This paper studies the coupling mechanism between the nonlinear stiffness and damping coefficients of Active Elastic Support/Dry Friction Damper(AESDFD)and rotor system.First,parameters for evaluating the vibration re...This paper studies the coupling mechanism between the nonlinear stiffness and damping coefficients of Active Elastic Support/Dry Friction Damper(AESDFD)and rotor system.First,parameters for evaluating the vibration reduction characteristics are proposed to facilitate the design of the AESDFD.To achieve this,the nonlinear friction force is initially represented as equivalent stiffness and damping coefficients,based on the ball-plate friction model.Second,three evaluation parameters—optimal slipping displacement,loss factor,and controllability—are proposed to reveal the vibration reduction characteristics of the AESDFD,alongside determining the optimal normal force.Subsequently,the finite element method,in conjunction with the ball-plate friction model,is introduced to formulate the governing equation of a low-pressure rotor system equipped with AESDFDs.The steady-state responses of the AESDFDs-rotor system are solved using the harmonic balance method combined with an efficient iteration method.Finally,the solutions are validated on the AESDFDs-rotor system both numerically and experimentally.The results indicate that controllability effectively assesses the vibration reduction performance of the AESDFD and is relatively insensitive to variations in low normal force.Away from the critical speed,the AESDFD suppresses vibration by altering the resonance position of the rotor system through its stiffness coefficient.Near the critical speed,vibration reduction is achieved primarily through energy dissipation by the damping coefficient.If the loss factor is less than one,the stiffness coefficient can diminish the vibration reduction effect of the damping coefficient.Notably,the optimal normal force of the AESDFD achieves optimal vibration reduction effect.This study reveals that changes in rotor system unbalance do not affect the vibration reduction characteristics of the AESDFD,with the same upper limit to the vibration reduction effect of the AESDFD.展开更多
The elastic support/dry friction damper is a type of damper which is used for active vibration control in a rotor system.To establish the analytical model of this type of damper,a two-dimensional friction model-ball/p...The elastic support/dry friction damper is a type of damper which is used for active vibration control in a rotor system.To establish the analytical model of this type of damper,a two-dimensional friction model-ball/plate model was proposed.By using this ball/plate model,a dynamics model of rotor with elastic support/dry friction dampers was established and experimentally verified.Moreover,the damping performance of the elastic support/dry friction damper was studied numerically with respect to some variable parameters.The numerical study shows that the damping performance of the elastic support/dry friction damper is closely related to the stiffness distribution of the rotor-support system,the damper location,the pressing force between the moving and stationary disk,the friction coefficient,the tangential contact stiffness of the contact interface,and the stiffness of the stationary disk.In general,the damper should be located on an elastic support which has a large vibration amplitude in order to achieve a better damping performance,and the more vibration energy in this elastic support concentrates,the better performance of the damper will be.The larger the tangential contact stiffness of the contact interface,and the stiffness of the stationary disk are,the better performance of the damper will be.There will be an optimal value of the friction force at which the damper performs best.展开更多
CeO_(2) based semiconductor are widely used in solar-driven photothermal catalytic dry reforming of methane(DRM)reaction,but still suffer from low activity and low light utilization efficiency.This study developed gra...CeO_(2) based semiconductor are widely used in solar-driven photothermal catalytic dry reforming of methane(DRM)reaction,but still suffer from low activity and low light utilization efficiency.This study developed graphite-CeO_(2) interfaces to enhance solar-driven photothermal catalytic DRM.Compared with carbon nanotubes-modified CeO_(2)(CeO_(2)-CNT),graphite-modified CeO_(2)(CeO_(2)-GRA)constructed graphite-CeO_(2) interfaces with distortion in CeO_(2),leading to the formation abundant oxygen vacancies.These graphite-CeO_(2) interfaces with oxygen vacancies enhanced optical absorption and promoted the generation and separation of photogenerated carriers.The high endothermic capacity of graphite elevated the catalyst surface temperature from 592.1−691.3℃,boosting light-to-thermal conversion.The synergy between photogenerated carriers and localized heat enabled Ni/CeO_(2)-GRA to achieve a CO production rate of 9985.6 mmol/(g·h)(vs 7192.4 mmol/(g·h)for Ni/CeO_(2))and a light-to-fuel efficiency of 21.8%(vs 13.8%for Ni/CeO_(2)).This work provides insights for designing graphite-semiconductor interfaces to advance photothermal catalytic efficiency.展开更多
In today's fast-paced modern life, whether for fitness training, outdoor adventures, or daily commutes, we all yearn for quick-dry apparel that can rapidly wick away moisture and keep our bodies dry and comfortabl...In today's fast-paced modern life, whether for fitness training, outdoor adventures, or daily commutes, we all yearn for quick-dry apparel that can rapidly wick away moisture and keep our bodies dry and comfortable. As a standout in functional textiles, quick-dry fabrics are becoming the top choice for more and more people, thanks to their exceptional moisture-wicking performance and rapid drying capabilities.展开更多
This study presents an AI-driven Spatial Decision Support System (SDSS) aimed at transforming groundwater suitability assessments for domestic and irrigation uses in Visakhapatnam District, Andhra Pradesh, India. By e...This study presents an AI-driven Spatial Decision Support System (SDSS) aimed at transforming groundwater suitability assessments for domestic and irrigation uses in Visakhapatnam District, Andhra Pradesh, India. By employing advanced remote sensing, GIS, and machine learning techniques, groundwater quality data from 50 monitoring wells, sourced from the Central Ground Water Board (CGWB), was meticulously analysed. Key parameters, including pH, electrical conductivity, total dissolved solids, and major ion concentrations, were evaluated against World Health Organization (WHO) standards to determine domestic suitability. For irrigation, advanced metrics such as Sodium Adsorption Ratio (SAR), Kelly’s Ratio, Residual Sodium Carbonate (RSC), and percentage sodium (% Na) were utilized to assess water quality. The integration of GIS for spatial mapping and AI models for predictive analytics allows for a comprehensive visualization of groundwater quality distribution across the district. Additionally, the irrigation water quality was evaluated using the USA Salinity Laboratory diagram, providing essential insights for effective agricultural water management. This innovative SDSS framework promises to significantly enhance groundwater resource management, fostering sustainable practices for both domestic use and agriculture in the region.展开更多
