期刊文献+
共找到51篇文章
< 1 2 3 >
每页显示 20 50 100
Class-Imbalanced Machinery Fault Diagnosis using Heterogeneous Data Fusion Support Tensor Machine
1
作者 Zhishan Min Minghui Shao +1 位作者 Haidong Shao Bin Liu 《Journal of Dynamics, Monitoring and Diagnostics》 2025年第1期11-21,共11页
The monitoring signals of bearings from single-source sensor often contain limited information for characterizing various working condition,which may lead to instability and uncertainty of the class-imbalanced intelli... The monitoring signals of bearings from single-source sensor often contain limited information for characterizing various working condition,which may lead to instability and uncertainty of the class-imbalanced intelligent fault diagnosis.On the other hand,the vectorization of multi-source sensor signals may not only generate high-dimensional vectors,leading to increasing computational complexity and overfitting problems,but also lose the structural information and the coupling information.This paper proposes a new method for class-imbalanced fault diagnosis of bearing using support tensor machine(STM)driven by heterogeneous data fusion.The collected sound and vibration signals of bearings are successively decomposed into multiple frequency band components to extract various time-domain and frequency-domain statistical parameters.A third-order hetero-geneous feature tensor is designed based on multisensors,frequency band components,and statistical parameters.STM-based intelligent model is constructed to preserve the structural information of the third-order heterogeneous feature tensor for bearing fault diagnosis.A series of comparative experiments verify the advantages of the proposed method. 展开更多
关键词 class-imbalanced fault diagnosis feature tensor heterogeneous data fusion support tensor machine
在线阅读 下载PDF
Signal Classification Method Based on Support Vector Machine and High-Order Cumulants 被引量:1
2
作者 Xin ZHOU Ying WU Bin YANG 《Wireless Sensor Network》 2010年第1期48-52,共5页
In this paper, a classification method based on Support Vector Machine (SVM) is given in the digital modulation signal classification. The second, fourth and sixth order cumulants of the received signals are used as c... In this paper, a classification method based on Support Vector Machine (SVM) is given in the digital modulation signal classification. The second, fourth and sixth order cumulants of the received signals are used as classification vectors firstly, then the kernel thought is used to map the feature vector to the high dimensional feature space and the optimum separating hyperplane is constructed in space to realize signal recognition. In order to build an effective and robust SVM classifier, the radial basis kernel function is selected, one against one or one against rest of multi-class classifier is designed, and method of parameter selection using cross- validation grid is adopted. Through the experiments it can be concluded that the classifier based on SVM has high performance and is more robust. 展开更多
关键词 high-order CUMULANTS support VECTOR machine KERNEL Function SIGNAL Classification
在线阅读 下载PDF
TWIN SUPPORT TENSOR MACHINES FOR MCS DETECTION 被引量:8
3
作者 Zhang Xinsheng Gao Xinbo Wang Ying 《Journal of Electronics(China)》 2009年第3期318-325,共8页
Tensor representation is useful to reduce the overfitting problem in vector-based learning algorithm in pattern recognition.This is mainly because the structure information of objects in pattern analysis is a reasonab... Tensor representation is useful to reduce the overfitting problem in vector-based learning algorithm in pattern recognition.This is mainly because the structure information of objects in pattern analysis is a reasonable constraint to reduce the number of unknown parameters used to model a classifier.In this paper, we generalize the vector-based learning algorithm TWin Support Vector Machine(TWSVM) to the tensor-based method TWin Support Tensor Machines(TWSTM), which accepts general tensors as input.To examine the effectiveness of TWSTM, we implement the TWSTM method for Microcalcification Clusters(MCs) detection.In the tensor subspace domain, the MCs detection procedure is formulated as a supervised learning and classification problem, and TWSTM is used as a classifier to make decision for the presence of MCs or not.A large number of experiments were carried out to evaluate and compare the performance of the proposed MCs detection algorithm.By comparison with TWSVM, the tensor version reduces the overfitting problem. 展开更多
