Accurately estimating the State of Health(SOH)and Remaining Useful Life(RUL)of lithium-ion batteries(LIBs)is crucial for the continuous and stable operation of battery management systems.However,due to the complex int...Accurately estimating the State of Health(SOH)and Remaining Useful Life(RUL)of lithium-ion batteries(LIBs)is crucial for the continuous and stable operation of battery management systems.However,due to the complex internal chemical systems of LIBs and the nonlinear degradation of their performance,direct measurement of SOH and RUL is challenging.To address these issues,the Twin Support Vector Machine(TWSVM)method is proposed to predict SOH and RUL.Initially,the constant current charging time of the lithium battery is extracted as a health indicator(HI),decomposed using Variational Modal Decomposition(VMD),and feature correlations are computed using Importance of Random Forest Features(RF)to maximize the extraction of critical factors influencing battery performance degradation.Furthermore,to enhance the global search capability of the Convolution Optimization Algorithm(COA),improvements are made using Good Point Set theory and the Differential Evolution method.The Improved Convolution Optimization Algorithm(ICOA)is employed to optimize TWSVM parameters for constructing SOH and RUL prediction models.Finally,the proposed models are validated using NASA and CALCE lithium-ion battery datasets.Experimental results demonstrate that the proposed models achieve an RMSE not exceeding 0.007 and an MAPE not exceeding 0.0082 for SOH and RUL prediction,with a relative error in RUL prediction within the range of[-1.8%,2%].Compared to other models,the proposed model not only exhibits superior fitting capability but also demonstrates robust performance.展开更多
Open networks and heterogeneous services in the Internet of Vehicles(IoV)can lead to security and privacy challenges.One key requirement for such systems is the preservation of user privacy,ensuring a seamless experie...Open networks and heterogeneous services in the Internet of Vehicles(IoV)can lead to security and privacy challenges.One key requirement for such systems is the preservation of user privacy,ensuring a seamless experience in driving,navigation,and communication.These privacy needs are influenced by various factors,such as data collected at different intervals,trip durations,and user interactions.To address this,the paper proposes a Support Vector Machine(SVM)model designed to process large amounts of aggregated data and recommend privacy preserving measures.The model analyzes data based on user demands and interactions with service providers or neighboring infrastructure.It aims to minimize privacy risks while ensuring service continuity and sustainability.The SVMmodel helps validate the system’s reliability by creating a hyperplane that distinguishes between maximum and minimum privacy recommendations.The results demonstrate the effectiveness of the proposed SVM model in enhancing both privacy and service performance.展开更多
Miniature air quality sensors are widely used in urban grid-based monitoring due to their flexibility in deployment and low cost.However,the raw data collected by these devices often suffer from low accuracy caused by...Miniature air quality sensors are widely used in urban grid-based monitoring due to their flexibility in deployment and low cost.However,the raw data collected by these devices often suffer from low accuracy caused by environmental interference and sensor drift,highlighting the need for effective calibration methods to improve data reliability.This study proposes a data correction method based on Bayesian Optimization Support Vector Regression(BO-SVR),which combines the nonlinear modeling capability of Support Vector Regression(SVR)with the efficient global hyperparameter search of Bayesian Optimization.By introducing cross-validation loss as the optimization objective and using Gaussian process modeling with an Expected Improvement acquisition strategy,the approach automatically determines optimal hyperparameters for accurate pollutant concentration prediction.Experiments on real-world micro-sensor datasets demonstrate that BO-SVR outperforms traditional SVR,grid search SVR,and random forest(RF)models across multiple pollutants,including PM_(2.5),PM_(10),CO,NO_(2),SO_(2),and O_(3).The proposed method achieves lower prediction residuals,higher fitting accuracy,and better generalization,offering an efficient and practical solution for enhancing the quality of micro-sensor air monitoring data.展开更多
The monitoring signals of bearings from single-source sensor often contain limited information for characterizing various working condition,which may lead to instability and uncertainty of the class-imbalanced intelli...The monitoring signals of bearings from single-source sensor often contain limited information for characterizing various working condition,which may lead to instability and uncertainty of the class-imbalanced intelligent fault diagnosis.On the other hand,the vectorization of multi-source sensor signals may not only generate high-dimensional vectors,leading to increasing computational complexity and overfitting problems,but also lose the structural information and the coupling information.This paper proposes a new method for class-imbalanced fault diagnosis of bearing using support tensor machine(STM)driven by heterogeneous data fusion.The collected sound and vibration signals of bearings are successively decomposed into multiple frequency band components to extract various time-domain and frequency-domain statistical parameters.A third-order hetero-geneous feature tensor is designed based on multisensors,frequency band components,and statistical parameters.STM-based intelligent model is constructed to preserve the structural information of the third-order heterogeneous feature tensor for bearing fault diagnosis.A series of comparative experiments verify the advantages of the proposed method.展开更多
The application of machine learning for pyrite discrimination establishes a robust foundation for constructing the ore-forming history of multi-stage deposits;however,published models face challenges related to limite...The application of machine learning for pyrite discrimination establishes a robust foundation for constructing the ore-forming history of multi-stage deposits;however,published models face challenges related to limited,imbalanced datasets and oversampling.In this study,the dataset was expanded to approximately 500 samples for each type,including 508 sedimentary,573 orogenic gold,548 sedimentary exhalative(SEDEX)deposits,and 364 volcanogenic massive sulfides(VMS)pyrites,utilizing random forest(RF)and support vector machine(SVM)methodologies to enhance the reliability of the classifier models.The RF classifier achieved an overall accuracy of 99.8%,and the SVM classifier attained an overall accuracy of 100%.The model was evaluated by a five-fold cross-validation approach with 93.8%accuracy for the RF and 94.9%for the SVM classifier.These results demonstrate the strong feasibility of pyrite classification,supported by a relatively large,balanced dataset and high accuracy rates.The classifier was employed to reveal the genesis of the controversial Keketale Pb-Zn deposit in NW China,which has been inconclusive among SEDEX,VMS,or a SEDEX-VMS transition.Petrographic investigations indicated that the deposit comprises early fine-grained layered pyrite(Py1)and late recrystallized pyrite(Py2).The majority voting classified Py1 as the VMS type,with an accuracy of RF and SVM being 72.2%and 75%,respectively,and confirmed Py2 as an orogenic type with 74.3% and 77.1%accuracy,respectively.The new findings indicated that the Keketale deposit originated from a submarine VMS mineralization system,followed by late orogenic-type overprinting of metamorphism and deformation,which is consistent with the geological and geochemical observations.This study further emphasizes the advantages of Machine learning(ML)methods in accurately and directly discriminating the deposit types and reconstructing the formation history of multi-stage deposits.展开更多
In engineering practice,it is often necessary to determine functional relationships between dependent and independent variables.These relationships can be highly nonlinear,and classical regression approaches cannot al...In engineering practice,it is often necessary to determine functional relationships between dependent and independent variables.These relationships can be highly nonlinear,and classical regression approaches cannot always provide sufficiently reliable solutions.Nevertheless,Machine Learning(ML)techniques,which offer advanced regression tools to address complicated engineering issues,have been developed and widely explored.This study investigates the selected ML techniques to evaluate their suitability for application in the hot deformation behavior of metallic materials.The ML-based regression methods of Artificial Neural Networks(ANNs),Support Vector Machine(SVM),Decision Tree Regression(DTR),and Gaussian Process Regression(GPR)are applied to mathematically describe hot flow stress curve datasets acquired experimentally for a medium-carbon steel.Although the GPR method has not been used for such a regression task before,the results showed that its performance is the most favorable and practically unrivaled;neither the ANN method nor the other studied ML techniques provide such precise results of the solved regression analysis.展开更多