Ni-based catalysts hold great potential in the light-driven dry reforming of methane(DRM)for syngas production due to their low cost and comparable catalytic performance to conventional noble-metal catalysts.However,t...Ni-based catalysts hold great potential in the light-driven dry reforming of methane(DRM)for syngas production due to their low cost and comparable catalytic performance to conventional noble-metal catalysts.However,the currently available Ni-based catalysts are confronted with low light-driven DRM efficiency and poor stability attributed to the coking.Herein,an atomically dispersed Ni-loaded CeO_(2)(Ni/CeO_(2))for light-drivenDRMis prepared by employing a polyol-mediated doping method to allow the high loading concentration of Ni on the CeO_(2),which overcomes the conventional atomically dispersed metal problem of low loading content.The atomically dispersed nature of the Ni can induce enormous CH4 activation sites for the reaction and photothermal effects for driving the reaction,while the CeO_(2) can facilitateCO_(2) activation.Therefore,the optimized atomically dispersed Ni-loaded CeO_(2) demonstrates an excellent light-drivenDRMperformance forH_(2)(626.5 mmol gcat^(-1) h^(-1))and CO(728.5 mmol gcat^(-1) h^(-1))production.More importantly,the optimized sample sustains its DRM performance after 100 h of continuous test,and such excellent stability of the presence of enormous Ni–O pairs can prevent the rapid conversion of CH_(x) intermediates into coke.This work demonstrates the meticulous design of non-noble metal catalysts for the lightdriven DRM with both high performance and stability.展开更多
AIM:To investigate the association between active corneal epithelial dendritic cells(CEDCs)and ocular pain in patients with dry eye disease(DED).METHODS:This cross-sectional study enrolled 67 DED patients,who were div...AIM:To investigate the association between active corneal epithelial dendritic cells(CEDCs)and ocular pain in patients with dry eye disease(DED).METHODS:This cross-sectional study enrolled 67 DED patients,who were divided into two groups based on numerical rating scale(NRS)scores:the mild pain group(n=44)and the moderate-to-severe pain group(n=23).In vivo confocal microscopy(IVCM)was used to image the subbasal layer of the central cornea.Corneal nerve characteristics were analyzed using ACCMetrics software,while CEDCs were quantified manually with Image J software.Regression and correlation analyses were performed to assess the impact of active CEDCs on ocular pain.Additionally,the Luminex method was employed to compare the concentrations of inflammation-related cytokines in tears between patients with≥2 CEDCs and those with<2 CEDCs.Differences in cytokine levels between the two groups were analyzed using Student’s t-test.RESULTS:The study included 44 eyes of 44 patients with mild ocular pain(12 males and 32 females)and 23 eyes of 23 patients with moderate-to-severe ocular pain(3 males and 20 females).The mean age was 36.2±13.5y in the mild pain group and 39.7±12.4y in the moderate to severe pain group.There were no significant differences in age or sex between the two groups(P=0.30;P=0.19).Multivariable regression analysis showed that older age[odds ratio(OR)=1.05,95%confidence interval(CI)1.00–1.11]and a higher number of CEDCs(OR=1.80,95%CI 1.17–2.76)were associated with ocular pain.Patients with≥2 CEDCs had significantly higher tear concentrations of interleukin(IL)-6(P<0.05),IL-8(P<0.05),and tumor necrosis factor(TNF)-α(P<0.05)compared to those with<2 active CEDCs.CONCLUSION:The findings suggest that infiltrating CEDCs in the corneal subbasal layer are a potential risk factor for ocular pain in DED.展开更多
Developing cost-effective and high-performance catalyst systems for dry reforming of methane(DRM)is crucial for producing hydrogen(H_(2))sustainably.Herein,we investigate using iron(Fe)as a promoter and major alumina ...Developing cost-effective and high-performance catalyst systems for dry reforming of methane(DRM)is crucial for producing hydrogen(H_(2))sustainably.Herein,we investigate using iron(Fe)as a promoter and major alumina support in Ni-based catalysts to improve their DRM performance.The addition of iron as a promotor was found to add reducible iron species along with reducible NiO species,enhance the basicity and induce the deposition of oxidizable carbon.By incorporating 1 wt.%Fe into a 5Ni/10ZrAl catalyst,a higher CO_(2) interaction and formation of reducible"NiO-species having strong interaction with support"was observed,which led to an∼80%H_(2) yield in 420 min of Time on Stream(TOS).Further increasing the Fe content to 2 wt.%led to the formation of additional reducible iron oxide species and a noticeable rise in H_(2) yield up to 84%.Despite the severe weight loss on Fe-promoted catalysts,high H_(2) yield was maintained due to the proper balance between the rate of CH_(4) decomposition and the rate of carbon deposit diffusion.Finally,incorporating 3 wt.%Fe into the 5Ni/10ZrAl catalyst resulted in the highest CO_(2) interaction,wide presence of reducible NiO-species,minimumgraphitic deposit and an 87%H_(2) yield.Our findings suggest that ironpromoted zirconia-alumina-supported Ni catalysts can be a cheap and excellent catalytic system for H_(2) production via DRM.展开更多
Ni/TiO_(2) catalyst is widely employed for photo-driven DRM reaction while the influence of crystal structure of TiO_(2) remains unclear.In this work,the rutile/anatase ratio in supports was successfully controlled by...Ni/TiO_(2) catalyst is widely employed for photo-driven DRM reaction while the influence of crystal structure of TiO_(2) remains unclear.In this work,the rutile/anatase ratio in supports was successfully controlled by varying the calcination temperature of anatase-TiO_(2).Structural characterizations revealed that a distinct TiO_(x) coating on the Ni nanoparticles(NPs)was evident for Ni/TiO_(2)-700 catalyst due to strong metal-support interaction.It is observed that the TiOx overlayer gradually disappeared as the ratio of rutile/anatase increased,thereby enhancing the exposure of Ni active sites.The exposed Ni sites enhanced visible light absorption and boosted the dissociation capability of CH4,which led to the much elevated catalytic activity for Ni/TiO_(2)-950 in which rutile dominated.Therefore,the catalytic activity of solar-driven DRM reaction was significantly influenced by the rutile/anatase ratio.Ni/TiO_(2)-950,characterized by a predominant rutile phase,exhibited the highest DRM reactivity,with remarkable H_(2) and CO production rates reaching as high as 87.4 and 220.2 mmol/(g·h),respectively.These rates were approximately 257 and 130 times higher,respectively,compared to those obtained on Ni/TiO_(2)-700 with anatase.This study suggests that the optimization of crystal structure of TiO_(2) support can effectively enhance the performance of photothermal DRM reaction.展开更多
This paper presents a novel suspension support tailored for wind tunnel tests of spinning projectiles based on Wire-Driven Parallel Robot(WDPR),uniquely characterized by an SPM(Spinning Projectile Model)-centered mobi...This paper presents a novel suspension support tailored for wind tunnel tests of spinning projectiles based on Wire-Driven Parallel Robot(WDPR),uniquely characterized by an SPM(Spinning Projectile Model)-centered mobile platform.First,an SPM-centered mobile platform,featuring two redundant and another unconstrained Degree of Freedom(DOF),and its suspension support mechanism are designed together,collectively constructing a WDPR endowed with kinematic redundancy.Afterward,the kinematics of the mechanism,boundary equations for the redundant DOFs,and relevant kinematic performance indices are then proposed and formulated.The results from both prototype experiments and numerical assessments are presented.The capability of the support mechanism to replicate the complex coupled motions of the SPM is verified by the experimental results,while the proposed kinematics and boundary equations are also validated.Furthermore,it is revealed by numerical assessments that the redundant DOFs of the mobile platform exert a minimal impact on the kinematic performance of the suspension support.Finally,the optimal global attitude performance is obtained when these DOFs are set to zero if they are restricted to constants.However,local attitude performance can be further improved by the variable values.展开更多
