largely influenced by the chemistry of the active catalyst during growth process,exploiting novel catalyst with bias towards specific SWNT chiralities has been challenging.In this work,we introduce a vanadium catalyst supported by mesoporous magnesia(V-MgO)for the selective growth of SWNTs using CO chemical vapor deposition(CVD).At a reaction temperature of 650℃,the(6,5)SWNT content reaches an impressive 67.9%among all semiconducting species,exceeding the selectivity of many commercial SWNT products.Post-CVD analysis reveals that the catalyst transforms into vanadium carbide(VC),which acts as a nucleation site for SWNT growth.Molecular dynamics simulations indicate that the energy at the SWNT-VC interface and the growth kinetics of SWNTs contribute to the chirality selectivity.This research opens up possibilities for the selective synthesis of SWNTs using cost-effective early transition metals,illuminating their future applications in fields such as bioimaging. 展开更多
关键词 Single-walled carbon nanotubes Chirality selective growth (6 5)tubes supported vanadium catalyst Molecular dynamics simulations
原文传递
Synergistic effect between nitrogen-doped sites and metal chloride for carbon supported extra-low mercury catalysts in acetylene hydrochlorination
4
作者 Yiyang Qiu Chong Liu +4 位作者 Xueting Meng Yuesen Liu Jiangtao Fan Guojun Lan Ying Li 《Chinese Journal of Chemical Engineering》 2025年第3期145-154,共10页
Carbon-supported mercury catalysts are extensivelyemployed in calcium carbide-based polyvinyl chloride(PVC)industries,but the usage of mercury-based catalysts can pose an environmental threat due to the release of mer... Carbon-supported mercury catalysts are extensivelyemployed in calcium carbide-based polyvinyl chloride(PVC)industries,but the usage of mercury-based catalysts can pose an environmental threat due to the release of mercury into the surrounding area during the operation period.In this study,a highly active and stable mercury-based catalyst was developed,utilizing the nitrogen atom of the support as the anchor site to enhance the interaction between active sites(HgCl_(2))and the carbon support(N-AC).Thermal loss rate testing and thermogravimetric analysis results demonstrate that,compared to commercial activated carbon,N-doped carbon can effectively increase the heat stability of HgCl_(2).The obtained mercury-based catalysts(HgCl_(2)/N-AC)exhibit significant catalytic performance,achieving 2.5 times the C2H2 conversion of conventional HgCl_(2)/AC catalysts.Experimental analysis combined with theoretical calculations reveals that,contrary to the Eley-Rideal(ER)mechanism of HgCl_(2)/AC,the HgCl_(2)/N-AC catalyst follows the Langmuir-Hinshelwood(LH)adsorption mechanism.The nitrogen sites and HgCl_(2) on the catalyst enhance the adsorption capabilities of the HCl and C2H2,thereby improving the catalytic performance.Based on the modification of the active center by these solid ligands,the loading amount of HgCl_(2) on the catalyst can be further reduced from the current 6.5%to 3%.Considering the absence of successful industrial applications for mercury-free catalysts,and based on the current annual consumption of commercial mercury chloride catalysts in the PVC industry,the widespread adoption of this technology could annually reduce the usage of chlorine mercury by 500 tons,making a notable contribution to mercury compliance,reduction,and emissions control in China.It also serves as a bridge between mercury-free and low-mercury catalysts.Moreover,this solid ligand technology can assist in the application research of mercury-free catalysts. 展开更多
关键词 Acetylene hydrochlorination Activated carbon catalyst support Mercury catalyst DFT calculation KINETICS
在线阅读 下载PDF
Catalytic oxidation of volatile organic compounds over supported noble metal and single atom catalysts:A review
5
作者 Honghong Zhang Zhiwei Wang +3 位作者 Hongxia Lin Yuxi Liu Hongxing Dai Jiguang Deng 《Journal of Environmental Sciences》 2025年第9期858-888,共31页
