期刊文献+
共找到1,337篇文章
< 1 2 67 >
每页显示 20 50 100
Support vector machine regression(SVR)-based nonlinear modeling of radiometric transforming relation for the coarse-resolution data-referenced relative radiometric normalization(RRN) 被引量:3
1
作者 Jing Geng Wenxia Gan +2 位作者 Jinying Xu Ruqin Yang Shuliang Wang 《Geo-Spatial Information Science》 SCIE CSCD 2020年第3期237-247,I0004,共12页
Radiometric normalization,as an essential step for multi-source and multi-temporal data processing,has received critical attention.Relative Radiometric Normalization(RRN)method has been primarily used for eliminating ... Radiometric normalization,as an essential step for multi-source and multi-temporal data processing,has received critical attention.Relative Radiometric Normalization(RRN)method has been primarily used for eliminating the radiometric inconsistency.The radiometric trans-forming relation between the subject image and the reference image is an essential aspect of RRN.Aimed at accurate radiometric transforming relation modeling,the learning-based nonlinear regression method,Support Vector machine Regression(SVR)is used for fitting the complicated radiometric transforming relation for the coarse-resolution data-referenced RRN.To evaluate the effectiveness of the proposed method,a series of experiments are performed,including two synthetic data experiments and one real data experiment.And the proposed method is compared with other methods that use linear regression,Artificial Neural Network(ANN)or Random Forest(RF)for radiometric transforming relation modeling.The results show that the proposed method performs well on fitting the radiometric transforming relation and could enhance the RRN performance. 展开更多
关键词 support vector machine regression(svr) non-linear radiometric transforming relation Relative Radiometric Normalization(RRN) multi-source data
原文传递
Small-time scale network traffic prediction based on a local support vector machine regression model 被引量:10
2
作者 孟庆芳 陈月辉 彭玉华 《Chinese Physics B》 SCIE EI CAS CSCD 2009年第6期2194-2199,共6页
In this paper we apply the nonlinear time series analysis method to small-time scale traffic measurement data. The prediction-based method is used to determine the embedding dimension of the traffic data. Based on the... In this paper we apply the nonlinear time series analysis method to small-time scale traffic measurement data. The prediction-based method is used to determine the embedding dimension of the traffic data. Based on the reconstructed phase space, the local support vector machine prediction method is used to predict the traffic measurement data, and the BIC-based neighbouring point selection method is used to choose the number of the nearest neighbouring points for the local support vector machine regression model. The experimental results show that the local support vector machine prediction method whose neighbouring points are optimized can effectively predict the small-time scale traffic measurement data and can reproduce the statistical features of real traffic measurements. 展开更多
关键词 network traffic small-time scale nonlinear time series analysis support vector machine regression model
原文传递
Spatial prediction of landslide susceptibility in western Serbia using hybrid support vector regression(SVR)with GWO,BAT and COA algorithms 被引量:12
3
作者 Abdul-Lateef Balogun Fatemeh Rezaie +6 位作者 Quoc Bao Pham Ljubomir Gigović Siniša Drobnjak Yusuf AAina Mahdi Panahi Shamsudeen Temitope Yekeen Saro Lee 《Geoscience Frontiers》 SCIE CAS CSCD 2021年第3期384-398,共15页
In this study,we developed multiple hybrid machine-learning models to address parameter optimization limitations and enhance the spatial prediction of landslide susceptibility models.We created a geographic informatio... In this study,we developed multiple hybrid machine-learning models to address parameter optimization limitations and enhance the spatial prediction of landslide susceptibility models.We created a geographic information system database,and our analysis results were used to prepare a landslide inventory map containing 359 landslide events identified from Google Earth,aerial photographs,and other validated sources.A support vector regression(SVR)machine-learning model was used to divide the landslide inventory into training(70%)and testing(30%)datasets.The landslide susceptibility map was produced using 14 causative factors.We applied the established gray wolf optimization(GWO)algorithm,bat algorithm(BA),and cuckoo optimization algorithm(COA)to fine-tune the parameters of the SVR model to improve its predictive accuracy.The resultant hybrid models,SVR-GWO,SVR-BA,and SVR-COA,were validated in terms of the area under curve(AUC)and root mean square error(RMSE).The AUC values for the SVR-GWO(0.733),SVR-BA(0.724),and SVR-COA(0.738)models indicate their good prediction rates for landslide susceptibility modeling.SVR-COA had the greatest accuracy,with an RMSE of 0.21687,and SVR-BA had the least accuracy,with an RMSE of 0.23046.The three optimized hybrid models outperformed the SVR model(AUC=0.704,RMSE=0.26689),confirming the ability of metaheuristic algorithms to improve model performance. 展开更多