To overcome large deformation of deep phosphate rock roadways and pillar damage,a new type of constant-resistance large-deformation negative Poisson’s ratio(NPR)bolt that can withstand a high prestress of at least 13...To overcome large deformation of deep phosphate rock roadways and pillar damage,a new type of constant-resistance large-deformation negative Poisson’s ratio(NPR)bolt that can withstand a high prestress of at least 130 KN was developed.In the conducted tests,the amount of deformation was 200-2000 mm,the breaking force reached 350 KN,and a high constant-resistance pre-stress was maintained during the deformation process.A stress compensation theory of phosphate rock excavation based on NPR bolts is proposed together with a balance system for bolt compensation of the time-space effect and high NPR pre-stress.Traditional split-set rock bolts are unable to maintain the stability of roadway roofs and pillars.To verify the support effect of the proposed bolt,field tests were conducted using both the proposed NPR bolts and split-set rock bolts as support systems on the same mining face.In addition,the stress compensation mechanism of roadway mining was simulated using the particle flow code in three dimensions(PFC^(3D))-fast Lagrangian analysis of continua(FLAC^(3D))particle-flow coupling numerical model.On-site monitoring and numerical simulations showed that the NPR excavation compensation support scheme effectively improves the stress state of the bolts and reduces the deformation of the surrounding rock.Compared to the original support scheme,the final deformation of the surrounding rock was reduced by approximately 70%.These results significantly contribute to domestic and foreign research on phosphate-rock NPR compensation support technology,theoretical systems,and engineering practices,and further promote technological innovation in the phosphate rock mining industry.展开更多
This study investigates the dry reformation of methane(DRM)over Ni/Al_(2)O_(3)catalysts in a dielectric barrier discharge(DBD)non-thermal plasma reactor.A novel hybrid machine learning(ML)model is developed to optimiz...This study investigates the dry reformation of methane(DRM)over Ni/Al_(2)O_(3)catalysts in a dielectric barrier discharge(DBD)non-thermal plasma reactor.A novel hybrid machine learning(ML)model is developed to optimize the plasma-catalytic DRM reaction with limited experimental data.To address the non-linear and complex nature of the plasma-catalytic DRM process,the hybrid ML model integrates three well-established algorithms:regression trees,support vector regression,and artificial neural networks.A genetic algorithm(GA)is then used to optimize the hyperparameters of each algorithm within the hybrid ML model.The ML model achieved excellent agreement with the experimental data,demonstrating its efficacy in accurately predicting and optimizing the DRM process.The model was subsequently used to investigate the impact of various operating parameters on the plasma-catalytic DRM performance.We found that the optimal discharge power(20 W),CO_(2)/CH_(4)molar ratio(1.5),and Ni loading(7.8 wt%)resulted in the maximum energy yield at a total flow rate of∼51 mL/min.Furthermore,we investigated the relative significance of each operating parameter on the performance of the plasma-catalytic DRM process.The results show that the total flow rate had the greatest influence on the conversion,with a significance exceeding 35%for each output,while the Ni loading had the least impact on the overall reaction performance.This hybrid model demonstrates a remarkable ability to extract valuable insights from limited datasets,enabling the development and optimization of more efficient and selective plasma-catalytic chemical processes.展开更多
Accurately estimating the State of Health(SOH)and Remaining Useful Life(RUL)of lithium-ion batteries(LIBs)is crucial for the continuous and stable operation of battery management systems.However,due to the complex int...Accurately estimating the State of Health(SOH)and Remaining Useful Life(RUL)of lithium-ion batteries(LIBs)is crucial for the continuous and stable operation of battery management systems.However,due to the complex internal chemical systems of LIBs and the nonlinear degradation of their performance,direct measurement of SOH and RUL is challenging.To address these issues,the Twin Support Vector Machine(TWSVM)method is proposed to predict SOH and RUL.Initially,the constant current charging time of the lithium battery is extracted as a health indicator(HI),decomposed using Variational Modal Decomposition(VMD),and feature correlations are computed using Importance of Random Forest Features(RF)to maximize the extraction of critical factors influencing battery performance degradation.Furthermore,to enhance the global search capability of the Convolution Optimization Algorithm(COA),improvements are made using Good Point Set theory and the Differential Evolution method.The Improved Convolution Optimization Algorithm(ICOA)is employed to optimize TWSVM parameters for constructing SOH and RUL prediction models.Finally,the proposed models are validated using NASA and CALCE lithium-ion battery datasets.Experimental results demonstrate that the proposed models achieve an RMSE not exceeding 0.007 and an MAPE not exceeding 0.0082 for SOH and RUL prediction,with a relative error in RUL prediction within the range of[-1.8%,2%].Compared to other models,the proposed model not only exhibits superior fitting capability but also demonstrates robust performance.展开更多
Rockbursts, which mainly affect mining roadways, are dynamic disasters arising from the surrounding rock under high stress. Understanding the interaction between supports and the surrounding rock is necessary for effe...Rockbursts, which mainly affect mining roadways, are dynamic disasters arising from the surrounding rock under high stress. Understanding the interaction between supports and the surrounding rock is necessary for effective rockburst control. In this study, the squeezing behavior of the surrounding rock is analyzed in rockburst roadways, and a mechanical model of rockbursts is established considering the dynamic support stress, thus deriving formulas and providing characteristic curves for describing the interaction between the support and surrounding rock. Design principles and parameters of supports for rockburst control are proposed. The results show that only when the geostress magnitude exceeds a critical value can it drive the formation of rockburst conditions. The main factors influencing the convergence response and rockburst occurrence around roadways are geostress, rock brittleness, uniaxial compressive strength, and roadway excavation size. Roadway support devices can play a role in controlling rockburst by suppressing the squeezing evolution of the surrounding rock towards instability points of rockburst. Further, the higher the strength and the longer the impact stroke of support devices with constant resistance, the more easily multiple balance points can be formed with the surrounding rock to control rockburst occurrence. Supports with long impact stroke allow adaptation to varying geostress levels around the roadway, aiding in rockburst control. The results offer a quantitative method for designing support systems for rockburst-prone roadways. The design criterion of supports is determined by the intersection between the convergence curve of the surrounding rock and the squeezing deformation curve of the support devices.展开更多