Volatile organic compounds(VOCs)exhausted from industrial processes are the major atmospheric pollutants,which could destroy the ecological environment and make hazards to human health seriously.Catalytic oxidation is... Volatile organic compounds(VOCs)exhausted from industrial processes are the major atmospheric pollutants,which could destroy the ecological environment and make hazards to human health seriously.Catalytic oxidation is regarded as the most competitive strategy for the efficient elimination of low-concentration VOCs.Supported noble metal catalysts are preferred catalysts due to their excellent low-temperature catalytic activity.To further lower the cost of catalysts,single atom catalysts(SAC)have been fabricated and extensively studied for application in VOCs oxidation due to their 100%atom-utilization efficiency and unique catalytic performance.In this review,we comprehensively summarize the recent advances in supported noble metal(e.g.,Pt,Pd,Au,and Ag)catalysts and SAC for VOCs oxidation since 2015.Firstly,this paper focuses on some important influencing factors that affect the activity of supported noble metal catalysts,including particle size,valence state and dispersion of noble metals,properties of the support,metal oxide/ion modification,preparation method,and pretreatment conditions of catalysts.Secondly,we briefly summarize the catalytic performance of SAC for typical VOCs.Finally,we conclude the key influencing factors and provide the prospects and challenges of VOCs oxidation. 展开更多
关键词 Volatile organic compounds Catalytic oxidation supported noble metal catalysts Single atom catalysts Pt Pd Au and Ag
原文传递
Catalytic removal of volatile organic compounds using ordered porous transition metal oxide and supported noble metal catalysts 被引量:29
6
作者 刘雨溪 邓积光 +2 位作者 谢少华 王治伟 戴洪兴 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2016年第8期1193-1205,共13页
Most of volatile organic compounds (VOCs) are harmful to the atmosphere and human health. Cata‐lytic combustion is an effective way to eliminate VOCs. The key issue is the availability of high per‐formance catalys... Most of volatile organic compounds (VOCs) are harmful to the atmosphere and human health. Cata‐lytic combustion is an effective way to eliminate VOCs. The key issue is the availability of high per‐formance catalysts. Many catalysts including transition metal oxides, mixed metal oxides, and sup‐ported noble metals have been developed. Among these catalysts, the porous ones attract much attention. In this review, we focus on recent advances in the synthesis of ordered mesoporous and macroporous transition metal oxides, perovskites, and supported noble metal catalysts and their catalytic oxidation of VOCs. The porous catalysts outperformed their bulk counterparts. This excel‐lent catalytic performance was due to their high surface areas, high concentration of adsorbed oxy‐gen species, low temperature reducibility, strong interaction between noble metal and support and highly dispersed noble metal nanoparticles and unique porous structures. Catalytic oxidation of carbon monoxide over typical catalysts was also discussed. We made conclusive remarks and pro‐posed future work for the removal of VOCs. 展开更多
关键词 Volatile organic compound Catalytic combustion Porous transition metal oxide Perovskite-type oxide supported noble metal catalyst
在线阅读 下载PDF
Highly selective supported gold catalyst for CO-driven reduction of furfural in aqueous media 被引量:2
7
作者 董静 朱明明 +4 位作者 张高硕 刘永梅 曹勇 刘苏 王仰东 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2016年第10期1669-1675,共7页
The reductive transformation of furfural (FAL) into furfuryl alcohol (FOL) is an attractive route for the use of renewable bio‐sources but it suffers from the heavy use of H2. We describe here a highly efficient ... The reductive transformation of furfural (FAL) into furfuryl alcohol (FOL) is an attractive route for the use of renewable bio‐sources but it suffers from the heavy use of H2. We describe here a highly efficient reduction protocol for converting aqueous FAL to FOL. A single phase rutile TiO2 support with a gold catalyst (Au/TiO2‐R) that used CO/H2O as the hydrogen source catalyze this reduction efficiently under mild conditions. By eliminating the consumption of fossil fuel‐derived H2, our pro‐cess has the benefit afforded by using CO as a convenient and cost competitive reducing reagent. 展开更多