关键词 LANDSLIDE Machine learning METAHEURISTIC Spatial modeling support vector regression
在线阅读 下载PDF
Semi-supervised Support Vector Regression Model for Remote Sensing Water Quality Retrieving 被引量:3
4
作者 WANG Xili FU Li MA Lei 《Chinese Geographical Science》 SCIE CSCD 2011年第1期57-64,共8页
This paper proposed a semi-supervised regression model with co-training algorithm based on support vector machine, which was used for retrieving water quality variables from SPOT 5 remote sensing data. The model consi... This paper proposed a semi-supervised regression model with co-training algorithm based on support vector machine, which was used for retrieving water quality variables from SPOT 5 remote sensing data. The model consisted of two support vector regressors (SVRs). Nonlinear relationship between water quality variables and SPOT 5 spectrum was described by the two SVRs, and semi-supervised co-training algorithm for the SVRs was es-tablished. The model was used for retrieving concentrations of four representative pollution indicators―permangan- ate index (CODmn), ammonia nitrogen (NH3-N), chemical oxygen demand (COD) and dissolved oxygen (DO) of the Weihe River in Shaanxi Province, China. The spatial distribution map for those variables over a part of the Weihe River was also produced. SVR can be used to implement any nonlinear mapping readily, and semi-supervis- ed learning can make use of both labeled and unlabeled samples. By integrating the two SVRs and using semi-supervised learning, we provide an operational method when paired samples are limited. The results show that it is much better than the multiple statistical regression method, and can provide the whole water pollution condi-tions for management fast and can be extended to hyperspectral remote sensing applications. 展开更多
关键词 semi-supervised learning support vector regression CO-TRAINING water quality retrieving model SPOT 5
在线阅读 下载PDF
Multi-Step Model Predictive Control Based on Online Support Vector Regression Optimized by Multi-Agent Particle Swarm Optimization Algorithm 被引量:2
5
作者 TANG Xianlun LIU Nianci +1 位作者 WAN Yali GUO Fei 《Journal of Shanghai Jiaotong university(Science)》 EI 2018年第5期607-612,共6页
As optimization of parameters affects prediction accuracy and generalization ability of support vector regression(SVR) greatly and the predictive model often mismatches nonlinear system model predictive control,a mult... As optimization of parameters affects prediction accuracy and generalization ability of support vector regression(SVR) greatly and the predictive model often mismatches nonlinear system model predictive control,a multi-step model predictive control based on online SVR(OSVR) optimized by multi-agent particle swarm optimization algorithm(MAPSO) is put forward. By integrating the online learning ability of OSVR, the predictive model can self-correct and adapt to the dynamic changes in nonlinear process well. 展开更多
关键词 online support vector regression (Osvr) model PREDICTIVE CONTROLLER (MPC) MULTI-AGENT particleswarm optimization (MAPSO) nonlinear systems
原文传递
Modeling personalized head-related impulse response using support vector regression 被引量:1
6
作者 黄青华 方勇 《Journal of Shanghai University(English Edition)》 CAS 2009年第6期428-432,共5页
A new customization approach based on support vector regression (SVR) is proposed to obtain individual headrelated impulse response (HRIR) without complex measurement and special equipment. Principal component ana... A new customization approach based on support vector regression (SVR) is proposed to obtain individual headrelated impulse response (HRIR) without complex measurement and special equipment. Principal component analysis (PCA) is first applied to obtain a few principal components and corresponding weight vectors correlated with individual anthropometric parameters. Then the weight vectors act as output of the nonlinear regression model. Some measured anthropometric parameters are selected as input of the model according to the correlation coefficients between the parameters and the weight vectors. After the regression model is learned from the training data, the individual HRIR can be predicted based on the measured anthropometric parameters. Compared with a back-propagation neural network (BPNN) for nonlinear regression, better generalization and prediction performance for small training samples can be obtained using the proposed PCA-SVR algorithm. 展开更多
关键词 head-related impulse response (HRIR) personalization principal component analysis (PCA) support vector regression svr variable selection
在线阅读 下载PDF
High-rise building fire pre-warning model based on the support vector regression 被引量:1
7
作者 张立宁 张奇 安晶 《Journal of Beijing Institute of Technology》 EI CAS 2015年第3期285-290,共6页