The complex pathophysiology and diverse manifestations of esophageal disorders pose challenges in clinical practice,particularly in achieving accurate early diagnosis and risk stratification.While traditional approach...The complex pathophysiology and diverse manifestations of esophageal disorders pose challenges in clinical practice,particularly in achieving accurate early diagnosis and risk stratification.While traditional approaches rely heavily on subjective interpretations and variable expertise,machine learning(ML)has emerged as a transformative tool in healthcare.We conducted a comprehensive review of published literature on ML applications in esophageal diseases,analyzing technical approaches,validation methods,and clinical outcomes.ML demonstrates superior performance:In gastroesophageal reflux disease,ML models achieve 80%-90%accuracy in potential of hydrogen-impedance analysis and endoscopic grading;for Barrett’s esophagus,ML-based approaches show 88%-95% accuracy in invasive diagnostics and 77%-85% accuracy in non-invasive screening.In esophageal cancer,ML improves early detection and survival prediction by 6%-10% compared to traditional methods.Novel applications in achalasia and esophageal varices demonstrate promising results in automated diagnosis and risk stratification,with accuracy rates exceeding 85%.While challenges persist in data standardization,model interpretability,and clinical integration,emerging solutions in federated learning and explainable artificial intelligence offer promising pathways forward.The continued evolution of these technologies,coupled with rigorous validation and thoughtful implementation,may fundamentally transform our approach to esophageal disease management in the era of precision medicine.展开更多
BACKGROUND Research has found that the amygdala plays a significant role in underlying pathology of major depressive disorder(MDD).However,few studies have explored machine learning-assisted diagnostic biomarkers base...BACKGROUND Research has found that the amygdala plays a significant role in underlying pathology of major depressive disorder(MDD).However,few studies have explored machine learning-assisted diagnostic biomarkers based on amygdala functional connectivity(FC).AIM To investigate the analysis of neuroimaging biomarkers as a streamlined approach for the diagnosis of MDD in adolescents.METHODS Forty-four adolescents diagnosed with MDD and 43 healthy controls were enrolled in the study.Using resting-state functional magnetic resonance imaging,the FC was compared between the adolescents with MDD and the healthy controls,with the bilateral amygdala serving as the seed point,followed by statistical analysis of the results.The support vector machine(SVM)method was then applied to classify functional connections in various brain regions and to evaluate the neurophysiological characteristics associated with MDD.RESULTS Compared to the controls and using the bilateral amygdala as the region of interest,patients with MDD showed significantly lower FC values in the left inferior temporal gyrus,bilateral calcarine,right lingual gyrus,and left superior occipital gyrus.However,there was an increase in the FC value in Vermis-10.The SVM analysis revealed that the reduction in the FC value in the right lingual gyrus could effectively differentiate patients with MDD from healthy controls,achieving a diagnostic accuracy of 83.91%,sensitivity of 79.55%,specificity of 88.37%,and an area under the curve of 67.65%.CONCLUSION The results showed that an abnormal FC value in the right lingual gyrus was effective as a neuroimaging biomarker to distinguish patients with MDD from healthy controls.展开更多
Effective fault diagnosis and fault-tolerant control method for aeronautics electromechanical actuator is concerned in this paper.By borrowing the advantages of model-driven and data-driven methods,a fault tolerant no...Effective fault diagnosis and fault-tolerant control method for aeronautics electromechanical actuator is concerned in this paper.By borrowing the advantages of model-driven and data-driven methods,a fault tolerant nonsingular terminal sliding mode control method based on support vector machine(SVM)is proposed.A SVM is designed to estimate the fault by off-line learning from small sample data with solving convex quadratic programming method and is introduced into a high-gain observer,so as to improve the state estimation and fault detection accuracy when the fault occurs.The state estimation value of the observer is used for state reconfiguration.A novel nonsingular terminal sliding mode surface is designed,and Lyapunov theorem is used to derive a parameter adaptation law and a control law.It is guaranteed that the proposed controller can achieve asymptotical stability which is superior to many advanced fault-tolerant controllers.In addition,the parameter estimation also can help to diagnose the system faults because the faults can be reflected by the parameters variation.Extensive comparative simulation and experimental results illustrate the effectiveness and advancement of the proposed controller compared with several other main-stream controllers.展开更多
The selection of important factors in machine learning-based susceptibility assessments is crucial to obtain reliable susceptibility results.In this study,metaheuristic optimization and feature selection techniques we...The selection of important factors in machine learning-based susceptibility assessments is crucial to obtain reliable susceptibility results.In this study,metaheuristic optimization and feature selection techniques were applied to identify the most important input parameters for mapping debris flow susceptibility in the southern mountain area of Chengde City in Hebei Province,China,by using machine learning algorithms.In total,133 historical debris flow records and 16 related factors were selected.The support vector machine(SVM)was first used as the base classifier,and then a hybrid model was introduced by a two-step process.First,the particle swarm optimization(PSO)algorithm was employed to select the SVM model hyperparameters.Second,two feature selection algorithms,namely principal component analysis(PCA)and PSO,were integrated into the PSO-based SVM model,which generated the PCA-PSO-SVM and FS-PSO-SVM models,respectively.Three statistical metrics(accuracy,recall,and specificity)and the area under the receiver operating characteristic curve(AUC)were employed to evaluate and validate the performance of the models.The results indicated that the feature selection-based models exhibited the best performance,followed by the PSO-based SVM and SVM models.Moreover,the performance of the FS-PSO-SVM model was better than that of the PCA-PSO-SVM model,showing the highest AUC,accuracy,recall,and specificity values in both the training and testing processes.It was found that the selection of optimal features is crucial to improving the reliability of debris flow susceptibility assessment results.Moreover,the PSO algorithm was found to be not only an effective tool for hyperparameter optimization,but also a useful feature selection algorithm to improve prediction accuracies of debris flow susceptibility by using machine learning algorithms.The high and very high debris flow susceptibility zone appropriately covers 38.01%of the study area,where debris flow may occur under intensive human activities and heavy rainfall events.展开更多
AIM:To develop a classifier for traditional Chinese medicine(TCM)syndrome differentiation of diabetic retinopathy(DR),using optimized machine learning algorithms,which can provide the basis for TCM objective and intel...AIM:To develop a classifier for traditional Chinese medicine(TCM)syndrome differentiation of diabetic retinopathy(DR),using optimized machine learning algorithms,which can provide the basis for TCM objective and intelligent syndrome differentiation.METHODS:Collated data on real-world DR cases were collected.A variety of machine learning methods were used to construct TCM syndrome classification model,and the best performance was selected as the basic model.Genetic Algorithm(GA)was used for feature selection to obtain the optimal feature combination.Harris Hawk Optimization(HHO)was used for parameter optimization,and a classification model based on feature selection and parameter optimization was constructed.The performance of the model was compared with other optimization algorithms.The models were evaluated with accuracy,precision,recall,and F1 score as indicators.RESULTS:Data on 970 cases that met screening requirements were collected.Support Vector Machine(SVM)was the best basic classification model.The accuracy rate of the model was 82.05%,the precision rate was 82.34%,the recall rate was 81.81%,and the F1 value was 81.76%.After GA screening,the optimal feature combination contained 37 feature values,which was consistent with TCM clinical practice.The model based on optimal combination and SVM(GA_SVM)had an accuracy improvement of 1.92%compared to the basic classifier.SVM model based on HHO and GA optimization(HHO_GA_SVM)had the best performance and convergence speed compared with other optimization algorithms.Compared with the basic classification model,the accuracy was improved by 3.51%.CONCLUSION:HHO and GA optimization can improve the model performance of SVM in TCM syndrome differentiation of DR.It provides a new method and research idea for TCM intelligent assisted syndrome differentiation.展开更多