Structural regulation of Pd-based electrocatalytic hydrodechlorination(EHDC)catalyst for constructing high-efficient cathode materials with low noble metal content and high atom utilization is crucial but still challe...Structural regulation of Pd-based electrocatalytic hydrodechlorination(EHDC)catalyst for constructing high-efficient cathode materials with low noble metal content and high atom utilization is crucial but still challenging.Herein,a support electron inductive effect of Pd-Mn/Ni foam catalyst was proposed via in-situ Mn doping to optimize the electronic structure of the Ni foam(NF),which can inductive regulation of Pd for improving the EHDC performance.The mass activity and current efficiency of Pd-Mn/NF catalyst are 2.91 and 1.34 times superior to that of Pd/NF with 2,4-dichlorophenol as model compound,respectively.The Mn-doped interlayer optimized the electronic structure of Pd by bringing the d-state closer to the Fermi level than Pd on the NF surface,which optimizied the binding of EHDC intermediates.Additionally,the Mn-doped interlayer acted as a promoter for generating H∗and accelerating the EHDC reaction.This work presents a simple and effective regulation strategy for constructing high-efficient cathode catalyst for the EHDC of chlorinated organic compounds.展开更多
Open networks and heterogeneous services in the Internet of Vehicles(IoV)can lead to security and privacy challenges.One key requirement for such systems is the preservation of user privacy,ensuring a seamless experie...Open networks and heterogeneous services in the Internet of Vehicles(IoV)can lead to security and privacy challenges.One key requirement for such systems is the preservation of user privacy,ensuring a seamless experience in driving,navigation,and communication.These privacy needs are influenced by various factors,such as data collected at different intervals,trip durations,and user interactions.To address this,the paper proposes a Support Vector Machine(SVM)model designed to process large amounts of aggregated data and recommend privacy preserving measures.The model analyzes data based on user demands and interactions with service providers or neighboring infrastructure.It aims to minimize privacy risks while ensuring service continuity and sustainability.The SVMmodel helps validate the system’s reliability by creating a hyperplane that distinguishes between maximum and minimum privacy recommendations.The results demonstrate the effectiveness of the proposed SVM model in enhancing both privacy and service performance.展开更多
Under the United Nations Decade on Ecosystem Restoration(2021 to 2030),a geographic context-specific issue emerged that how local people would like to support ecological restoration programs.Regarding previous studies...Under the United Nations Decade on Ecosystem Restoration(2021 to 2030),a geographic context-specific issue emerged that how local people would like to support ecological restoration programs.Regarding previous studies,which often identified the key variables at a fixed scale,we formulated the scientific question as follows:how do landscape-level variables influence the impact of individual-level characteristics on residents'willingness to support ecological restoration?Based on a survey of 2,753 households that experienced ecological restoration programs in China's dryland and 4 landscape-level variables,namely,normalized difference vegetation index,land surface temperature,relative humidity,and precipitation,we quantitatively measured the geographic context-specific impacts on residents'willingness to support ecological restoration by multilevel linear models.展开更多
The study focuses on the creep characteristics of significant yellow sandstone for water conservancy, hydropower, and other waterrelated slope excavation unloading rock-graded loading creep characteristics. It conduct...The study focuses on the creep characteristics of significant yellow sandstone for water conservancy, hydropower, and other waterrelated slope excavation unloading rock-graded loading creep characteristics. It conducts a uniaxial graded loading creep test on yellow sandstone under different pre-peak unloading and wetting-drying cycles. The improved nonlinear Nishihara model was obtained by introducing a nonlinear viscous element with an accelerated creep threshold switch. The sensitivity characteristics of the parameters of the improved creep model were analyzed and a nonlinear creep constitutive model was established, considering the unloading-cyclic intrinsic damage induced by water intrusion. The research results show that:(1)With an increase in the unloading point, the porosity of the rock samples initially decreases and then increases. As the number of cyclic water intrusions rises, the porosity of the rock samples gradually increases, reaching a maximum of 9.58% at an unloading point of 70% uniaxial compression stress(0.7 Rc) after five cycles.(2) Total creep deformation increases with the number of cyclic water intrusions;however, with an increase in the unloading ratio, the original samples show an initial decrease, followed by an increase in creep deformation. With a higher unloading ratio and various instances of cyclic water intrusion, the total creep time of the rock samples,compared to the original samples, is reduced by 21.8%and 23.02%. The creep damage mode gradually changes from shear damage to tensile damage.(3) The sensitivity characteristics of the improved creep model parameters show that transient elasticity modulus E1 is affected by the coupling of unloading and cyclic water intrusion. The viscoelastic modulus E2 and viscous coefficient η1 are mainly affected by unloading and cyclic water intrusion.(4) Based on the strain equivalence principle of damage mechanics, the damage treatment of the parameters in the original model is improved to construct a nonlinear creep constitutive model that considers unloading-cyclic water intrusion damage. A parameter inversion and comparison to the traditional Nishihara model reveal an average relative standard deviation of 0.271%,significantly less than 1%, indicating a more accurate nonlinear creep constitutive model. The research results are crucial for analyzing the long-term stability of water-related steep rocky slopes post-excavation and unloading and for preventing and controlling creep-type landslide disasters.展开更多
BACKGROUND Hepatocellular carcinoma ranks among the most prevalent malignant neoplasms.Surgical intervention constitutes a critical therapeutic approach for this condition.Nonetheless,postoperative recovery is frequen...BACKGROUND Hepatocellular carcinoma ranks among the most prevalent malignant neoplasms.Surgical intervention constitutes a critical therapeutic approach for this condition.Nonetheless,postoperative recovery is frequently influenced by the patient's nutritional status and the quality of nursing care provided.AIM To examine the comprehensive impact of personalized nutritional support and nursing strategies on the postoperative rehabilitation of patients with liver cancer.METHODS In this study,a retrospective comparative analysis was conducted involving 60 post-operative liver cancer patients.The subjects were selected as subjects and divided into two groups based on differing nursing interventions,with each group comprising 30 patients.The control group received standard nutritional support and care,whereas the experimental group received individualized nutritional support and nursing strategies.The study aimed to evaluate the impact of individualized nutrition by comparing the rehabilitation indices,nutritional status,quality of life(QoL),and complication rates between the two groups.RESULTS The results showed that the recovery index of the experimental group was significantly better than that of the control group 2 weeks after surgery,and the average liver function recovery index of the experimental group was 85.significantly higher than that of the control group(73.67±7.19).In terms of nutritional status,the serum albumin level and body weight stabilization rate of the experimental group were also significantly higher than those of the control group,which were 42.33±2.4 g/L and 93.3%,respectively,compared with 36.01±3.85 g/L and 76.7%of the control group.In addition,the average QoL score of the experimental group was 84.66±3.7 points,which was significantly higher than that of the control group(70.92±4.28 points).At the psychological level,the average anxiety score of the experimental group was 1.17±0.29,and the average depression score was 1.47±0.4,which were significantly lower than the 2.26±0.42 and 2.57±0.45 of the control group.This showed that patients in the experimental group were better relieved of anxiety and depression under the individualized nutrition support and nursing strategy.More importantly,the complication rate in the experimental group was only 10%,much lower than the 33.3%in the control group.CONCLUSION Personalized nutritional support and tailored nursing strategies significantly enhance the postoperative rehabilitation of liver cancer patients.Consequently,it is recommended to implement and advocate for these individualized approaches to improve both the recovery outcomes and QoL for these patients.展开更多
