To adapt to the new requirement of the developing flatness control theory and technology, cubic patterns were introduced on the basis of the traditional linear, quadratic and quartic flatness basic patterns. Linear, q...To adapt to the new requirement of the developing flatness control theory and technology, cubic patterns were introduced on the basis of the traditional linear, quadratic and quartic flatness basic patterns. Linear, quadratic, cubic and quartic Legendre orthogonal polynomials were adopted to express the flatness basic patterns. In order to over- come the defects live in the existent recognition methods based on fuzzy, neural network and support vector regres- sion (SVR) theory, a novel flatness pattern recognition method based on least squares support vector regression (LS-SVR) was proposed. On this basis, for the purpose of determining the hyper-parameters of LS-SVR effectively and enhan- cing the recognition accuracy and generalization performance of the model, particle swarm optimization algorithm with leave-one-out (LOO) error as fitness function was adopted. To overcome the disadvantage of high computational complexity of naive cross-validation algorithm, a novel fast cross-validation algorithm was introduced to calculate the LOO error of LDSVR. Results of experiments on flatness data calculated by theory and a 900HC cold-rolling mill practically measured flatness signals demonstrate that the proposed approach can distinguish the types and define the magnitudes of the flatness defects effectively with high accuracy, high speed and strong generalization ability.展开更多
Engine spark ignition is an important source for diagnosis of engine faults.Based on the waveform of the ignition pattern,a mechanic can guess what may be the potential malfunctioning parts of an engine with his/her e...Engine spark ignition is an important source for diagnosis of engine faults.Based on the waveform of the ignition pattern,a mechanic can guess what may be the potential malfunctioning parts of an engine with his/her experience and handbooks.However,this manual diagnostic method is imprecise because many spark ignition patterns are very similar.Therefore,a diagnosis needs many trials to identify the malfunctioning parts.Meanwhile the mechanic needs to disassemble and assemble the engine parts for verification.To tackle this problem,an intelligent diagnosis system was established based on ignition patterns.First,the captured patterns were normalized and compressed.Then wavelet packet transform(WPT) was employed to extract the representative features of the ignition patterns.Finally,a classification system was constructed by using multi-class support vector machines(SVM) and the extracted features.The classification system can intelligently classify the most likely engine fault so as to reduce the number of diagnosis trials.Experimental results show that SVM produces higher diagnosis accuracy than the traditional multilayer feedforward neural network.This is the first trial on the combination of WPT and SVM to analyze ignition patterns and diagnose automotive engines.展开更多
基金Sponsored by National Natural Science Foundation of China (50675186)
文摘To adapt to the new requirement of the developing flatness control theory and technology, cubic patterns were introduced on the basis of the traditional linear, quadratic and quartic flatness basic patterns. Linear, quadratic, cubic and quartic Legendre orthogonal polynomials were adopted to express the flatness basic patterns. In order to over- come the defects live in the existent recognition methods based on fuzzy, neural network and support vector regres- sion (SVR) theory, a novel flatness pattern recognition method based on least squares support vector regression (LS-SVR) was proposed. On this basis, for the purpose of determining the hyper-parameters of LS-SVR effectively and enhan- cing the recognition accuracy and generalization performance of the model, particle swarm optimization algorithm with leave-one-out (LOO) error as fitness function was adopted. To overcome the disadvantage of high computational complexity of naive cross-validation algorithm, a novel fast cross-validation algorithm was introduced to calculate the LOO error of LDSVR. Results of experiments on flatness data calculated by theory and a 900HC cold-rolling mill practically measured flatness signals demonstrate that the proposed approach can distinguish the types and define the magnitudes of the flatness defects effectively with high accuracy, high speed and strong generalization ability.
基金supported by University of Macao Research Grant,China (Grant No. RG057/08-09S/VCM/FST, Grant No. UL011/09-Y1/ EME/ WPK01/FST)
文摘Engine spark ignition is an important source for diagnosis of engine faults.Based on the waveform of the ignition pattern,a mechanic can guess what may be the potential malfunctioning parts of an engine with his/her experience and handbooks.However,this manual diagnostic method is imprecise because many spark ignition patterns are very similar.Therefore,a diagnosis needs many trials to identify the malfunctioning parts.Meanwhile the mechanic needs to disassemble and assemble the engine parts for verification.To tackle this problem,an intelligent diagnosis system was established based on ignition patterns.First,the captured patterns were normalized and compressed.Then wavelet packet transform(WPT) was employed to extract the representative features of the ignition patterns.Finally,a classification system was constructed by using multi-class support vector machines(SVM) and the extracted features.The classification system can intelligently classify the most likely engine fault so as to reduce the number of diagnosis trials.Experimental results show that SVM produces higher diagnosis accuracy than the traditional multilayer feedforward neural network.This is the first trial on the combination of WPT and SVM to analyze ignition patterns and diagnose automotive engines.