Every second, a large volume of useful data is created in social media about the various kind of online purchases and in another forms of reviews. Particularly, purchased products review data is enormously growing in ...Every second, a large volume of useful data is created in social media about the various kind of online purchases and in another forms of reviews. Particularly, purchased products review data is enormously growing in different database repositories every day. Most of the review data are useful to new customers for theier further purchases as well as existing companies to view customers feedback about various products. Data Mining and Machine Leaning techniques are familiar to analyse such kind of data to visualise and know the potential use of the purchased items through online. The customers are making quality of products through their sentiments about the purchased items from different online companies. In this research work, it is analysed sentiments of Headphone review data, which is collected from online repositories. For the analysis of Headphone review data, some of the Machine Learning techniques like Support Vector Machines, Naive Bayes, Decision Trees and Random Forest Algorithms and a Hybrid method are applied to find the quality via the customers’ sentiments. The accuracy and performance of the taken algorithms are also analysed based on the three types of sentiments such as positive, negative and neutral.展开更多
Deformation monitoring is a critical measure for intuitively reflecting the operational behavior of a dam.However,the deformation monitoring data are often incomplete due to environmental changes,monitoring instrument...Deformation monitoring is a critical measure for intuitively reflecting the operational behavior of a dam.However,the deformation monitoring data are often incomplete due to environmental changes,monitoring instrument faults,and human operational errors,thereby often hindering the accurate assessment of actual deformation patterns.This study proposed a method for quantifying deformation similarity between measurement points by recognizing the spatiotemporal characteristics of concrete dam deformation monitoring data.It introduces a spatiotemporal clustering analysis of the concrete dam deformation behavior and employs the support vector machine model to address the missing data in concrete dam deformation monitoring.The proposed method was validated in a concrete dam project,with the model error maintaining within 5%,demonstrating its effectiveness in processing missing deformation data.This approach enhances the capability of early-warning systems and contributes to enhanced dam safety management.展开更多
This study explores the initiation mechanisms of convective wind events,emphasizing their variability across different atmospheric circulation patterns.Historically,the inadequate feature categorization within multi-f...This study explores the initiation mechanisms of convective wind events,emphasizing their variability across different atmospheric circulation patterns.Historically,the inadequate feature categorization within multi-faceted forecast models has led to suboptimal forecast efficacy,particularly for events in dynamically weak forcing conditions during the warm season.To improve the prediction accuracy of convective wind events,this research introduces a novel approach that combines machine learning techniques to identify varying meteorological flow regimes.Convective winds(CWs)are defined as wind speeds reaching or exceeding 17.2 m s^(-1)and severe convective winds(SCWs)as speeds surpassing 24.5 m s^(-1).This study examines the spatial and temporal distribution of CW and SCW events from 2013 to 2021 and their circulation dynamics associated with three primary flow regimes:cold air advection,warm air advection,and quasibarotropic conditions.Key circulation features are used as input variables to construct an effective weather system pattern recognition model.This model employs an Adaptive Boosting(AdaBoost)algorithm combined with Random Under-Sampling(RUS)to address the class imbalance issue,achieving a recognition accuracy of 90.9%.Furthermore,utilizing factor analysis and Support Vector Machine(SVM)techniques,three specialized and independent probabilistic prediction models are developed based on the variance in predictor distributions across different flow regimes.By integrating the type of identification model with these prediction models,an enhanced comprehensive model is constructed.This advanced model autonomously identifies flow types and accordingly selects the most appropriate prediction model.Over a three-year validation period,this improved model outperformed the initially unclassified model in terms of prediction accuracy.Notably,for CWs and SCWs,the maximum Peirce Skill Score(PSS)increased from 0.530 and 0.702 to 0.628 and 0.726,respectively,and the corresponding maximum Threat Score(TS)improved from 0.087 and 0.024 to 0.120 and 0.026.These improvements were significant across all samples,with the cold air advection type showing the greatest enhancement due to the significant spatial variability of each factor.Additionally,the model improved forecast precision by prioritizing thermal factors,which played a key role in modulating false alarm rates in warm air advection and quasi-barotropic flow regimes.The results confirm the critical contribution of circulation feature recognition and segmented modeling to enhancing the adaptability and predictive accuracy of weather forecast models.展开更多
The significance of precise energy usage forecasts has been highlighted by the increasing need for sustainability and energy efficiency across a range of industries.In order to improve the precision and openness of en...The significance of precise energy usage forecasts has been highlighted by the increasing need for sustainability and energy efficiency across a range of industries.In order to improve the precision and openness of energy consumption projections,this study investigates the combination of machine learning(ML)methods with Shapley additive explanations(SHAP)values.The study evaluates three distinct models:the first is a Linear Regressor,the second is a Support Vector Regressor,and the third is a Decision Tree Regressor,which was scaled up to a Random Forest Regressor/Additions made were the third one which was Regressor which was extended to a Random Forest Regressor.These models were deployed with the use of Shareable,Plot-interpretable Explainable Artificial Intelligence techniques,to improve trust in the AI.The findings suggest that our developedmodels are superior to the conventional models discussed in prior studies;with high Mean Absolute Error(MAE)and Root Mean Squared Error(RMSE)values being close to perfection.In detail,the Random Forest Regressor shows the MAE of 0.001 for predicting the house prices whereas the SVR gives 0.21 of MAE and 0.24 RMSE.Such outcomes reflect the possibility of optimizing the use of the promoted advanced AI models with the use of Explainable AI for more accurate prediction of energy consumption and at the same time for the models’decision-making procedures’explanation.In addition to increasing prediction accuracy,this strategy gives stakeholders comprehensible insights,which facilitates improved decision-making and fosters confidence in AI-powered energy solutions.The outcomes show how well ML and SHAP work together to enhance prediction performance and guarantee transparency in energy usage projections.展开更多