Aiming at reducing the deficiency of the traditional fire pre-warning algorithms and the intelligent fire pre-warning algorithms such as artificial neural network,and then to improve the accuracy of fire prewarning fo... Aiming at reducing the deficiency of the traditional fire pre-warning algorithms and the intelligent fire pre-warning algorithms such as artificial neural network,and then to improve the accuracy of fire prewarning for high-rise buildings,a composite fire pre-warning controller is designed according to the characteristic( nonlinear,less historical data,many influence factors),also a high-rise building fire pre-warning model is set up based on the support vector regression( SV R). Then the wood fire standard history data is applied to make empirical analysis. The research results can provide a reliable decision support framework for high-rise building fire pre-warning. 展开更多
关键词 high-rise buildings fire composite fire pre-warning systemdesign the support vector regression pre-warning model
在线阅读 下载PDF
Inverse Model Control for a Quad-rotor Aircraft Using TS-fuzzy Support Vector Regression
8
作者 Zhiyu Li Hanxin Chen +1 位作者 Congqing Wang Kaijia Xue 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2017年第6期73-79,共7页
An inverse model control based on TS-fuzzy support vector regression( TS-fuzzy SVR) for a quadrotor aircraft is developed. The TS-kernel is the product of linear combination of input and a cluster of output correspond... An inverse model control based on TS-fuzzy support vector regression( TS-fuzzy SVR) for a quadrotor aircraft is developed. The TS-kernel is the product of linear combination of input and a cluster of output corresponding to a cluster of TS-type fuzzy rules. The output of TS-fuzzy SVR is a linear weighted sum of the TSkernels. The dynamical model of the quad-rotor aircraft is derived. A new control scheme combined with TSfuzzy SVR inverse model control and PID control is presented so that the TS-fuzzy SVR inverse model control enhances capabilities of disturbance rejection and the robustness while the PID control enhances fast responsiveness and reliability of the system. Simulation results show the capabilities of the developed control for the attitude system of quad-rotor aircraft. 展开更多
关键词 support vector regression TS-fuzzy svr INVERSE model CONTROL quad-rotor AIRCRAFT ATTITUDE CONTROL
在线阅读 下载PDF
Adaptive Nonlinear Model Predictive Control Using an On-line Support Vector Regression Updating Strategy
9
作者 王平 杨朝合 +1 位作者 田学民 黄德先 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2014年第7期774-781,共8页
The performance of data-driven models relies heavily on the amount and quality of training samples, so it might deteriorate significantly in the regions where samples are scarce. The objective of this paper is to deve... The performance of data-driven models relies heavily on the amount and quality of training samples, so it might deteriorate significantly in the regions where samples are scarce. The objective of this paper is to develop an online SVR model updating strategy to track the change in the process characteristics efficiently with affordable computational burden. This is achieved by adding a new sample that violates the Karush–Kuhn–Tucker conditions of the existing SVR model and by deleting the old sample that has the maximum distance with respect to the newly added sample in feature space. The benefits offered by such an updating strategy are exploited to develop an adaptive model-based control scheme, where model updating and control task perform alternately.The effectiveness of the adaptive controller is demonstrated by simulation study on a continuous stirred tank reactor. The results reveal that the adaptive MPC scheme outperforms its non-adaptive counterpart for largemagnitude set point changes and variations in process parameters. 展开更多
关键词 Adaptive control support vector regression Updating strategy model predictive control
在线阅读 下载PDF
Improved IMM algorithm based on support vector regression for UAV tracking 被引量:5
10
作者 ZENG Yuan LU Wenbin +3 位作者 YU Bo TAO Shifei ZHOU Haosu CHEN Yu 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2022年第4期867-876,共10页
With the development of technology, the relevant performance of unmanned aerial vehicles(UAVs) has been greatly improved, and various highly maneuverable UAVs have been developed, which puts forward higher requirement... With the development of technology, the relevant performance of unmanned aerial vehicles(UAVs) has been greatly improved, and various highly maneuverable UAVs have been developed, which puts forward higher requirements on target tracking technology. Strong maneuvering refers to relatively instantaneous and dramatic changes in target acceleration or movement patterns, as well as continuous changes in speed,angle, and acceleration. However, the traditional UAV tracking algorithm model has poor adaptability and large amount of calculation. This paper applies support vector regression(SVR)to the interacting multiple model(IMM) algorithm. The simulation results show that the improved algorithm has higher tracking accuracy for highly maneuverable targets than the original algorithm, and can adjust parameters adaptively, making it more adaptable. 展开更多