关键词 Microcalcification Clusters (MCs) detection TWin support tensor machine (TWSTM) TWin support Vector machine (TWSVM) Receiver Operating Characteristic (ROC) curve
在线阅读 下载PDF
Least Squares One-Class Support Tensor Machine
4
作者 Kaiwen Zhao Yali Fan 《Journal of Computer and Communications》 2024年第4期186-200,共15页
One-class classification problem has become a popular problem in many fields, with a wide range of applications in anomaly detection, fault diagnosis, and face recognition. We investigate the one-class classification ... One-class classification problem has become a popular problem in many fields, with a wide range of applications in anomaly detection, fault diagnosis, and face recognition. We investigate the one-class classification problem for second-order tensor data. Traditional vector-based one-class classification methods such as one-class support vector machine (OCSVM) and least squares one-class support vector machine (LSOCSVM) have limitations when tensor is used as input data, so we propose a new tensor one-class classification method, LSOCSTM, which directly uses tensor as input data. On one hand, using tensor as input data not only enables to classify tensor data, but also for vector data, classifying it after high dimensionalizing it into tensor still improves the classification accuracy and overcomes the over-fitting problem. On the other hand, different from one-class support tensor machine (OCSTM), we use squared loss instead of the original loss function so that we solve a series of linear equations instead of quadratic programming problems. Therefore, we use the distance to the hyperplane as a metric for classification, and the proposed method is more accurate and faster compared to existing methods. The experimental results show the high efficiency of the proposed method compared with several state-of-the-art methods. 展开更多
关键词 Least Square One-Class support tensor machine One-Class Classification Upscale Least Square One-Class support Vector machine One-Class support tensor machine
在线阅读 下载PDF
Neutron-gamma discrimination method based on blind source separation and machine learning 被引量:6
5
作者 Hanan Arahmane El-Mehdi Hamzaoui +1 位作者 Yann Ben Maissa Rajaa Cherkaoui El Moursli 《Nuclear Science and Techniques》 SCIE EI CAS CSCD 2021年第2期70-80,共11页
The discrimination of neutrons from gamma rays in a mixed radiation field is crucial in neutron detection tasks.Several approaches have been proposed to enhance the performance and accuracy of neutron-gamma discrimina... The discrimination of neutrons from gamma rays in a mixed radiation field is crucial in neutron detection tasks.Several approaches have been proposed to enhance the performance and accuracy of neutron-gamma discrimination.However,their performances are often associated with certain factors,such as experimental requirements and resulting mixed signals.The main purpose of this study is to achieve fast and accurate neutron-gamma discrimination without a priori information on the signal to be analyzed,as well as the experimental setup.Here,a novel method is proposed based on two concepts.The first method exploits the power of nonnegative tensor factorization(NTF)as a blind source separation method to extract the original components from the mixture signals recorded at the output of the stilbene scintillator detector.The second one is based on the principles of support vector machine(SVM)to identify and discriminate these components.In addition to these two main methods,we adopted the Mexican-hat function as a continuous wavelet transform to characterize the components extracted using the NTF model.The resulting scalograms are processed as colored images,which are segmented into two distinct classes using the Otsu thresholding method to extract the features of interest of the neutrons and gamma-ray