BACKGROUND:Rapid and accurate identification of high-risk patients in the emergency departments(EDs)is crucial for optimizing resource allocation and improving patient outcomes.This study aimed to develop an early pre...BACKGROUND:Rapid and accurate identification of high-risk patients in the emergency departments(EDs)is crucial for optimizing resource allocation and improving patient outcomes.This study aimed to develop an early prediction model for identifying high-risk patients in EDs using initial vital sign measurements.METHODS:This retrospective cohort study analyzed initial vital signs from the Chinese Emergency Triage,Assessment,and Treatment(CETAT)database,which was collected between January 1^(st),2020,and June 25^(th),2023.The primary outcome was the identification of high-risk patients needing immediate treatment.Various machine learning methods,including a deep-learningbased multilayer perceptron(MLP)classifier were evaluated.Model performance was assessed using the area under the receiver operating characteristic curve(AUC-ROC).AUC-ROC values were reported for three scenarios:a default case,a scenario requiring sensitivity greater than 0.8(Scenario I),and a scenario requiring specificity greater than 0.8(Scenario II).SHAP values were calculated to determine the importance of each predictor within the MLP model.RESULTS:A total of 38,797 patients were analyzed,of whom 18.2%were identified as high-risk.Comparative analysis of the predictive models for high-risk patients showed AUC-ROC values ranging from 0.717 to 0.738,with the MLP model outperforming logistic regression(LR),Gaussian Naive Bayes(GNB),and the National Early Warning Score(NEWS).SHAP value analysis identified coma state,peripheral capillary oxygen saturation(SpO_(2)),and systolic blood pressure as the top three predictive factors in the MLP model,with coma state exerting the most contribution.CONCLUSION:Compared with other methods,the MLP model with initial vital signs demonstrated optimal prediction accuracy,highlighting its potential to enhance clinical decision-making in triage in the EDs.展开更多
Dementia is a neurological disorder that affects the brain and its functioning,and women experience its effects more than men do.Preventive care often requires non-invasive and rapid tests,yet conventional diagnostic ...Dementia is a neurological disorder that affects the brain and its functioning,and women experience its effects more than men do.Preventive care often requires non-invasive and rapid tests,yet conventional diagnostic techniques are time-consuming and invasive.One of the most effective ways to diagnose dementia is by analyzing a patient’s speech,which is cheap and does not require surgery.This research aims to determine the effectiveness of deep learning(DL)and machine learning(ML)structures in diagnosing dementia based on women’s speech patterns.The study analyzes data drawn from the Pitt Corpus,which contains 298 dementia files and 238 control files from the Dementia Bank database.Deep learning models and SVM classifiers were used to analyze the available audio samples in the dataset.Our methodology used two methods:a DL-ML model and a single DL model for the classification of diabetics and a single DL model.The deep learning model achieved an astronomic level of accuracy of 99.99%with an F1 score of 0.9998,Precision of 0.9997,and recall of 0.9998.The proposed DL-ML fusion model was equally impressive,with an accuracy of 99.99%,F1 score of 0.9995,Precision of 0.9998,and recall of 0.9997.Also,the study reveals how to apply deep learning and machine learning models for dementia detection from speech with high accuracy and low computational complexity.This research work,therefore,concludes by showing the possibility of using speech-based dementia detection as a possibly helpful early diagnosis mode.For even further enhanced model performance and better generalization,future studies may explore real-time applications and the inclusion of other components of speech.展开更多
Permafrost is one of the key components of the cryosphere.Previous studies show that the extent of permafrost has shifted to higher elevations in Nepal.These researches,however,has been hampered by inconsistency in th...Permafrost is one of the key components of the cryosphere.Previous studies show that the extent of permafrost has shifted to higher elevations in Nepal.These researches,however,has been hampered by inconsistency in their study period.Proxies like rock glaciers and climatic variables,such as multi-decadal annual air temperature,are used to link towards the likely occurrence of permafrost.Here,the rock glacier inventory of Solukhumbu was prepared,and classified based on their activity(Intact/Relict)from Google Earth.Talus-based rock glaciers were observed more than glacier-derived ones.These rock glaciers were highly correlated with Mean Annual Air Temperature,followed by potential incoming solar radiation and slope.Three machine learning models(Logistic Regression,Random Forest and Support Vector Machines)were trained to generate permafrost probability distribution maps based on their prediction of the probability of rock glaciers being intact as opposed to relict.Logistic Regression and Support Vector Machines were able to produce a similar spatial distribution of permafrost.However,the Random Forest has low precision of spatial variation.The permafrost distribution map suggests the likely occurrence of permafrost to be above 5000 m,indicating a potential for rock and landslides should it thaw in the future.While higher-resolution input data can improve the results,this approach remains promising for application in permafrost regions where information about the ice content of rock glaciers isverylimited.展开更多
To achieve carbon dioxide(CO_(2))storage through enhanced oil recovery,accurate forecasting of CO_(2) subsurface storage and cumulative oil production is essential.This study develops hybrid predictive models for the ...To achieve carbon dioxide(CO_(2))storage through enhanced oil recovery,accurate forecasting of CO_(2) subsurface storage and cumulative oil production is essential.This study develops hybrid predictive models for the determination of CO_(2) storage mass and cumulative oil production in unconventional reservoirs.It does so with two multi-layer perceptron neural networks(MLPNN)and a least-squares support vector machine(LSSVM),hybridized with grey wolf optimization(GWO)and/or particle swarm optimization(PSO).Large,simulated datasets were divided into training(70%)and testing(30%)groups,with normalization applied to both groups.Mahalanobis distance identifies/eliminates outliers in the training subset only.A non-dominated sorting genetic algorithm(NSGA-II)combined with LSSVM selected seven influential features from the nine available input parameters:reservoir depth,porosity,permeability,thickness,bottom-hole pressure,area,CO_(2) injection rate,residual oil saturation to gas flooding,and residual oil saturation to water flooding.Predictive models were developed and tested,with performance evaluated with an overfitting index(OFI),scoring analysis,and partial dependence plots(PDP),during training and independent testing to enhance model focus and effectiveness.The LSSVM-GWO model generated the lowest root mean square error(RMSE)values(0.4052 MMT for CO_(2) storage and 9.7392 MMbbl for cumulative oil production)in the training group.That trained model also exhibited excellent generalization and minimal overfitting when applied to the testing group(RMSE of 0.6224 MMT for CO_(2) storage and 12.5143 MMbbl for cumulative oil production).PDP analysis revealed that the input features“area”and“porosity”had the most influence on the LSSVM-GWO model's pre-diction performance.This paper presents a new hybrid modeling approach that achieves accurate forecasting of CO_(2) subsurface storage and cumulative oil production.It also establishes a new standard for such forecasting,which can lead to the development of more effective and sustainable solutions for oil recovery.展开更多
基金funded by the Pyramid Talent Training Project of Beijing University of Civil Engineering and Architecture under Grant GJZJ20220802。
文摘Accurately estimating the State of Health(SOH)and Remaining Useful Life(RUL)of lithium-ion batteries(LIBs)is crucial for the continuous and stable operation of battery management systems.However,due to the complex internal chemical systems of LIBs and the nonlinear degradation of their performance,direct measurement of SOH and RUL is challenging.To address these issues,the Twin Support Vector Machine(TWSVM)method is proposed to predict SOH and RUL.Initially,the constant current charging time of the lithium battery is extracted as a health indicator(HI),decomposed using Variational Modal Decomposition(VMD),and feature correlations are computed using Importance of Random Forest Features(RF)to maximize the extraction of critical factors influencing battery performance degradation.Furthermore,to enhance the global search capability of the Convolution Optimization Algorithm(COA),improvements are made using Good Point Set theory and the Differential Evolution method.The Improved Convolution Optimization Algorithm(ICOA)is employed to optimize TWSVM parameters for constructing SOH and RUL prediction models.Finally,the proposed models are validated using NASA and CALCE lithium-ion battery datasets.Experimental results demonstrate that the proposed models achieve an RMSE not exceeding 0.007 and an MAPE not exceeding 0.0082 for SOH and RUL prediction,with a relative error in RUL prediction within the range of[-1.8%,2%].Compared to other models,the proposed model not only exhibits superior fitting capability but also demonstrates robust performance.
