Key variable identification for classifications is related to many trouble-shooting problems in process indus-tries. Recursive feature elimination based on support vector machine (SVM-RFE) has been proposed recently i...Key variable identification for classifications is related to many trouble-shooting problems in process indus-tries. Recursive feature elimination based on support vector machine (SVM-RFE) has been proposed recently in applica-tion for feature selection in cancer diagnosis. In this paper, SVM-RFE is used to the key variable selection in fault diag-nosis, and an accelerated SVM-RFE procedure based on heuristic criterion is proposed. The data from Tennessee East-man process (TEP) simulator is used to evaluate the effectiveness of the key variable selection using accelerated SVM-RFE (A-SVM-RFE). A-SVM-RFE integrates computational rate and algorithm effectiveness into a consistent framework. It not only can correctly identify the key variables, but also has very good computational rate. In comparison with contribution charts combined with principal component aralysis (PCA) and other two SVM-RFE algorithms, A-SVM-RFE performs better. It is more fitting for industrial application.展开更多
In microarray-based cancer classification, gene selection is an important issue owing to the large number of variables and small number of samples as well as its non-linearity. It is difficult to get satisfying result...In microarray-based cancer classification, gene selection is an important issue owing to the large number of variables and small number of samples as well as its non-linearity. It is difficult to get satisfying results by using conventional linear sta- tistical methods. Recursive feature elimination based on support vector machine (SVM RFE) is an effective algorithm for gene selection and cancer classification, which are integrated into a consistent framework. In this paper, we propose a new method to select parameters of the aforementioned algorithm implemented with Gaussian kernel SVMs as better alternatives to the common practice of selecting the apparently best parameters by using a genetic algorithm to search for a couple of optimal parameter. Fast implementation issues for this method are also discussed for pragmatic reasons. The proposed method was tested on two repre- sentative hereditary breast cancer and acute leukaemia datasets. The experimental results indicate that the proposed method per- forms well in selecting genes and achieves high classification accuracies with these genes.展开更多
Intrusion detection systems play a vital role in cyberspace security.In this study,a network intrusion detection method based on the feature selection algorithm(FSA)and a deep learning model is developed using a fusio...Intrusion detection systems play a vital role in cyberspace security.In this study,a network intrusion detection method based on the feature selection algorithm(FSA)and a deep learning model is developed using a fusion of a recursive feature elimination(RFE)algorithm and a bidirectional gated recurrent unit(BGRU).Particularly,the RFE algorithm is employed to select features from high-dimensional data to reduce weak correlations between features and remove redundant features in the numerical feature space.Then,a neural network that combines the BGRU and multilayer perceptron(MLP)is adopted to extract deep intrusion behavior features.Finally,a support vector machine(SVM)classifier is used to classify intrusion behaviors.The proposed model is verified by experiments on the NSL-KDD dataset.The results indicate that the proposed model achieves a 90.25%accuracy and a 97.51%detection rate in binary classification and outperforms other machine learning and deep learning models in intrusion classification.The proposed method can provide new insight into network intrusion detection.展开更多
本研究通过特征选择的方法,分析肝癌患者术前临床信息,提高患者的预后模型的准确性。基于多类支持向量机递归特征消除(recursive feature elimination based on multiple support vector machine,MSVM-RFE)方法对进行过肝切除手术的原...本研究通过特征选择的方法,分析肝癌患者术前临床信息,提高患者的预后模型的准确性。基于多类支持向量机递归特征消除(recursive feature elimination based on multiple support vector machine,MSVM-RFE)方法对进行过肝切除手术的原发性肝癌患者的临床变量进行重要特征排序,使用5折交叉验证的支持向量机确定最优特征子集,构造原发性肝癌患者术后的1年、3年无瘤生存和总体生存的列线图。通过与临床医生沟通,确认特征排序结果为合理的。患者3年无瘤生存风险和总生存风险的列线图的一致性指数分别为0.701和0.706。使用多类支持向量机递归特征消除方法后的预测模型准确率有所提高,列线图在临床实践中能够提供患者生存风险信息,简单清晰的反映患者的生存风险。展开更多
基金Supported by China 973 Program (No.2002CB312200), the National Natural Science Foundation of China (No.60574019 and No.60474045), the Key Technologies R&D Program of Zhejiang Province (No.2005C21087) and the Academician Foundation of Zhejiang Province (No.2005A1001-13).