关键词 Furfural Reduction supported gold catalyst Carbon monoxide AQUEOUS
在线阅读 下载PDF
Chemoselective Transfer Hydrogenation of Cinnamaldehyde over Activated Charcoal Supported Pt/Fe3O4 Catalyst 被引量:1
8
作者 张勇 陈春 +5 位作者 龚万兵 宋杰瑶 苏燕平 张海民 汪国忠 赵惠军 《Chinese Journal of Chemical Physics》 SCIE CAS CSCD 2017年第4期467-473,I0002,共8页
A variety of spherical and structured activated charcoal supported Pt/Fe3O4 composites with an average particle size of ~100 nm have been synthesized by a self-assembly method using the difference of reduction potenti... A variety of spherical and structured activated charcoal supported Pt/Fe3O4 composites with an average particle size of ~100 nm have been synthesized by a self-assembly method using the difference of reduction potential between Pt (Ⅳ) and Fe (Ⅱ) precursors as driving force. The formed Fe3O4 nanoparticles (NPs) effectively prevent the aggregation of Pt nanocrystallites and promote the dispersion of Pt NPs on the surface of catalyst, which will be favorable for the exposure of Pt active sites for high-efficient adsorption and contact of substrate and hydrogen donor. The electron-enrichment state of Pt NPs donated by Fe304 nanocrystallites is corroborated by XPS measurement, which is responsible for promoting and activating the terminal C=O bond of adsorbed substrate via a vertical configuration. The experimental results show that the activated charcoal supported Pt/Fe3O4 catalyst exhibits 94.8% selectivity towards cinnamyl alcohol by the transfer hydrogenation of einnamaldehyde with Pt loading of 2.46% under the optimum conditions of 120 ℃ for 6 h, and 2-propanol as a hydrogen donor. Additionally, the present study demonstrates that a high-efficient and recyclable catalyst can be rapidly separated from the mixture due to its natural magnetism upon the application of magnetic field. 展开更多
关键词 Activated charcoal supported Pt/Fe3O4 catalysts Redox method Transfer hydrogenation Cinnamaldehyde Cinnamyl alcohol
在线阅读 下载PDF
Selective hydrogenation of phenol to cyclohexanone in water over Pd catalysts supported on Amberlyst-45 被引量:5
9
作者 赵梦思 石娟娟 侯昭胤 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2016年第2期234-239,共6页
A series of Pd catalysts were prepared on different supports(Fe2O3,SiO2,ZnO,MgO,Al2O3,carbon,and Amberlyst-45) and used in the selective hydrogenation of phenol to cyclohexanone in water.The Amberlyst-45 supported P... A series of Pd catalysts were prepared on different supports(Fe2O3,SiO2,ZnO,MgO,Al2O3,carbon,and Amberlyst-45) and used in the selective hydrogenation of phenol to cyclohexanone in water.The Amberlyst-45 supported Pd catalyst(Pd/A-45) was highly active and selective under mild conditions(40-100 ℃,0.2-1 MPa),giving a selectivity of cyclohexanone higher than 89%even at complete conversion of phenol.Experiments with different Pd loadings(or different particle sizes) confirmed that the formation of cyclohexanone was a structure sensitive reaction,and Pd particles of12-14 nm on Amberlyst-45 gave better selectivity and stability. 展开更多
关键词 PHENOL HYDROGENATION CYCLOHEXANONE PALLADIUM Amberlyst-45 resin supported catalyst
在线阅读 下载PDF
Effects of the Supports on Activity of Supported Nickel Catalysts for Hydrogenation of m-Dinitrobenzene to m-Phenylenediamine 被引量:10
10
作者 刘迎新 陈吉祥 张继炎 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2007年第1期63-67,共5页