基金supported by the Deanship of Graduate Studies and Scientific Research at University of Bisha for funding this research through the promising program under grant number(UB-Promising-33-1445).
文摘Open networks and heterogeneous services in the Internet of Vehicles(IoV)can lead to security and privacy challenges.One key requirement for such systems is the preservation of user privacy,ensuring a seamless experience in driving,navigation,and communication.These privacy needs are influenced by various factors,such as data collected at different intervals,trip durations,and user interactions.To address this,the paper proposes a Support Vector Machine(SVM)model designed to process large amounts of aggregated data and recommend privacy preserving measures.The model analyzes data based on user demands and interactions with service providers or neighboring infrastructure.It aims to minimize privacy risks while ensuring service continuity and sustainability.The SVMmodel helps validate the system’s reliability by creating a hyperplane that distinguishes between maximum and minimum privacy recommendations.The results demonstrate the effectiveness of the proposed SVM model in enhancing both privacy and service performance.
文摘Miniature air quality sensors are widely used in urban grid-based monitoring due to their flexibility in deployment and low cost.However,the raw data collected by these devices often suffer from low accuracy caused by environmental interference and sensor drift,highlighting the need for effective calibration methods to improve data reliability.This study proposes a data correction method based on Bayesian Optimization Support Vector Regression(BO-SVR),which combines the nonlinear modeling capability of Support Vector Regression(SVR)with the efficient global hyperparameter search of Bayesian Optimization.By introducing cross-validation loss as the optimization objective and using Gaussian process modeling with an Expected Improvement acquisition strategy,the approach automatically determines optimal hyperparameters for accurate pollutant concentration prediction.Experiments on real-world micro-sensor datasets demonstrate that BO-SVR outperforms traditional SVR,grid search SVR,and random forest(RF)models across multiple pollutants,including PM_(2.5),PM_(10),CO,NO_(2),SO_(2),and O_(3).The proposed method achieves lower prediction residuals,higher fitting accuracy,and better generalization,offering an efficient and practical solution for enhancing the quality of micro-sensor air monitoring data.
基金supported by the National Natural Science Foundation of China(No.52275104)the Science and Technology Innovation Program of Hunan Province(No.2023RC3097).
文摘The monitoring signals of bearings from single-source sensor often contain limited information for characterizing various working condition,which may lead to instability and uncertainty of the class-imbalanced intelligent fault diagnosis.On the other hand,the vectorization of multi-source sensor signals may not only generate high-dimensional vectors,leading to increasing computational complexity and overfitting problems,but also lose the structural information and the coupling information.This paper proposes a new method for class-imbalanced fault diagnosis of bearing using support tensor machine(STM)driven by heterogeneous data fusion.The collected sound and vibration signals of bearings are successively decomposed into multiple frequency band components to extract various time-domain and frequency-domain statistical parameters.A third-order hetero-geneous feature tensor is designed based on multisensors,frequency band components,and statistical parameters.STM-based intelligent model is constructed to preserve the structural information of the third-order heterogeneous feature tensor for bearing fault diagnosis.A series of comparative experiments verify the advantages of the proposed method.
基金the National Key Research and Development Program of China(2021YFC2900300)the Natural Science Foundation of Guangdong Province(2024A1515030216)+2 种基金MOST Special Fund from State Key Laboratory of Geological Processes and Mineral Resources,China University of Geosciences(GPMR202437)the Guangdong Province Introduced of Innovative R&D Team(2021ZT09H399)the Third Xinjiang Scientific Expedition Program(2022xjkk1301).
文摘The application of machine learning for pyrite discrimination establishes a robust foundation for constructing the ore-forming history of multi-stage deposits;however,published models face challenges related to limited,imbalanced datasets and oversampling.In this study,the dataset was expanded to approximately 500 samples for each type,including 508 sedimentary,573 orogenic gold,548 sedimentary exhalative(SEDEX)deposits,and 364 volcanogenic massive sulfides(VMS)pyrites,utilizing random forest(RF)and support vector machine(SVM)methodologies to enhance the reliability of the classifier models.The RF classifier achieved an overall accuracy of 99.8%,and the SVM classifier attained an overall accuracy of 100%.The model was evaluated by a five-fold cross-validation approach with 93.8%accuracy for the RF and 94.9%for the SVM classifier.These results demonstrate the strong feasibility of pyrite classification,supported by a relatively large,balanced dataset and high accuracy rates.The classifier was employed to reveal the genesis of the controversial Keketale Pb-Zn deposit in NW China,which has been inconclusive among SEDEX,VMS,or a SEDEX-VMS transition.Petrographic investigations indicated that the deposit comprises early fine-grained layered pyrite(Py1)and late recrystallized pyrite(Py2).The majority voting classified Py1 as the VMS type,with an accuracy of RF and SVM being 72.2%and 75%,respectively,and confirmed Py2 as an orogenic type with 74.3% and 77.1%accuracy,respectively.The new findings indicated that the Keketale deposit originated from a submarine VMS mineralization system,followed by late orogenic-type overprinting of metamorphism and deformation,which is consistent with the geological and geochemical observations.This study further emphasizes the advantages of Machine learning(ML)methods in accurately and directly discriminating the deposit types and reconstructing the formation history of multi-stage deposits.
基金supported by the SP2024/089 Project by the Faculty of Materials Science and Technology,VˇSB-Technical University of Ostrava.