基金supported by the National Science and Technology Major Project,China,the China Scholarship Council(No.202306290109)National Natural Science Foundation of China(Nos.52472456 and 52361165620)。
文摘This paper studies the coupling mechanism between the nonlinear stiffness and damping coefficients of Active Elastic Support/Dry Friction Damper(AESDFD)and rotor system.First,parameters for evaluating the vibration reduction characteristics are proposed to facilitate the design of the AESDFD.To achieve this,the nonlinear friction force is initially represented as equivalent stiffness and damping coefficients,based on the ball-plate friction model.Second,three evaluation parameters—optimal slipping displacement,loss factor,and controllability—are proposed to reveal the vibration reduction characteristics of the AESDFD,alongside determining the optimal normal force.Subsequently,the finite element method,in conjunction with the ball-plate friction model,is introduced to formulate the governing equation of a low-pressure rotor system equipped with AESDFDs.The steady-state responses of the AESDFDs-rotor system are solved using the harmonic balance method combined with an efficient iteration method.Finally,the solutions are validated on the AESDFDs-rotor system both numerically and experimentally.The results indicate that controllability effectively assesses the vibration reduction performance of the AESDFD and is relatively insensitive to variations in low normal force.Away from the critical speed,the AESDFD suppresses vibration by altering the resonance position of the rotor system through its stiffness coefficient.Near the critical speed,vibration reduction is achieved primarily through energy dissipation by the damping coefficient.If the loss factor is less than one,the stiffness coefficient can diminish the vibration reduction effect of the damping coefficient.Notably,the optimal normal force of the AESDFD achieves optimal vibration reduction effect.This study reveals that changes in rotor system unbalance do not affect the vibration reduction characteristics of the AESDFD,with the same upper limit to the vibration reduction effect of the AESDFD.
基金supported by the National Natural Science Foundation of China(No.51405393)
文摘The elastic support/dry friction damper is a type of damper which is used for active vibration control in a rotor system.To establish the analytical model of this type of damper,a two-dimensional friction model-ball/plate model was proposed.By using this ball/plate model,a dynamics model of rotor with elastic support/dry friction dampers was established and experimentally verified.Moreover,the damping performance of the elastic support/dry friction damper was studied numerically with respect to some variable parameters.The numerical study shows that the damping performance of the elastic support/dry friction damper is closely related to the stiffness distribution of the rotor-support system,the damper location,the pressing force between the moving and stationary disk,the friction coefficient,the tangential contact stiffness of the contact interface,and the stiffness of the stationary disk.In general,the damper should be located on an elastic support which has a large vibration amplitude in order to achieve a better damping performance,and the more vibration energy in this elastic support concentrates,the better performance of the damper will be.The larger the tangential contact stiffness of the contact interface,and the stiffness of the stationary disk are,the better performance of the damper will be.There will be an optimal value of the friction force at which the damper performs best.
文摘CeO_(2) based semiconductor are widely used in solar-driven photothermal catalytic dry reforming of methane(DRM)reaction,but still suffer from low activity and low light utilization efficiency.This study developed graphite-CeO_(2) interfaces to enhance solar-driven photothermal catalytic DRM.Compared with carbon nanotubes-modified CeO_(2)(CeO_(2)-CNT),graphite-modified CeO_(2)(CeO_(2)-GRA)constructed graphite-CeO_(2) interfaces with distortion in CeO_(2),leading to the formation abundant oxygen vacancies.These graphite-CeO_(2) interfaces with oxygen vacancies enhanced optical absorption and promoted the generation and separation of photogenerated carriers.The high endothermic capacity of graphite elevated the catalyst surface temperature from 592.1−691.3℃,boosting light-to-thermal conversion.The synergy between photogenerated carriers and localized heat enabled Ni/CeO_(2)-GRA to achieve a CO production rate of 9985.6 mmol/(g·h)(vs 7192.4 mmol/(g·h)for Ni/CeO_(2))and a light-to-fuel efficiency of 21.8%(vs 13.8%for Ni/CeO_(2)).This work provides insights for designing graphite-semiconductor interfaces to advance photothermal catalytic efficiency.
文摘In today's fast-paced modern life, whether for fitness training, outdoor adventures, or daily commutes, we all yearn for quick-dry apparel that can rapidly wick away moisture and keep our bodies dry and comfortable. As a standout in functional textiles, quick-dry fabrics are becoming the top choice for more and more people, thanks to their exceptional moisture-wicking performance and rapid drying capabilities.
文摘This study presents an AI-driven Spatial Decision Support System (SDSS) aimed at transforming groundwater suitability assessments for domestic and irrigation uses in Visakhapatnam District, Andhra Pradesh, India. By employing advanced remote sensing, GIS, and machine learning techniques, groundwater quality data from 50 monitoring wells, sourced from the Central Ground Water Board (CGWB), was meticulously analysed. Key parameters, including pH, electrical conductivity, total dissolved solids, and major ion concentrations, were evaluated against World Health Organization (WHO) standards to determine domestic suitability. For irrigation, advanced metrics such as Sodium Adsorption Ratio (SAR), Kelly’s Ratio, Residual Sodium Carbonate (RSC), and percentage sodium (% Na) were utilized to assess water quality. The integration of GIS for spatial mapping and AI models for predictive analytics allows for a comprehensive visualization of groundwater quality distribution across the district. Additionally, the irrigation water quality was evaluated using the USA Salinity Laboratory diagram, providing essential insights for effective agricultural water management. This innovative SDSS framework promises to significantly enhance groundwater resource management, fostering sustainable practices for both domestic use and agriculture in the region.
基金financial support from the National Key R&D Program of China(2022YFE0126500)the National Natural Science Foundation of China(52261135635.52372165,U23A2091,22150610467)+1 种基金the Natural Science Foundation of Anhui Province(2308085MB32)the Scientific and Technological Research Council of Turkey(TUBITAK,122N434).