The hydrogenation of m-dinitrobenzene to m-phenylenediamine in liquid phase was studied with the nickel catalysts supported on SiO2, TiO2, γ-Al2O3, MgO and diatomite carders. Based on the experiments of X-ray diffrac... The hydrogenation of m-dinitrobenzene to m-phenylenediamine in liquid phase was studied with the nickel catalysts supported on SiO2, TiO2, γ-Al2O3, MgO and diatomite carders. Based on the experiments of X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), temperature-programmed reduction (TPR), temperature-programmed desorption of hydrogen (H2-TPD) and activity evaluation, the physico-chemical and catalytic properties of the catalysts were investigated. Among the catalysts tested, the SiO2 supported nickel catalyst showed the highest activity and selectivity towards m-phenylenediamine, over which 97.3% m-dinitrobenzene conversion and 95.1% m-phenylenediamine yield were obtained at 373K under hydrogen pressure of 2.6MPa after reaction for 6 h when using ethanol as solvent. Although TiO2 and diatomite supported nickel catalysts also presented high activity, they had lower selectivity towards m-phenylenediamine. As for γ-Al2O3 and MgO supported catalysts were almost inactive for the object reaction. It was shown that both the activity and selectivity of the catalysts were strongly depended on the interaction between nickel and the support. The higher activities of Ni/SiO2, Ni/TiO2 and Ni/diatomite could be attributed to the weaker metal-support interaction, on which Ni species presented as crystallized Ni metal particles. On the other hand, there existed strong metal-support interaction in Ni/MgO and Ni γ-Al2O3, which causes these catalysts more difficult to be reduced and the availability of Ni active sites decreased, resulting in their low catalytic activity. 展开更多
关键词 HYDROGENATION M-PHENYLENEDIAMINE M-DINITROBENZENE supported nickel catalyst metal-support interaction
在线阅读 下载PDF
An overview on metal-related catalysts: metal oxides, nanoporous metals and supported metal nanoparticles on metal organic frameworks and zeolites 被引量:9
11
作者 Bhupendra Kumar Singh Sunwoo Lee Kyungsu Na 《Rare Metals》 SCIE EI CAS CSCD 2020年第7期751-766,共16页
Metal nanoparticles(NPs) supported on porous materials have shown great advantages in many catalytic application fields. Supported metal NPs are receiving extensive attention due to their significant contribution in a... Metal nanoparticles(NPs) supported on porous materials have shown great advantages in many catalytic application fields. Supported metal NPs are receiving extensive attention due to their significant contribution in a wide range of current and future applications, and this is arguably one of the fastest growing research fields. In this review, we highlight various types of metal catalysts that possess great potential in several catalytic reactions. The major focus has been on metal oxides, nanoporous metals and metal NPs supported on metal-organic frameworks(MOFs) and zeolites. Special attention has been given to the synthesis strategies and application of the NPs supported on MOFs and zeolites, which are considered highly interesting and rapidly expanding areas in heterogeneous catalysis. Finally, the prospects of these catalysts have been included in the concluding remarks. 展开更多
关键词 supported metal catalysts Porous materials Nanoporous metals Heterogeneous catalysis Zeolites Metal oxides Metal-organic frameworks
原文传递
A Novel Carbon Nanotube-Supported NiP Amorphous Alloy Catalyst and Its Hydrogenation Activity 被引量:8
12
作者 Yan Ju Fengyi Li 《Journal of Natural Gas Chemistry》 EI CAS CSCD 2006年第4期313-318,共6页
A carbon nanotube-supported NiP amorphous catalyst (NiP/CNT) was prepared by induced reduction. Benzene hydrogenation was used as a probe reaction for the study of catalytic activity. The effects of the support on t... A carbon nanotube-supported NiP amorphous catalyst (NiP/CNT) was prepared by induced reduction. Benzene hydrogenation was used as a probe reaction for the study of catalytic activity. The effects of the support on the activity and thermal stability of the supported catalyst were discussed based on various characterizations, including XRD, TEM, ICP, XPS, H2-TPD, and DTA. In comparison with the NiP amorphous alloy, the benzene conversion on NiP/CNT catalyst was lower, but the specific activity of NiP/CNT was higher, which is attributed to the dispersion produced by the support, an electron-donating effect, and the hydrogen-storage ability of CNT. The NiP/CNT thermal stability was improved because of the dispersion and electronic effects and the good heat-conduction ability of the CNT support. 展开更多