文摘In engineering practice,it is often necessary to determine functional relationships between dependent and independent variables.These relationships can be highly nonlinear,and classical regression approaches cannot always provide sufficiently reliable solutions.Nevertheless,Machine Learning(ML)techniques,which offer advanced regression tools to address complicated engineering issues,have been developed and widely explored.This study investigates the selected ML techniques to evaluate their suitability for application in the hot deformation behavior of metallic materials.The ML-based regression methods of Artificial Neural Networks(ANNs),Support Vector Machine(SVM),Decision Tree Regression(DTR),and Gaussian Process Regression(GPR)are applied to mathematically describe hot flow stress curve datasets acquired experimentally for a medium-carbon steel.Although the GPR method has not been used for such a regression task before,the results showed that its performance is the most favorable and practically unrivaled;neither the ANN method nor the other studied ML techniques provide such precise results of the solved regression analysis.
基金Supported by the Central Funds Guiding the Local Science and Technology Development,No.202207AB110017Key Research and Development Program of Yunnan,No.202302AD080004+1 种基金Yunnan Academician and Expert Workstation,No.202205AF150023the Scientific and Technological Innovation Team in Kunming Medical University,No.CXTD202215.
文摘The complex pathophysiology and diverse manifestations of esophageal disorders pose challenges in clinical practice,particularly in achieving accurate early diagnosis and risk stratification.While traditional approaches rely heavily on subjective interpretations and variable expertise,machine learning(ML)has emerged as a transformative tool in healthcare.We conducted a comprehensive review of published literature on ML applications in esophageal diseases,analyzing technical approaches,validation methods,and clinical outcomes.ML demonstrates superior performance:In gastroesophageal reflux disease,ML models achieve 80%-90%accuracy in potential of hydrogen-impedance analysis and endoscopic grading;for Barrett’s esophagus,ML-based approaches show 88%-95% accuracy in invasive diagnostics and 77%-85% accuracy in non-invasive screening.In esophageal cancer,ML improves early detection and survival prediction by 6%-10% compared to traditional methods.Novel applications in achalasia and esophageal varices demonstrate promising results in automated diagnosis and risk stratification,with accuracy rates exceeding 85%.While challenges persist in data standardization,model interpretability,and clinical integration,emerging solutions in federated learning and explainable artificial intelligence offer promising pathways forward.The continued evolution of these technologies,coupled with rigorous validation and thoughtful implementation,may fundamentally transform our approach to esophageal disease management in the era of precision medicine.
文摘BACKGROUND Research has found that the amygdala plays a significant role in underlying pathology of major depressive disorder(MDD).However,few studies have explored machine learning-assisted diagnostic biomarkers based on amygdala functional connectivity(FC).AIM To investigate the analysis of neuroimaging biomarkers as a streamlined approach for the diagnosis of MDD in adolescents.METHODS Forty-four adolescents diagnosed with MDD and 43 healthy controls were enrolled in the study.Using resting-state functional magnetic resonance imaging,the FC was compared between the adolescents with MDD and the healthy controls,with the bilateral amygdala serving as the seed point,followed by statistical analysis of the results.The support vector machine(SVM)method was then applied to classify functional connections in various brain regions and to evaluate the neurophysiological characteristics associated with MDD.RESULTS Compared to the controls and using the bilateral amygdala as the region of interest,patients with MDD showed significantly lower FC values in the left inferior temporal gyrus,bilateral calcarine,right lingual gyrus,and left superior occipital gyrus.However,there was an increase in the FC value in Vermis-10.The SVM analysis revealed that the reduction in the FC value in the right lingual gyrus could effectively differentiate patients with MDD from healthy controls,achieving a diagnostic accuracy of 83.91%,sensitivity of 79.55%,specificity of 88.37%,and an area under the curve of 67.65%.CONCLUSION The results showed that an abnormal FC value in the right lingual gyrus was effective as a neuroimaging biomarker to distinguish patients with MDD from healthy controls.
基金Supported by National Natural Science Foundation of China (Grant No.51975294)Fundamental Research Funds for the Central Universities of China (Grant No.30922010706)。
文摘Effective fault diagnosis and fault-tolerant control method for aeronautics electromechanical actuator is concerned in this paper.By borrowing the advantages of model-driven and data-driven methods,a fault tolerant nonsingular terminal sliding mode control method based on support vector machine(SVM)is proposed.A SVM is designed to estimate the fault by off-line learning from small sample data with solving convex quadratic programming method and is introduced into a high-gain observer,so as to improve the state estimation and fault detection accuracy when the fault occurs.The state estimation value of the observer is used for state reconfiguration.A novel nonsingular terminal sliding mode surface is designed,and Lyapunov theorem is used to derive a parameter adaptation law and a control law.It is guaranteed that the proposed controller can achieve asymptotical stability which is superior to many advanced fault-tolerant controllers.In addition,the parameter estimation also can help to diagnose the system faults because the faults can be reflected by the parameters variation.Extensive comparative simulation and experimental results illustrate the effectiveness and advancement of the proposed controller compared with several other main-stream controllers.
基金supported by the Second Tibetan Plateau Scientific Expedition and Research Program(Grant no.2019QZKK0904)Natural Science Foundation of Hebei Province(Grant no.D2022403032)S&T Program of Hebei(Grant no.E2021403001).
文摘The selection of important factors in machine learning-based susceptibility assessments is crucial to obtain reliable susceptibility results.In this study,metaheuristic optimization and feature selection techniques were applied to identify the most important input parameters for mapping debris flow susceptibility in the southern mountain area of Chengde City in Hebei Province,China,by using machine learning algorithms.In total,133 historical debris flow records and 16 related factors were selected.The support vector machine(SVM)was first used as the base classifier,and then a hybrid model was introduced by a two-step process.First,the particle swarm optimization(PSO)algorithm was employed to select the SVM model hyperparameters.Second,two feature selection algorithms,namely principal component analysis(PCA)and PSO,were integrated into the PSO-based SVM model,which generated the PCA-PSO-SVM and FS-PSO-SVM models,respectively.Three statistical metrics(accuracy,recall,and specificity)and the area under the receiver operating characteristic curve(AUC)were employed to evaluate and validate the performance of the models.The results indicated that the feature selection-based models exhibited the best performance,followed by the PSO-based SVM and SVM models.Moreover,the performance of the FS-PSO-SVM model was better than that of the PCA-PSO-SVM model,showing the highest AUC,accuracy,recall,and specificity values in both the training and testing processes.It was found that the selection of optimal features is crucial to improving the reliability of debris flow susceptibility assessment results.Moreover,the PSO algorithm was found to be not only an effective tool for hyperparameter optimization,but also a useful feature selection algorithm to improve prediction accuracies of debris flow susceptibility by using machine learning algorithms.The high and very high debris flow susceptibility zone appropriately covers 38.01%of the study area,where debris flow may occur under intensive human activities and heavy rainfall events.
基金Supported by Hunan Province Traditional Chinese Medicine Research Project(No.B2023043)Hunan Provincial Department of Education Scientific Research Project(No.22B0386)Hunan University of Traditional Chinese Medicine Campus level Research Fund Project(No.2022XJZKC004).