文摘Key variable identification for classifications is related to many trouble-shooting problems in process indus-tries. Recursive feature elimination based on support vector machine (SVM-RFE) has been proposed recently in applica-tion for feature selection in cancer diagnosis. In this paper, SVM-RFE is used to the key variable selection in fault diag-nosis, and an accelerated SVM-RFE procedure based on heuristic criterion is proposed. The data from Tennessee East-man process (TEP) simulator is used to evaluate the effectiveness of the key variable selection using accelerated SVM-RFE (A-SVM-RFE). A-SVM-RFE integrates computational rate and algorithm effectiveness into a consistent framework. It not only can correctly identify the key variables, but also has very good computational rate. In comparison with contribution charts combined with principal component aralysis (PCA) and other two SVM-RFE algorithms, A-SVM-RFE performs better. It is more fitting for industrial application.
基金Project supported by the National Basic Research Program (973) of China (No. 2002CB312200) and the Center for Bioinformatics Pro-gram Grant of Harvard Center of Neurodegeneration and Repair,Harvard Medical School, Harvard University, Boston, USA
文摘In microarray-based cancer classification, gene selection is an important issue owing to the large number of variables and small number of samples as well as its non-linearity. It is difficult to get satisfying results by using conventional linear sta- tistical methods. Recursive feature elimination based on support vector machine (SVM RFE) is an effective algorithm for gene selection and cancer classification, which are integrated into a consistent framework. In this paper, we propose a new method to select parameters of the aforementioned algorithm implemented with Gaussian kernel SVMs as better alternatives to the common practice of selecting the apparently best parameters by using a genetic algorithm to search for a couple of optimal parameter. Fast implementation issues for this method are also discussed for pragmatic reasons. The proposed method was tested on two repre- sentative hereditary breast cancer and acute leukaemia datasets. The experimental results indicate that the proposed method per- forms well in selecting genes and achieves high classification accuracies with these genes.
基金supported in part by the National Natural Science Foundation of China(No.62001333)the Scientific Research Project of Education Department of Hubei Province(No.D20221702).
文摘Intrusion detection systems play a vital role in cyberspace security.In this study,a network intrusion detection method based on the feature selection algorithm(FSA)and a deep learning model is developed using a fusion of a recursive feature elimination(RFE)algorithm and a bidirectional gated recurrent unit(BGRU).Particularly,the RFE algorithm is employed to select features from high-dimensional data to reduce weak correlations between features and remove redundant features in the numerical feature space.Then,a neural network that combines the BGRU and multilayer perceptron(MLP)is adopted to extract deep intrusion behavior features.Finally,a support vector machine(SVM)classifier is used to classify intrusion behaviors.The proposed model is verified by experiments on the NSL-KDD dataset.The results indicate that the proposed model achieves a 90.25%accuracy and a 97.51%detection rate in binary classification and outperforms other machine learning and deep learning models in intrusion classification.The proposed method can provide new insight into network intrusion detection.
基金supported by the National Key Basic Research Program of China(2009CB118500)Scientific Research Foundation for theReturned Overseas Chinese Scholars,Ministry of Education,China(20071108-18-15)~~
文摘本研究通过特征选择的方法,分析肝癌患者术前临床信息,提高患者的预后模型的准确性。基于多类支持向量机递归特征消除(recursive feature elimination based on multiple support vector machine,MSVM-RFE)方法对进行过肝切除手术的原发性肝癌患者的临床变量进行重要特征排序,使用5折交叉验证的支持向量机确定最优特征子集,构造原发性肝癌患者术后的1年、3年无瘤生存和总体生存的列线图。通过与临床医生沟通,确认特征排序结果为合理的。患者3年无瘤生存风险和总生存风险的列线图的一致性指数分别为0.701和0.706。使用多类支持向量机递归特征消除方法后的预测模型准确率有所提高,列线图在临床实践中能够提供患者生存风险信息,简单清晰的反映患者的生存风险。