关键词 carbon nanotube catalyst support catalytic property NI P HYDROGENATION BENZENE
在线阅读 下载PDF
Supported catalysts for simultaneous removal of SO_(2),NO_(x),and Hg^(0)from industrial exhaust gases:A review 被引量:5
13
作者 Ke Zhao Xin Sun +4 位作者 Chi Wang Xin Song Fei Wang Kai Li Ping Ning 《Chinese Chemical Letters》 SCIE CAS CSCD 2021年第10期2963-2974,共12页
The simultaneous removal of SO_(2),NO_(x)and Hg^(0)from industrial exhaust flue gas has drawn worldwide attention in recent years.A particularly attractive technique is selective catalytic reduction,which effectively ... The simultaneous removal of SO_(2),NO_(x)and Hg^(0)from industrial exhaust flue gas has drawn worldwide attention in recent years.A particularly attractive technique is selective catalytic reduction,which effectively removes SO_(2),NO_(x)and Hg^(0)at low temperatures.This paper first reviews the simultaneous removal of SO_(2),NO_(x)and Hg^(0)by unsupported and supported catalysts.It then describes and compares the research progress of various carriers,eg.,carbon-based materials,metal oxides,silica,molecular sieves,metal-organic frameworks,and pillared interlayered clays,in the simultaneous removal of SO_(2),NO_(x)and Hg^(0).The effects of flue-gas components(such as O_(2),NH3,HCl,H2 O,SO_(2),NO and Hg^(0))on the removal of SO_(2),NOx,and Hg^(0)are discussed comprehensively and systematically.After summarizing the pollutantremoval mechanism,the review discusses future developments in the simultaneous removal of SO_(2),NOx and Hg^(0)by catalysts. 展开更多
关键词 supported catalysts Simultaneous removal SO_(2) NO_(x)and Hg^(0) Industrial exhaust gases
原文传递
Simultaneous catalytic removal of NOx and diesel soot particulate over perovskite-type oxides and supported Ag catalysts 被引量:4
14
作者 LiuZM HaoZP 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2002年第3期289-295,共7页
A series of perovskite type oxides and supported Ag catalysts were prepared, and characterized by X ray diffraction (XRD) and X ray photoelectron spectroscopy (XPS). The catalytic activities of the catalyst... A series of perovskite type oxides and supported Ag catalysts were prepared, and characterized by X ray diffraction (XRD) and X ray photoelectron spectroscopy (XPS). The catalytic activities of the catalysts as well as influencing factors on catalytic activity have been investigated for the simultaneous removal of NOx and diesel soot particulate. An increase in catalytic activity for the selective reduction of NOx was observed with Ag addition in these perovskite oxides, especially with 5% Ag loading. This catalyst could be a promising candidate of catalytic material for the simultaneous elimination of NOx and diesel soot. 展开更多
关键词 perovskite type catalysts supported Ag catalyst NOx diesel soot
在线阅读 下载PDF
Sodium-treated sepiolite-supported transition metal(Cu,Fe,Ni,Mn,or Co)catalysts for HCHO oxidation 被引量:6
15
作者 Ning Dong Qing Ye +3 位作者 Mengyue Chen Shuiyuan Cheng Tianfang Kang Hongxing Dai 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2020年第11期1734-1744,共11页
Sodium-treated sepiolite(Na Sep)-supported transition metal catalysts(TM/Na Sep;TM = Cu, Fe, Ni, Mn, and Co) were synthesized via a rotary evaporation method. Physicochemical properties of the as-synthesized samples w... Sodium-treated sepiolite(Na Sep)-supported transition metal catalysts(TM/Na Sep;TM = Cu, Fe, Ni, Mn, and Co) were synthesized via a rotary evaporation method. Physicochemical properties of the as-synthesized samples were characterized by means of various techniques, and their catalytic activities for HCHO(0.2%) oxidation were evaluated. Among the samples, Cu/Na Sep exhibited superior performance, and complete HCHO conversion was achieved at 100 ℃(GHSV = 240000 m L/(g·h)). Additionally, the sample retained good catalytic activity during a 42 h stability test. A number of factors, including elevated acidity, the abundance of oxygen species, and favorable low-temperature reducibility, were responsible for the excellent catalytic activity of Cu/Na Sep. According to the results of the in-situ DRIFTS characterization, the HCHO oxidation mechanism was as follows:(i) HCHO was rapidly decomposed into dioxymethylene(DOM) species on the Cu/Na Sep surface;(ii) DOM was then immediately converted to formate species;(iii) the resultant formate species were further oxidized to carbonates;(iv) the carbonate species were eventually converted to CO2 and H2O. 展开更多