文摘Ni-based catalysts hold great potential in the light-driven dry reforming of methane(DRM)for syngas production due to their low cost and comparable catalytic performance to conventional noble-metal catalysts.However,the currently available Ni-based catalysts are confronted with low light-driven DRM efficiency and poor stability attributed to the coking.Herein,an atomically dispersed Ni-loaded CeO_(2)(Ni/CeO_(2))for light-drivenDRMis prepared by employing a polyol-mediated doping method to allow the high loading concentration of Ni on the CeO_(2),which overcomes the conventional atomically dispersed metal problem of low loading content.The atomically dispersed nature of the Ni can induce enormous CH4 activation sites for the reaction and photothermal effects for driving the reaction,while the CeO_(2) can facilitateCO_(2) activation.Therefore,the optimized atomically dispersed Ni-loaded CeO_(2) demonstrates an excellent light-drivenDRMperformance forH_(2)(626.5 mmol gcat^(-1) h^(-1))and CO(728.5 mmol gcat^(-1) h^(-1))production.More importantly,the optimized sample sustains its DRM performance after 100 h of continuous test,and such excellent stability of the presence of enormous Ni–O pairs can prevent the rapid conversion of CH_(x) intermediates into coke.This work demonstrates the meticulous design of non-noble metal catalysts for the lightdriven DRM with both high performance and stability.
基金Supported by the National Natural Science Foundation of China(No.82171022No.81974128).
文摘AIM:To investigate the association between active corneal epithelial dendritic cells(CEDCs)and ocular pain in patients with dry eye disease(DED).METHODS:This cross-sectional study enrolled 67 DED patients,who were divided into two groups based on numerical rating scale(NRS)scores:the mild pain group(n=44)and the moderate-to-severe pain group(n=23).In vivo confocal microscopy(IVCM)was used to image the subbasal layer of the central cornea.Corneal nerve characteristics were analyzed using ACCMetrics software,while CEDCs were quantified manually with Image J software.Regression and correlation analyses were performed to assess the impact of active CEDCs on ocular pain.Additionally,the Luminex method was employed to compare the concentrations of inflammation-related cytokines in tears between patients with≥2 CEDCs and those with<2 CEDCs.Differences in cytokine levels between the two groups were analyzed using Student’s t-test.RESULTS:The study included 44 eyes of 44 patients with mild ocular pain(12 males and 32 females)and 23 eyes of 23 patients with moderate-to-severe ocular pain(3 males and 20 females).The mean age was 36.2±13.5y in the mild pain group and 39.7±12.4y in the moderate to severe pain group.There were no significant differences in age or sex between the two groups(P=0.30;P=0.19).Multivariable regression analysis showed that older age[odds ratio(OR)=1.05,95%confidence interval(CI)1.00–1.11]and a higher number of CEDCs(OR=1.80,95%CI 1.17–2.76)were associated with ocular pain.Patients with≥2 CEDCs had significantly higher tear concentrations of interleukin(IL)-6(P<0.05),IL-8(P<0.05),and tumor necrosis factor(TNF)-α(P<0.05)compared to those with<2 active CEDCs.CONCLUSION:The findings suggest that infiltrating CEDCs in the corneal subbasal layer are a potential risk factor for ocular pain in DED.
基金The authors would like to extend their sincere appreciation to Researchers Supporting Project number (RSP2023R368)King Saud University,Riyadh,Saudi Arabia.RK,NP,VKS acknowledge Indus University,Ahmedabad,for supporting research.Dr.Ahmed I.Osman and Prof.David W.Rooney wish to acknowledge the support of The Bryden Centre project (Project ID VA5048)。
文摘Developing cost-effective and high-performance catalyst systems for dry reforming of methane(DRM)is crucial for producing hydrogen(H_(2))sustainably.Herein,we investigate using iron(Fe)as a promoter and major alumina support in Ni-based catalysts to improve their DRM performance.The addition of iron as a promotor was found to add reducible iron species along with reducible NiO species,enhance the basicity and induce the deposition of oxidizable carbon.By incorporating 1 wt.%Fe into a 5Ni/10ZrAl catalyst,a higher CO_(2) interaction and formation of reducible"NiO-species having strong interaction with support"was observed,which led to an∼80%H_(2) yield in 420 min of Time on Stream(TOS).Further increasing the Fe content to 2 wt.%led to the formation of additional reducible iron oxide species and a noticeable rise in H_(2) yield up to 84%.Despite the severe weight loss on Fe-promoted catalysts,high H_(2) yield was maintained due to the proper balance between the rate of CH_(4) decomposition and the rate of carbon deposit diffusion.Finally,incorporating 3 wt.%Fe into the 5Ni/10ZrAl catalyst resulted in the highest CO_(2) interaction,wide presence of reducible NiO-species,minimumgraphitic deposit and an 87%H_(2) yield.Our findings suggest that ironpromoted zirconia-alumina-supported Ni catalysts can be a cheap and excellent catalytic system for H_(2) production via DRM.
基金The project was supported by the National Key R&D Program of China(2021YFF0500702)Natural Science Foundation of Shanghai(22JC1404200)+3 种基金Program of Shanghai Academic/Technology Research Leader(20XD1404000)Natural Science Foundation of China(U22B20136,22293023)Science and Technology Major Project of Inner Mongolia(2021ZD0042)the Youth Innovation Promotion Association of CAS。
文摘Ni/TiO_(2) catalyst is widely employed for photo-driven DRM reaction while the influence of crystal structure of TiO_(2) remains unclear.In this work,the rutile/anatase ratio in supports was successfully controlled by varying the calcination temperature of anatase-TiO_(2).Structural characterizations revealed that a distinct TiO_(x) coating on the Ni nanoparticles(NPs)was evident for Ni/TiO_(2)-700 catalyst due to strong metal-support interaction.It is observed that the TiOx overlayer gradually disappeared as the ratio of rutile/anatase increased,thereby enhancing the exposure of Ni active sites.The exposed Ni sites enhanced visible light absorption and boosted the dissociation capability of CH4,which led to the much elevated catalytic activity for Ni/TiO_(2)-950 in which rutile dominated.Therefore,the catalytic activity of solar-driven DRM reaction was significantly influenced by the rutile/anatase ratio.Ni/TiO_(2)-950,characterized by a predominant rutile phase,exhibited the highest DRM reactivity,with remarkable H_(2) and CO production rates reaching as high as 87.4 and 220.2 mmol/(g·h),respectively.These rates were approximately 257 and 130 times higher,respectively,compared to those obtained on Ni/TiO_(2)-700 with anatase.This study suggests that the optimization of crystal structure of TiO_(2) support can effectively enhance the performance of photothermal DRM reaction.
基金supported by the National Natural Science Foundation of China(No.12072304).
文摘This paper presents a novel suspension support tailored for wind tunnel tests of spinning projectiles based on Wire-Driven Parallel Robot(WDPR),uniquely characterized by an SPM(Spinning Projectile Model)-centered mobile platform.First,an SPM-centered mobile platform,featuring two redundant and another unconstrained Degree of Freedom(DOF),and its suspension support mechanism are designed together,collectively constructing a WDPR endowed with kinematic redundancy.Afterward,the kinematics of the mechanism,boundary equations for the redundant DOFs,and relevant kinematic performance indices are then proposed and formulated.The results from both prototype experiments and numerical assessments are presented.The capability of the support mechanism to replicate the complex coupled motions of the SPM is verified by the experimental results,while the proposed kinematics and boundary equations are also validated.Furthermore,it is revealed by numerical assessments that the redundant DOFs of the mobile platform exert a minimal impact on the kinematic performance of the suspension support.Finally,the optimal global attitude performance is obtained when these DOFs are set to zero if they are restricted to constants.However,local attitude performance can be further improved by the variable values.