关键词 interacting multiple model(IMM)filter constant acceleration(CA) unmanned aerial vehicle(UAV) support vector regression(svr)
在线阅读 下载PDF
Support Vector Regression for Bus Travel Time Prediction Using Wavelet Transform 被引量:2
11
作者 Yang Liu Yanjie Ji +1 位作者 Keyu Chen Xinyi Qi 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2019年第3期26-34,共9页
In order to accurately predict bus travel time, a hybrid model based on combining wavelet transform technique with support vector regression(WT-SVR) model is employed. In this model, wavelet decomposition is used to e... In order to accurately predict bus travel time, a hybrid model based on combining wavelet transform technique with support vector regression(WT-SVR) model is employed. In this model, wavelet decomposition is used to extract important information of data at different levels and enhances the forecasting ability of the model. After wavelet transform different components are forecasted by their corresponding SVR predictors. The final prediction result is obtained by the summation of the predicted results for each component. The proposed hybrid model is examined by the data of bus route No.550 in Nanjing, China. The performance of WT-SVR model is evaluated by mean absolute error(MAE), mean absolute percent error(MAPE) and relative mean square error(RMSE), and also compared to regular SVR and ANN models. The results show that the prediction method based on wavelet transform and SVR has better tracking ability and dynamic behavior than regular SVR and ANN models. The forecasting performance is remarkably improved to obtain within 6% MAPE for testing section Ⅰ and 8% MAPE for testing section Ⅱ, which proves that the suggested approach is feasible and applicable in bus travel time prediction. 展开更多
关键词 intelligent TRANSPORTATION BUS TRAVEL time prediction WAVELET TRANSFORM support vector regression hybrid model
在线阅读 下载PDF
Support vector regression-based operational effectiveness evaluation approach to reconnaissance satellite system 被引量:3
12
作者 HAN Chi XIONG Wei +1 位作者 XIONG Minghui LIU Zhen 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2023年第6期1626-1644,共19页
As one of the most important part of weapon system of systems(WSoS),quantitative evaluation of reconnaissance satellite system(RSS)is indispensable during its construction and application.Aiming at the problem of nonl... As one of the most important part of weapon system of systems(WSoS),quantitative evaluation of reconnaissance satellite system(RSS)is indispensable during its construction and application.Aiming at the problem of nonlinear effectiveness evaluation under small sample conditions,we propose an evaluation method based on support vector regression(SVR)to effectively address the defects of traditional methods.Considering the performance of SVR is influenced by the penalty factor,kernel type,and other parameters deeply,the improved grey wolf optimizer(IGWO)is employed for parameter optimization.In the proposed IGWO algorithm,the opposition-based learning strategy is adopted to increase the probability of avoiding the local optima,the mutation operator is used to escape from premature convergence and differential convergence factors are applied to increase the rate of convergence.Numerical experiments of 14 test functions validate the applicability of IGWO algorithm dealing with global optimization.The index system and evaluation method are constructed based on the characteristics of RSS.To validate the proposed IGWO-SVR evaluation method,eight benchmark data sets and combat simulation are employed to estimate the evaluation accuracy,convergence performance and computational complexity.According to the experimental results,the proposed method outperforms several prediction based evaluation methods,verifies the superiority and effectiveness in RSS operational effectiveness evaluation. 展开更多
关键词 reconnaissance satellite system(RSS) support vector regression(svr) gray wolf optimizer opposition-based learning parameter optimization effectiveness evaluation
在线阅读 下载PDF
A Multiple Model Approach to Modeling Based on Fuzzy Support Vector Machines 被引量:2
13
作者 冯瑞 张艳珠 +1 位作者 宋春林 邵惠鹤 《Journal of Shanghai Jiaotong university(Science)》 EI 2003年第2期137-141,共5页
A new multiple models(MM) approach was proposed to model complex industrial process by using Fuzzy Support Vector Machines(F -SVMs). By applying the proposed approach to a pH neutralization titration experiment, F -SV... A new multiple models(MM) approach was proposed to model complex industrial process by using Fuzzy Support Vector Machines(F -SVMs). By applying the proposed approach to a pH neutralization titration experiment, F -SVMs MM not only provides satisfactory approximation and generalization property, but also achieves superior performance to USOCPN multiple modeling method and single modeling method based on standard SVMs. 展开更多