关键词 Sodium-treated sepiolite Transition metal loading supported transition metal catalyst Volatile organic compound HCHO oxidation
在线阅读 下载PDF
Study on the Reaction Mechanism for Carbon Dioxide Reforming of Methane over supported Nickel Catalyst 被引量:3
16
作者 Ling QIAN, Zi Feng YAN State Key Laboratory for Heavy Oil Processing, University of Petroleum, Dongying 257061 《Chinese Chemical Letters》 SCIE CAS CSCD 2003年第10期1081-1084,共4页
The adsorption and dissociation of methane and carbon dioxide for reforming on nickel catalyst were extensively investigated by TPSR and TPD experiments. It showed that the decomposition of methane results in the form... The adsorption and dissociation of methane and carbon dioxide for reforming on nickel catalyst were extensively investigated by TPSR and TPD experiments. It showed that the decomposition of methane results in the formation of at least three kinds of surface carbon species on supported nickel catalyst, while CO2 adsorbed on the catalyst weakly and only existed in one kind of adsorption state. Then the mechanism of interaction between the species dissociated from CH4 and CO2 during reforming was proposed. 展开更多
关键词 ADSORPTION DISSOCIATION supported nickel catalyst METHANE carbon dioxide reforming.
在线阅读 下载PDF
Low-temperature conversion of methane to oxygenates by supported metal catalysts: From nanoparticles to single atoms 被引量:3
17
作者 Geqian Fang Jian Lin Xiaodong Wang 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2021年第10期18-29,共12页
Direct cost-effective conversion of abundant methane to high value-added oxygenates(methanol,formic acid,acetic acid,etc.)under mild conditions is prospective for optimizing the structure of energy resources.However,t... Direct cost-effective conversion of abundant methane to high value-added oxygenates(methanol,formic acid,acetic acid,etc.)under mild conditions is prospective for optimizing the structure of energy resources.However,the CAH bond of products is more reactive than that of high thermodynamic stable methane.Exploring an appropriate approach to eliminate the‘‘seesaw effect"between methane conversion and oxygenate selectivity is significant.In this review,we briefly summarize the research progress in the past decade on low-temperature direct conversion of methane to oxygenates in gas-solid-liquid phase over various transition metal(Fe,Cu,Rh,Pd,Au Pd,etc.)based nanoparticle or single-atom catalyst.Furthermore,the prospects of catalyst design and catalysis process are also discussed. 展开更多
关键词 METHANE OXYGENATES supported metal catalysts NANOPARTICLE Single-atom catalysts
在线阅读 下载PDF
Support effect of the supported ceria-based catalysts during NH_3-SCR reaction 被引量:19
18
作者 Xiaojiang Yao Li Chen +3 位作者 Tingting Kong Shimin Ding Qiong Luo Fumo Yang 《Chinese Journal of Catalysis》 CSCD 北大核心 2017年第8期1423-1430,共8页
To investigate how the physicochemical properties and NH3‐selective catalytic reduction(NH3‐SCR)performance of supported ceria‐based catalysts are influenced as a function of support type,a series of CeO2/SiO2,CeO2... To investigate how the physicochemical properties and NH3‐selective catalytic reduction(NH3‐SCR)performance of supported ceria‐based catalysts are influenced as a function of support type,a series of CeO2/SiO2,CeO2/γ‐Al2O3,CeO2/ZrO2,and CeO2/TiO2catalysts were prepared.The physicochemical properties were probed by means of X‐ray diffraction,Raman spectroscopy,Brunauer‐Emmett‐Teller surface area measurements,X‐ray photoelectron spectroscopy,H2‐temperature programmed reduction,and NH3‐temperature programmed desorption.Furthermore,the supported ceria‐based catalysts'catalytic performance and H2O+SO2tolerance were evaluated by the NH3‐SCR model reaction.The results indicate that out of the supported ceria‐based catalysts studied,the CeO2/γ‐Al2O3catalyst exhibits the highest catalytic activity as a result of having a high relative Ce3+/Ce4+ratio,optimum reduction behavior,and the largest total acid site concentration.Finally,the CeO2/γ‐Al2O3catalyst also presents excellent H2O+SO2tolerance during the NH3‐SCR process. 展开更多