基金funding support from the National Natural Science Foundation of China(NSFC)(Grant Nos.41941018 and 52304111)the Program of China Scholarship Council(Grant No.202206430007).
文摘To overcome large deformation of deep phosphate rock roadways and pillar damage,a new type of constant-resistance large-deformation negative Poisson’s ratio(NPR)bolt that can withstand a high prestress of at least 130 KN was developed.In the conducted tests,the amount of deformation was 200-2000 mm,the breaking force reached 350 KN,and a high constant-resistance pre-stress was maintained during the deformation process.A stress compensation theory of phosphate rock excavation based on NPR bolts is proposed together with a balance system for bolt compensation of the time-space effect and high NPR pre-stress.Traditional split-set rock bolts are unable to maintain the stability of roadway roofs and pillars.To verify the support effect of the proposed bolt,field tests were conducted using both the proposed NPR bolts and split-set rock bolts as support systems on the same mining face.In addition,the stress compensation mechanism of roadway mining was simulated using the particle flow code in three dimensions(PFC^(3D))-fast Lagrangian analysis of continua(FLAC^(3D))particle-flow coupling numerical model.On-site monitoring and numerical simulations showed that the NPR excavation compensation support scheme effectively improves the stress state of the bolts and reduces the deformation of the surrounding rock.Compared to the original support scheme,the final deformation of the surrounding rock was reduced by approximately 70%.These results significantly contribute to domestic and foreign research on phosphate-rock NPR compensation support technology,theoretical systems,and engineering practices,and further promote technological innovation in the phosphate rock mining industry.
基金This project received funding from the European Union’s Horizon 2020 research and innovation program under the Marie Sklodowska-Curie grant agreement No. 813393the funding from the National Natural Science Foundation of China (No. 52177149)
文摘This study investigates the dry reformation of methane(DRM)over Ni/Al_(2)O_(3)catalysts in a dielectric barrier discharge(DBD)non-thermal plasma reactor.A novel hybrid machine learning(ML)model is developed to optimize the plasma-catalytic DRM reaction with limited experimental data.To address the non-linear and complex nature of the plasma-catalytic DRM process,the hybrid ML model integrates three well-established algorithms:regression trees,support vector regression,and artificial neural networks.A genetic algorithm(GA)is then used to optimize the hyperparameters of each algorithm within the hybrid ML model.The ML model achieved excellent agreement with the experimental data,demonstrating its efficacy in accurately predicting and optimizing the DRM process.The model was subsequently used to investigate the impact of various operating parameters on the plasma-catalytic DRM performance.We found that the optimal discharge power(20 W),CO_(2)/CH_(4)molar ratio(1.5),and Ni loading(7.8 wt%)resulted in the maximum energy yield at a total flow rate of∼51 mL/min.Furthermore,we investigated the relative significance of each operating parameter on the performance of the plasma-catalytic DRM process.The results show that the total flow rate had the greatest influence on the conversion,with a significance exceeding 35%for each output,while the Ni loading had the least impact on the overall reaction performance.This hybrid model demonstrates a remarkable ability to extract valuable insights from limited datasets,enabling the development and optimization of more efficient and selective plasma-catalytic chemical processes.
基金funded by the Pyramid Talent Training Project of Beijing University of Civil Engineering and Architecture under Grant GJZJ20220802。
文摘Accurately estimating the State of Health(SOH)and Remaining Useful Life(RUL)of lithium-ion batteries(LIBs)is crucial for the continuous and stable operation of battery management systems.However,due to the complex internal chemical systems of LIBs and the nonlinear degradation of their performance,direct measurement of SOH and RUL is challenging.To address these issues,the Twin Support Vector Machine(TWSVM)method is proposed to predict SOH and RUL.Initially,the constant current charging time of the lithium battery is extracted as a health indicator(HI),decomposed using Variational Modal Decomposition(VMD),and feature correlations are computed using Importance of Random Forest Features(RF)to maximize the extraction of critical factors influencing battery performance degradation.Furthermore,to enhance the global search capability of the Convolution Optimization Algorithm(COA),improvements are made using Good Point Set theory and the Differential Evolution method.The Improved Convolution Optimization Algorithm(ICOA)is employed to optimize TWSVM parameters for constructing SOH and RUL prediction models.Finally,the proposed models are validated using NASA and CALCE lithium-ion battery datasets.Experimental results demonstrate that the proposed models achieve an RMSE not exceeding 0.007 and an MAPE not exceeding 0.0082 for SOH and RUL prediction,with a relative error in RUL prediction within the range of[-1.8%,2%].Compared to other models,the proposed model not only exhibits superior fitting capability but also demonstrates robust performance.
基金funded by the National Natural Science Foundation of China (No. 52304133)the National Key R&D Program of China (No. 2022YFC3004605)the Department of Science and Technology of Liaoning Province (No. 2023-BS-083)。
文摘Rockbursts, which mainly affect mining roadways, are dynamic disasters arising from the surrounding rock under high stress. Understanding the interaction between supports and the surrounding rock is necessary for effective rockburst control. In this study, the squeezing behavior of the surrounding rock is analyzed in rockburst roadways, and a mechanical model of rockbursts is established considering the dynamic support stress, thus deriving formulas and providing characteristic curves for describing the interaction between the support and surrounding rock. Design principles and parameters of supports for rockburst control are proposed. The results show that only when the geostress magnitude exceeds a critical value can it drive the formation of rockburst conditions. The main factors influencing the convergence response and rockburst occurrence around roadways are geostress, rock brittleness, uniaxial compressive strength, and roadway excavation size. Roadway support devices can play a role in controlling rockburst by suppressing the squeezing evolution of the surrounding rock towards instability points of rockburst. Further, the higher the strength and the longer the impact stroke of support devices with constant resistance, the more easily multiple balance points can be formed with the surrounding rock to control rockburst occurrence. Supports with long impact stroke allow adaptation to varying geostress levels around the roadway, aiding in rockburst control. The results offer a quantitative method for designing support systems for rockburst-prone roadways. The design criterion of supports is determined by the intersection between the convergence curve of the surrounding rock and the squeezing deformation curve of the support devices.
基金supported by the National Natural Science Foundation of China(Nos.22178388 and 22108306)Taishan Scholars Program of Shandong Province(No.tsqn201909065)Chongqing Science and Technology Bureau(No.cstc2019jscx-gksb X0032).