关键词 fuzzy support vector machines(FSVMs) fuzzy support vector classifier(FSVC) fuzzy support vector regression(Fsvr) multiple model modelING
在线阅读 下载PDF
Support Vector Regression Based Color Image Restoration in YUV Color Space 被引量:2
14
作者 黎明 杨杰 苏中义 《Journal of Shanghai Jiaotong university(Science)》 EI 2010年第1期31-35,共5页
A support vector regression(SVR) based color image restoration algorithm is proposed.The test color images are firstly mapped into the YUV color space,and then SVR is applied to build up a theoretical model between th... A support vector regression(SVR) based color image restoration algorithm is proposed.The test color images are firstly mapped into the YUV color space,and then SVR is applied to build up a theoretical model between the degraded images and the original one.Performance comparisons of the proposed algorithm versus traditional filtering algorithms are given.Experimental results show that the proposed algorithm has better performance than traditional filtering algorithms and has less computation time than iterative blind deconvolution algorithm. 展开更多
关键词 color image restoration support vector regression svr color space
原文传递
Prediction of Henry Constants and Adsorption Mechanism of Volatile Organic Compounds on Multi-Walled Carbon Nanotubes by Using Support Vector Regression 被引量:1
15
作者 程文德 蔡从中 《Chinese Physics Letters》 SCIE CAS CSCD 2016年第4期143-146,共4页
Support vector regression (SVR) combined with particle swarm optimization for its parameter optimization is employed to establish a model for predicting the Henry constants of multi-walled carbon nanotubes (MWNTs)... Support vector regression (SVR) combined with particle swarm optimization for its parameter optimization is employed to establish a model for predicting the Henry constants of multi-walled carbon nanotubes (MWNTs) for adsorption of volatile organic compounds (VOCs). The prediction performance of SVR is compared with those of the model of theoretical linear salvation energy relationship (TLSER). By using leave-one-out cross validation of SVR test Henry constants for adsorption of 35 VOCs on MWNTs, the root mean square error is 0.080, the mean absolute percentage error is only 1.19~, and the correlation coefficient (R2) is as high as 0.997. Compared with the results of the TLSER model, it is shown that the estimated errors by SVR are ali smaller than those achieved by TLSER. It reveals that the generalization ability of SVR is superior to that of the TLSER model Meanwhile, multifactor analysis is adopted for investigation of the influences of each molecular structure descriptor on the Henry constants. According to the TLSER model, the adsorption mechanism of adsorption of carbon nanotubes of VOCs is mainly a result of van der Waals and interactions of hydrogen bonds. These can provide the theoretical support for the application of carbon nanotube adsorption of VOCs and can make up for the lack of experimental data. 展开更多
关键词 of is in svr Prediction of Henry Constants and Adsorption Mechanism of Volatile Organic Compounds on Multi-Walled Carbon Nanotubes by Using support vector regression VOCs MWNTS by on
原文传递
TYRE DYNAMICS MODELLING OF VEHICLE BASED ON SUPPORT VECTOR MACHINES 被引量:2
16
作者 ZHENG Shuibo TANG Houjun +1 位作者 HAN Zhengzhi ZHANG Yong 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2006年第4期558-565,共8页
Various methods of tyre modelling are implemented from pure theoretical to empirical or semi-empirical models based on experimental results. A new way of representing tyre data obtained from measurements is presented ... Various methods of tyre modelling are implemented from pure theoretical to empirical or semi-empirical models based on experimental results. A new way of representing tyre data obtained from measurements is presented via support vector machines (SVMs). The feasibility of applying SVMs to steady-state tyre modelling is investigated by comparison with three-layer backpropagation (BP) neural network at pure slip and combined slip. The results indicate SVMs outperform the BP neural network in modelling the tyre characteristics with better generalization performance. The SVMsqyre is implemented in 8-DOF vehicle model for vehicle dynamics simulation by means of the PAC 2002 Magic Formula as reference. The SVMs-tyre can be a competitive and accurate method to model a tyre for vehicle dynamics simuLation. 展开更多
关键词 support vector machines(SVMs) Backpropagation(BP) neural network Tyre model regression estimation Magic formula
在线阅读 下载PDF
Fault diagnosis of power-shift steering transmission based on multiple outputs least squares support vector regression 被引量:2
17
作者 张英锋 马彪 +2 位作者 房京 张海岭 范昱珩 《Journal of Beijing Institute of Technology》 EI CAS 2011年第2期199-204,共6页