文摘AIM:To develop a classifier for traditional Chinese medicine(TCM)syndrome differentiation of diabetic retinopathy(DR),using optimized machine learning algorithms,which can provide the basis for TCM objective and intelligent syndrome differentiation.METHODS:Collated data on real-world DR cases were collected.A variety of machine learning methods were used to construct TCM syndrome classification model,and the best performance was selected as the basic model.Genetic Algorithm(GA)was used for feature selection to obtain the optimal feature combination.Harris Hawk Optimization(HHO)was used for parameter optimization,and a classification model based on feature selection and parameter optimization was constructed.The performance of the model was compared with other optimization algorithms.The models were evaluated with accuracy,precision,recall,and F1 score as indicators.RESULTS:Data on 970 cases that met screening requirements were collected.Support Vector Machine(SVM)was the best basic classification model.The accuracy rate of the model was 82.05%,the precision rate was 82.34%,the recall rate was 81.81%,and the F1 value was 81.76%.After GA screening,the optimal feature combination contained 37 feature values,which was consistent with TCM clinical practice.The model based on optimal combination and SVM(GA_SVM)had an accuracy improvement of 1.92%compared to the basic classifier.SVM model based on HHO and GA optimization(HHO_GA_SVM)had the best performance and convergence speed compared with other optimization algorithms.Compared with the basic classification model,the accuracy was improved by 3.51%.CONCLUSION:HHO and GA optimization can improve the model performance of SVM in TCM syndrome differentiation of DR.It provides a new method and research idea for TCM intelligent assisted syndrome differentiation.
文摘Every second, a large volume of useful data is created in social media about the various kind of online purchases and in another forms of reviews. Particularly, purchased products review data is enormously growing in different database repositories every day. Most of the review data are useful to new customers for theier further purchases as well as existing companies to view customers feedback about various products. Data Mining and Machine Leaning techniques are familiar to analyse such kind of data to visualise and know the potential use of the purchased items through online. The customers are making quality of products through their sentiments about the purchased items from different online companies. In this research work, it is analysed sentiments of Headphone review data, which is collected from online repositories. For the analysis of Headphone review data, some of the Machine Learning techniques like Support Vector Machines, Naive Bayes, Decision Trees and Random Forest Algorithms and a Hybrid method are applied to find the quality via the customers’ sentiments. The accuracy and performance of the taken algorithms are also analysed based on the three types of sentiments such as positive, negative and neutral.
基金supported by the National Key R&D Program of China(Grant No.2022YFC3005401)the Fundamental Research Funds for the Central Universities(Grant No.B230201013)+2 种基金the National Natural Science Foundation of China(Grants No.52309152,U2243223,and U23B20150)the Natural Science Foundation of Jiangsu Province(Grant No.BK20220978)the Open Fund of National Dam Safety Research Center(Grant No.CX2023B03).
文摘Deformation monitoring is a critical measure for intuitively reflecting the operational behavior of a dam.However,the deformation monitoring data are often incomplete due to environmental changes,monitoring instrument faults,and human operational errors,thereby often hindering the accurate assessment of actual deformation patterns.This study proposed a method for quantifying deformation similarity between measurement points by recognizing the spatiotemporal characteristics of concrete dam deformation monitoring data.It introduces a spatiotemporal clustering analysis of the concrete dam deformation behavior and employs the support vector machine model to address the missing data in concrete dam deformation monitoring.The proposed method was validated in a concrete dam project,with the model error maintaining within 5%,demonstrating its effectiveness in processing missing deformation data.This approach enhances the capability of early-warning systems and contributes to enhanced dam safety management.
基金Guangdong S&T Program(2024A1111120024)CMA Innovation and Development Fund(CXFZ2024J014)+3 种基金CMA Youth Innovation Team(CMA2024QN01)PRB Meteorological Open Research Fund(ZJLY202425-GD02)GBA Meteorological S&T Program(GHMA2024Y04)Guangzhou Meteorological Research Project(Z202401)。
文摘This study explores the initiation mechanisms of convective wind events,emphasizing their variability across different atmospheric circulation patterns.Historically,the inadequate feature categorization within multi-faceted forecast models has led to suboptimal forecast efficacy,particularly for events in dynamically weak forcing conditions during the warm season.To improve the prediction accuracy of convective wind events,this research introduces a novel approach that combines machine learning techniques to identify varying meteorological flow regimes.Convective winds(CWs)are defined as wind speeds reaching or exceeding 17.2 m s^(-1)and severe convective winds(SCWs)as speeds surpassing 24.5 m s^(-1).This study examines the spatial and temporal distribution of CW and SCW events from 2013 to 2021 and their circulation dynamics associated with three primary flow regimes:cold air advection,warm air advection,and quasibarotropic conditions.Key circulation features are used as input variables to construct an effective weather system pattern recognition model.This model employs an Adaptive Boosting(AdaBoost)algorithm combined with Random Under-Sampling(RUS)to address the class imbalance issue,achieving a recognition accuracy of 90.9%.Furthermore,utilizing factor analysis and Support Vector Machine(SVM)techniques,three specialized and independent probabilistic prediction models are developed based on the variance in predictor distributions across different flow regimes.By integrating the type of identification model with these prediction models,an enhanced comprehensive model is constructed.This advanced model autonomously identifies flow types and accordingly selects the most appropriate prediction model.Over a three-year validation period,this improved model outperformed the initially unclassified model in terms of prediction accuracy.Notably,for CWs and SCWs,the maximum Peirce Skill Score(PSS)increased from 0.530 and 0.702 to 0.628 and 0.726,respectively,and the corresponding maximum Threat Score(TS)improved from 0.087 and 0.024 to 0.120 and 0.026.These improvements were significant across all samples,with the cold air advection type showing the greatest enhancement due to the significant spatial variability of each factor.Additionally,the model improved forecast precision by prioritizing thermal factors,which played a key role in modulating false alarm rates in warm air advection and quasi-barotropic flow regimes.The results confirm the critical contribution of circulation feature recognition and segmented modeling to enhancing the adaptability and predictive accuracy of weather forecast models.
文摘The significance of precise energy usage forecasts has been highlighted by the increasing need for sustainability and energy efficiency across a range of industries.In order to improve the precision and openness of energy consumption projections,this study investigates the combination of machine learning(ML)methods with Shapley additive explanations(SHAP)values.The study evaluates three distinct models:the first is a Linear Regressor,the second is a Support Vector Regressor,and the third is a Decision Tree Regressor,which was scaled up to a Random Forest Regressor/Additions made were the third one which was Regressor which was extended to a Random Forest Regressor.These models were deployed with the use of Shareable,Plot-interpretable Explainable Artificial Intelligence techniques,to improve trust in the AI.The findings suggest that our developedmodels are superior to the conventional models discussed in prior studies;with high Mean Absolute Error(MAE)and Root Mean Squared Error(RMSE)values being close to perfection.In detail,the Random Forest Regressor shows the MAE of 0.001 for predicting the house prices whereas the SVR gives 0.21 of MAE and 0.24 RMSE.Such outcomes reflect the possibility of optimizing the use of the promoted advanced AI models with the use of Explainable AI for more accurate prediction of energy consumption and at the same time for the models’decision-making procedures’explanation.In addition to increasing prediction accuracy,this strategy gives stakeholders comprehensible insights,which facilitates improved decision-making and fosters confidence in AI-powered energy solutions.The outcomes show how well ML and SHAP work together to enhance prediction performance and guarantee transparency in energy usage projections.