文摘Structural regulation of Pd-based electrocatalytic hydrodechlorination(EHDC)catalyst for constructing high-efficient cathode materials with low noble metal content and high atom utilization is crucial but still challenging.Herein,a support electron inductive effect of Pd-Mn/Ni foam catalyst was proposed via in-situ Mn doping to optimize the electronic structure of the Ni foam(NF),which can inductive regulation of Pd for improving the EHDC performance.The mass activity and current efficiency of Pd-Mn/NF catalyst are 2.91 and 1.34 times superior to that of Pd/NF with 2,4-dichlorophenol as model compound,respectively.The Mn-doped interlayer optimized the electronic structure of Pd by bringing the d-state closer to the Fermi level than Pd on the NF surface,which optimizied the binding of EHDC intermediates.Additionally,the Mn-doped interlayer acted as a promoter for generating H∗and accelerating the EHDC reaction.This work presents a simple and effective regulation strategy for constructing high-efficient cathode catalyst for the EHDC of chlorinated organic compounds.
基金supported by the Deanship of Graduate Studies and Scientific Research at University of Bisha for funding this research through the promising program under grant number(UB-Promising-33-1445).
文摘Open networks and heterogeneous services in the Internet of Vehicles(IoV)can lead to security and privacy challenges.One key requirement for such systems is the preservation of user privacy,ensuring a seamless experience in driving,navigation,and communication.These privacy needs are influenced by various factors,such as data collected at different intervals,trip durations,and user interactions.To address this,the paper proposes a Support Vector Machine(SVM)model designed to process large amounts of aggregated data and recommend privacy preserving measures.The model analyzes data based on user demands and interactions with service providers or neighboring infrastructure.It aims to minimize privacy risks while ensuring service continuity and sustainability.The SVMmodel helps validate the system’s reliability by creating a hyperplane that distinguishes between maximum and minimum privacy recommendations.The results demonstrate the effectiveness of the proposed SVM model in enhancing both privacy and service performance.
基金supported by the National Natural Science Foundation of China(W2412142 and 42271292)the Fundamental Research Funds for the Central Universities of China
文摘Under the United Nations Decade on Ecosystem Restoration(2021 to 2030),a geographic context-specific issue emerged that how local people would like to support ecological restoration programs.Regarding previous studies,which often identified the key variables at a fixed scale,we formulated the scientific question as follows:how do landscape-level variables influence the impact of individual-level characteristics on residents'willingness to support ecological restoration?Based on a survey of 2,753 households that experienced ecological restoration programs in China's dryland and 4 landscape-level variables,namely,normalized difference vegetation index,land surface temperature,relative humidity,and precipitation,we quantitatively measured the geographic context-specific impacts on residents'willingness to support ecological restoration by multilevel linear models.
基金We gratefully acknowledge the financial support from the Key Laboratory of Geological Safety of Coastal Urban Underground Space,Ministry of Natural Resources(BHKF2022Y03)Shandong Provincial Colleges and Universities Youth Innovation Technology Support Program,Education Department of Shandong Province(grant number 2023KJ092).
文摘The study focuses on the creep characteristics of significant yellow sandstone for water conservancy, hydropower, and other waterrelated slope excavation unloading rock-graded loading creep characteristics. It conducts a uniaxial graded loading creep test on yellow sandstone under different pre-peak unloading and wetting-drying cycles. The improved nonlinear Nishihara model was obtained by introducing a nonlinear viscous element with an accelerated creep threshold switch. The sensitivity characteristics of the parameters of the improved creep model were analyzed and a nonlinear creep constitutive model was established, considering the unloading-cyclic intrinsic damage induced by water intrusion. The research results show that:(1)With an increase in the unloading point, the porosity of the rock samples initially decreases and then increases. As the number of cyclic water intrusions rises, the porosity of the rock samples gradually increases, reaching a maximum of 9.58% at an unloading point of 70% uniaxial compression stress(0.7 Rc) after five cycles.(2) Total creep deformation increases with the number of cyclic water intrusions;however, with an increase in the unloading ratio, the original samples show an initial decrease, followed by an increase in creep deformation. With a higher unloading ratio and various instances of cyclic water intrusion, the total creep time of the rock samples,compared to the original samples, is reduced by 21.8%and 23.02%. The creep damage mode gradually changes from shear damage to tensile damage.(3) The sensitivity characteristics of the improved creep model parameters show that transient elasticity modulus E1 is affected by the coupling of unloading and cyclic water intrusion. The viscoelastic modulus E2 and viscous coefficient η1 are mainly affected by unloading and cyclic water intrusion.(4) Based on the strain equivalence principle of damage mechanics, the damage treatment of the parameters in the original model is improved to construct a nonlinear creep constitutive model that considers unloading-cyclic water intrusion damage. A parameter inversion and comparison to the traditional Nishihara model reveal an average relative standard deviation of 0.271%,significantly less than 1%, indicating a more accurate nonlinear creep constitutive model. The research results are crucial for analyzing the long-term stability of water-related steep rocky slopes post-excavation and unloading and for preventing and controlling creep-type landslide disasters.
文摘BACKGROUND Hepatocellular carcinoma ranks among the most prevalent malignant neoplasms.Surgical intervention constitutes a critical therapeutic approach for this condition.Nonetheless,postoperative recovery is frequently influenced by the patient's nutritional status and the quality of nursing care provided.AIM To examine the comprehensive impact of personalized nutritional support and nursing strategies on the postoperative rehabilitation of patients with liver cancer.METHODS In this study,a retrospective comparative analysis was conducted involving 60 post-operative liver cancer patients.The subjects were selected as subjects and divided into two groups based on differing nursing interventions,with each group comprising 30 patients.The control group received standard nutritional support and care,whereas the experimental group received individualized nutritional support and nursing strategies.The study aimed to evaluate the impact of individualized nutrition by comparing the rehabilitation indices,nutritional status,quality of life(QoL),and complication rates between the two groups.RESULTS The results showed that the recovery index of the experimental group was significantly better than that of the control group 2 weeks after surgery,and the average liver function recovery index of the experimental group was 85.significantly higher than that of the control group(73.67±7.19).In terms of nutritional status,the serum albumin level and body weight stabilization rate of the experimental group were also significantly higher than those of the control group,which were 42.33±2.4 g/L and 93.3%,respectively,compared with 36.01±3.85 g/L and 76.7%of the control group.In addition,the average QoL score of the experimental group was 84.66±3.7 points,which was significantly higher than that of the control group(70.92±4.28 points).At the psychological level,the average anxiety score of the experimental group was 1.17±0.29,and the average depression score was 1.47±0.4,which were significantly lower than the 2.26±0.42 and 2.57±0.45 of the control group.This showed that patients in the experimental group were better relieved of anxiety and depression under the individualized nutrition support and nursing strategy.More importantly,the complication rate in the experimental group was only 10%,much lower than the 33.3%in the control group.CONCLUSION Personalized nutritional support and tailored nursing strategies significantly enhance the postoperative rehabilitation of liver cancer patients.Consequently,it is recommended to implement and advocate for these individualized approaches to improve both the recovery outcomes and QoL for these patients.