A method of multiple outputs least squares support vector regression (LS-SVR) was developed and described in detail, with the radial basis function (RBF) as the kernel function. The method was applied to predict t... A method of multiple outputs least squares support vector regression (LS-SVR) was developed and described in detail, with the radial basis function (RBF) as the kernel function. The method was applied to predict the future state of the power-shift steering transmission (PSST). A prediction model of PSST was gotten with multiple outputs LS-SVR. The model performance was greatly influenced by the penalty parameter γ and kernel parameter σ2 which were optimized using cross validation method. The training and prediction of the model were done with spectrometric oil analysis data. The predictive and actual values were compared and a fault in the second PSST was found. The research proved that this method had good accuracy in PSST fault prediction, and any possible problem in PSST could be found through a comparative analysis. 展开更多
关键词 least squares support vector regression(LS-svr fault diagnosis power-shift steering transmission (PSST)
在线阅读 下载PDF
Genetic Algorithm Based Feature Selection and Parameter Optimization for Support Vector Regression Applied to Semantic Textual Similarity
18
作者 苏柏桦 王英林 《Journal of Shanghai Jiaotong university(Science)》 EI 2015年第2期143-148,共6页
Semantic textual similarity(STS) is a common task in natural language processing(NLP). STS measures the degree of semantic equivalence of two textual snippets. Recently, machine learning methods have been applied to t... Semantic textual similarity(STS) is a common task in natural language processing(NLP). STS measures the degree of semantic equivalence of two textual snippets. Recently, machine learning methods have been applied to this task, including methods based on support vector regression(SVR). However, there exist amounts of features involved in the learning process, part of which are noisy features and irrelative to the result.Furthermore, different parameters will significantly influence the prediction performance of the SVR model. In this paper, we propose genetic algorithm(GA) to select the effective features and optimize the parameters in the learning process, simultaneously. To evaluate the proposed approach, we adopt the STS-2012 dataset in the experiment. Compared with the grid search, the proposed GA-based approach has better regression performance. 展开更多
关键词 support vector regression(svr) feature selection SEMANTIC textural similarity(STS)
原文传递
Fuzzy rule-based support vector regression system
19
作者 Ling WANG Zhichun MU Hui GUO 《控制理论与应用(英文版)》 EI 2005年第3期230-234,共5页
In this paper, we design a fuzzy rule-based support vector regression system. The proposed system utilizes the advantages of fuzzy model and support vector regression to extract support vectors to generate fuzzy if-th... In this paper, we design a fuzzy rule-based support vector regression system. The proposed system utilizes the advantages of fuzzy model and support vector regression to extract support vectors to generate fuzzy if-then rules from the training data set. Based on the first-order hnear Tagaki-Sugeno (TS) model, the structure of rules is identified by the support vector regression and then the consequent parameters of rules are tuned by the global least squares method. Our model is applied to the real world regression task. The simulation results gives promising performances in terms of a set of fuzzy hales, which can be easily interpreted by humans. 展开更多
关键词 TS fuzzy model support vector machine support vector regression
在线阅读 下载PDF
SUPPORT VECTOR REGRESSION VIA MCMC WITHIN EVIDENCE FRAMEWORK
20
作者 Zhou Yatong Li Jin +1 位作者 Sun Jiancheng Zhang Bolun 《Journal of Electronics(China)》 2012年第6期530-533,共4页
This paper proposes a novel approach, Markov Chain Monte Carlo (MCMC) sampling approximation, to deal with intractable high-dimension integral in the evidence framework applied to Support Vector Regression (SVR). Unli... This paper proposes a novel approach, Markov Chain Monte Carlo (MCMC) sampling approximation, to deal with intractable high-dimension integral in the evidence framework applied to Support Vector Regression (SVR). Unlike traditional variational or mean field method, the proposed approach follows the idea of MCMC, firstly draws some samples from the posterior distribution on SVR's weight vector, and then approximates the expected output integrals by finite sums. Experimental results show the proposed approach is feasible and robust to noise. It also shows the performance of proposed approach and Relevance Vector Machine (RVM) is comparable under the noise circumstances. They give better robustness compared to standard SVR. 展开更多
关键词 support vector regression (svr) Markov Chain Monte Carlo (MCMC) Evidence Framework (EF) Noise
在线阅读 下载PDF
上一页 1 2 67 下一页 到第
使用帮助 返回顶部