基金Applicable Funding Source University of Science and Technology of China(to YLL)National Natural Science Foundation of China(12126604)(to MPZ)+1 种基金R&D project of Pazhou Lab(Huangpu)(2023K0609)(to MPZ)Anhui Provincial Natural Science(grant number 2208085MH235)(to KJ)。
文摘BACKGROUND:Rapid and accurate identification of high-risk patients in the emergency departments(EDs)is crucial for optimizing resource allocation and improving patient outcomes.This study aimed to develop an early prediction model for identifying high-risk patients in EDs using initial vital sign measurements.METHODS:This retrospective cohort study analyzed initial vital signs from the Chinese Emergency Triage,Assessment,and Treatment(CETAT)database,which was collected between January 1^(st),2020,and June 25^(th),2023.The primary outcome was the identification of high-risk patients needing immediate treatment.Various machine learning methods,including a deep-learningbased multilayer perceptron(MLP)classifier were evaluated.Model performance was assessed using the area under the receiver operating characteristic curve(AUC-ROC).AUC-ROC values were reported for three scenarios:a default case,a scenario requiring sensitivity greater than 0.8(Scenario I),and a scenario requiring specificity greater than 0.8(Scenario II).SHAP values were calculated to determine the importance of each predictor within the MLP model.RESULTS:A total of 38,797 patients were analyzed,of whom 18.2%were identified as high-risk.Comparative analysis of the predictive models for high-risk patients showed AUC-ROC values ranging from 0.717 to 0.738,with the MLP model outperforming logistic regression(LR),Gaussian Naive Bayes(GNB),and the National Early Warning Score(NEWS).SHAP value analysis identified coma state,peripheral capillary oxygen saturation(SpO_(2)),and systolic blood pressure as the top three predictive factors in the MLP model,with coma state exerting the most contribution.CONCLUSION:Compared with other methods,the MLP model with initial vital signs demonstrated optimal prediction accuracy,highlighting its potential to enhance clinical decision-making in triage in the EDs.
基金funded by the Deanship of Scientific Research at Princess Nourah bint Abdulrahman University,through the Research Groups Program Grant No.(RGP-1444-0057).
文摘Dementia is a neurological disorder that affects the brain and its functioning,and women experience its effects more than men do.Preventive care often requires non-invasive and rapid tests,yet conventional diagnostic techniques are time-consuming and invasive.One of the most effective ways to diagnose dementia is by analyzing a patient’s speech,which is cheap and does not require surgery.This research aims to determine the effectiveness of deep learning(DL)and machine learning(ML)structures in diagnosing dementia based on women’s speech patterns.The study analyzes data drawn from the Pitt Corpus,which contains 298 dementia files and 238 control files from the Dementia Bank database.Deep learning models and SVM classifiers were used to analyze the available audio samples in the dataset.Our methodology used two methods:a DL-ML model and a single DL model for the classification of diabetics and a single DL model.The deep learning model achieved an astronomic level of accuracy of 99.99%with an F1 score of 0.9998,Precision of 0.9997,and recall of 0.9998.The proposed DL-ML fusion model was equally impressive,with an accuracy of 99.99%,F1 score of 0.9995,Precision of 0.9998,and recall of 0.9997.Also,the study reveals how to apply deep learning and machine learning models for dementia detection from speech with high accuracy and low computational complexity.This research work,therefore,concludes by showing the possibility of using speech-based dementia detection as a possibly helpful early diagnosis mode.For even further enhanced model performance and better generalization,future studies may explore real-time applications and the inclusion of other components of speech.
基金supported by the French National Research Institute for Sustainable Development through 2022 LMI WATER-HIMALsupported by a University Grant Commission Nepal through faculty research grant-76/77。
文摘Permafrost is one of the key components of the cryosphere.Previous studies show that the extent of permafrost has shifted to higher elevations in Nepal.These researches,however,has been hampered by inconsistency in their study period.Proxies like rock glaciers and climatic variables,such as multi-decadal annual air temperature,are used to link towards the likely occurrence of permafrost.Here,the rock glacier inventory of Solukhumbu was prepared,and classified based on their activity(Intact/Relict)from Google Earth.Talus-based rock glaciers were observed more than glacier-derived ones.These rock glaciers were highly correlated with Mean Annual Air Temperature,followed by potential incoming solar radiation and slope.Three machine learning models(Logistic Regression,Random Forest and Support Vector Machines)were trained to generate permafrost probability distribution maps based on their prediction of the probability of rock glaciers being intact as opposed to relict.Logistic Regression and Support Vector Machines were able to produce a similar spatial distribution of permafrost.However,the Random Forest has low precision of spatial variation.The permafrost distribution map suggests the likely occurrence of permafrost to be above 5000 m,indicating a potential for rock and landslides should it thaw in the future.While higher-resolution input data can improve the results,this approach remains promising for application in permafrost regions where information about the ice content of rock glaciers isverylimited.
文摘To achieve carbon dioxide(CO_(2))storage through enhanced oil recovery,accurate forecasting of CO_(2) subsurface storage and cumulative oil production is essential.This study develops hybrid predictive models for the determination of CO_(2) storage mass and cumulative oil production in unconventional reservoirs.It does so with two multi-layer perceptron neural networks(MLPNN)and a least-squares support vector machine(LSSVM),hybridized with grey wolf optimization(GWO)and/or particle swarm optimization(PSO).Large,simulated datasets were divided into training(70%)and testing(30%)groups,with normalization applied to both groups.Mahalanobis distance identifies/eliminates outliers in the training subset only.A non-dominated sorting genetic algorithm(NSGA-II)combined with LSSVM selected seven influential features from the nine available input parameters:reservoir depth,porosity,permeability,thickness,bottom-hole pressure,area,CO_(2) injection rate,residual oil saturation to gas flooding,and residual oil saturation to water flooding.Predictive models were developed and tested,with performance evaluated with an overfitting index(OFI),scoring analysis,and partial dependence plots(PDP),during training and independent testing to enhance model focus and effectiveness.The LSSVM-GWO model generated the lowest root mean square error(RMSE)values(0.4052 MMT for CO_(2) storage and 9.7392 MMbbl for cumulative oil production)in the training group.That trained model also exhibited excellent generalization and minimal overfitting when applied to the testing group(RMSE of 0.6224 MMT for CO_(2) storage and 12.5143 MMbbl for cumulative oil production).PDP analysis revealed that the input features“area”and“porosity”had the most influence on the LSSVM-GWO model's pre-diction performance.This paper presents a new hybrid modeling approach that achieves accurate forecasting of CO_(2) subsurface storage and cumulative oil production.It also establishes a new standard for such forecasting,which can lead to the development of more effective and sustainable solutions for oil recovery.