关键词 Support effect supported ceria‐based catalyst Reduction behavior Surface acidity Ammonia‐selective catalytic reduction
在线阅读 下载PDF
Partial oxidation of methane over SiO2 supported Ni and NiCe catalysts 被引量:3
19
作者 A.Emamdoust V.La Parola +3 位作者 G.Pantaleo M.L.Testa S.Farjami Shayesteh A.M.Venezia 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2020年第8期1-9,I0001,共10页
Nickel and nickel-ceria catalysts supported on high surface area silica, with 6 wt% Ni and 20 wt% CeO2 were prepared by microwave assisted(co) precipitation method. The catalysts were investigated by XRD,TPR and XPS a... Nickel and nickel-ceria catalysts supported on high surface area silica, with 6 wt% Ni and 20 wt% CeO2 were prepared by microwave assisted(co) precipitation method. The catalysts were investigated by XRD,TPR and XPS analyses and they were tested in partial oxidation of methane(CPO). The catalytic reaction was carried out at atmospheric pressure in a temperature range of 400–800℃ with a feed gas mixture containing methane and oxygen in a molecular ratio CH4/O2=2. The Ni catalyst exhibited 60% methane conversion with 60% selectivity to CO already at 500℃. On the contrary, the Ni–Ce catalyst was inert to CPO up to 700℃. Moreover, the former catalyst reproduced its activity at the descending temperatures maintaining a good stability at 600℃, over a reaction time of 80 h, whereas the latter one completely deactivated. Test of CH4 temperature programmed surface reaction(CH4-TPSR) revealed a higher methane activation temperature(> 100℃) for the Ni–Ce catalyst as compared to the Ni one. Noticeable improvement of the ceria containing catalyst occurred when the reaction test started at a temperature higher than the methane decomposition temperature. In this case, the sample achieved the same catalytic behavior of the Ni catalyst. As confirmed by XPS analyses, the distinct electronic state of the supported nickel was responsible for the differences in catalytic behavior. 展开更多
关键词 Methane catalytic partial oxidation(CPO) Ni catalyst NICE SiO2 supported catalysts
在线阅读 下载PDF
Ultrafine Pt nanoparticles supported on double-shelled C/TiO2 hollow spheres material as highly efficient methanol oxidation catalysts 被引量:6
20
作者 Xiaoyu Yue Yuguang Pu +2 位作者 Wen Zhang Ting Zhang Wei Gao 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2020年第10期275-282,共8页
Catalyst support is extremely important for future fuel cell devices.In this work,we developed doubleshelled C/TiO2(DSCT)hollow spheres as an excellent catalyst support via a template-directed method.The combination o... Catalyst support is extremely important for future fuel cell devices.In this work,we developed doubleshelled C/TiO2(DSCT)hollow spheres as an excellent catalyst support via a template-directed method.The combination of hollow structure,TiO2 shell and carbon layer results in excellent electron conductivity,electrocatalytic activity,and chemical stability.These uniformed DSCT hollow spheres are used as catalyst support to synthesize Pt/DSCT hollow spheres electrocatalyst.The resulting Pt/DSCT hollow spheres exhibited high catalytic performance with a current density of 462 mA mg^-1 for methanol oxidation reaction,which is 2.52 times higher than that of the commercial Pt/C.Furthermore,the increased tolerance to carbonaceous poisoning with a higher If/Ibratio and a better long-term stability in acid media suggests that the DSCT hollow sphere is a promising C/TiO2-based catalyst support for direct methanol fuel cells applications. 展开更多
关键词 catalyst support C/TiO2 hollow sphere Metal-support interactions Methanol oxidation reaction
在线阅读 下载PDF
上一页 1 2 12 下一页 到第
使用帮助 返回顶部