components from the background noise.We subsequently used principal component analysis to select the most significant of these features wich are used in the training and testing datasets for SVM.Bias-variance analysis is used to optimize the SVM model by finding the optimal level of model complexity with the highest possible generalization performance.In this framework,the obtained results have verified a suitable bias–variance trade-off value.We achieved an operational SVM prediction model for neutron-gamma classification with a high true-positive rate.The accuracy and performance of the SVM based on the NTF was evaluated and validated by comparing it to the charge comparison method via figure of merit.The results indicate that the proposed approach has a superior discrimination quality(figure of merit of 2.20). 展开更多
关键词 Blind source separation Nonnegative tensor factorization(NTF) support vector machines(SVM) Continuous wavelets transform(CWT) Otsu thresholding method
在线阅读 下载PDF
基于扩散张量成像定量分析预测植物状态患者预后
6
作者 叶思敏 钟海鹂 +3 位作者 梁杞梅 黄曦妍 王思训 黄靖 《中国医学物理学杂志》 2025年第9期1147-1152,共6页
目的:探讨预后不同的植物状态(VS)患者脑白质纤维束的结构完整性差异,构建预后预测模型,以在疾病稳定后早期预测患者1年后的预后。方法:回顾性分析南方医科大学珠江医院康复医学科收治的52例VS患者,根据1年随访的修订版昏迷恢复量表(CRS... 目的:探讨预后不同的植物状态(VS)患者脑白质纤维束的结构完整性差异,构建预后预测模型,以在疾病稳定后早期预测患者1年后的预后。方法:回顾性分析南方医科大学珠江医院康复医学科收治的52例VS患者,根据1年随访的修订版昏迷恢复量表(CRS-R)评分将患者分为预后良好组(n=22)和预后不良组(n=30)。采用扩散张量成像技术提取患者脑白质纤维束的各向异性分数(FA),首次将CRS-R的视觉评分与FA值结合作为模型的输入特征。为优化模型构建,采用LASSO筛选特征,并运用合成少数类过采样技术进行数据平衡处理,最终基于支持向量机(SVM)算法,采用留一交叉验证构建预后预测模型,并通过综合评估受试者工作特征曲线下面积(AUC)、灵敏度、准确率、特异性和F1分数等指标全面评估模型效能。结果:经LASSO特征筛选后,脑桥横束、内侧丘系、绒毡层、胼胝体压部和视觉评分被确定为关键预测指标,基于上述特征构建的多模态SVM预测模型可有效预测VS患者的1年预后,其预测效能达到较高水平(AUC=0.894)。结论:结合特定白质纤维束FA值与视觉评分的SVM模型对预测VS患者1年后预后具有较好的预测效能。 展开更多
关键词 植物状态 分数各向异性 支持向量机 扩散张量成像
暂未订购
Splitting Method for Support Vector Machine in Reproducing Kernel Banach Space with a Lower Semi-continuous Loss Function
7
作者 Mingyu MO Yimin WEI Qi YE 《Chinese Annals of Mathematics,Series B》 CSCD 2024年第6期823-854,共32页
In this paper,the authors employ the splitting method to address support vector machine within a reproducing kernel Banach space framework,where a lower semi-continuous loss function is utilized.They translate support... In this paper,the authors employ the splitting method to address support vector machine within a reproducing kernel Banach space framework,where a lower semi-continuous loss function is utilized.They translate support vector machine in reproducing kernel Banach space with such a loss function to a finite-dimensional tensor optimization problem and propose a splitting method based on the alternating direction method of mul-tipliers.Leveraging Kurdyka-Lojasiewicz property of the augmented Lagrangian function,the authors demonstrate that the sequence derived from this splitting method is globally convergent to a stationary point if the loss function is lower semi-continuous and subana-lytic.Through several numerical examples,they illustrate the effectiveness of the proposed splitting algorithm. 展开更多
关键词 support vector machine Lower semi-continuous loss function Repro-ducing kernel Banach space tensor optimization problem Splitting method
原文传递
高分辨率遥感影像的支持张量机分类方法 被引量:8
8
作者 张乐飞 黄昕 张良培 《武汉大学学报(信息科学版)》 EI CSCD 北大核心 2012年第3期314-317,共4页
针对高分辨率遥感数据分类多特征、小样本的特点,将训练样本像素邻域的数据立方以三阶张量表征,并提出了利用支持张量机对训练样本进行监督分类的模型和解法。实验结果表明,此方法能够利用少量的训练样本实现更优的分类精度。
关键词 多特征 支持张量机 分类
原文传递
支持张量机与KNN-AMDM决策融合的齿轮箱故障诊断方法 被引量:17
9
作者 葛江华 刘奇 +2 位作者 王亚萍 许迪 卫芬 《振动工程学报》 EI CSCD 北大核心 2018年第6期1093-1101,共9页
针对齿轮箱故障诊断时使用单一传感器进行信号获取过程中存在信息不完整的问题,导致故障特征信息及诊断推理方法具有随机性和模糊性。利用多传感器信息融合的二阶张量特征作为输入,构建了一个支持张量机和集成矩阵距离测度(Assembled Ma... 针对齿轮箱故障诊断时使用单一传感器进行信号获取过程中存在信息不完整的问题,导致故障特征信息及诊断推理方法具有随机性和模糊性。利用多传感器信息融合的二阶张量特征作为输入,构建了一个支持张量机和集成矩阵距离测度(Assembled Matrix Distance Metric,AMDM)的K最近邻分类器(k-nearest neighborhood classifier,KNN)决策融合故障诊断模型。首先,对多传感器信息时频域特征层进行融合,获得二阶张量的特征样本;其次,分别构建基于集成支持张量机、KNN-AMDM的故障诊断模型,并针对两类故障诊断模型的输入,设计了两种基本概率分配赋值的转化方法,通过不断调整参与的传感器数目获得6种不同的故障征兆张量集,进而得到12种不同的初步故障诊断结果;最后,采用D-S证据理论对12个证据体提供的基本概率分配值进行融合决策,得到最终的齿轮箱故障诊断结果。实验对比表明,该方法可提高齿轮故障诊断结果的可信度。 展开更多
关键词 故障诊断 多传感器融合 支持张量机 集成矩阵距离测度 决策融合
在线阅读 下载PDF
基于张量径向基核函数支持向量机的高光谱影像分类 被引量:22
10
作者 李玉 宫学亮 赵泉华 《仪器仪表学报》 EI CAS CSCD 北大核心 2020年第12期253-262,共10页
针对如何利用高光谱影像的空间和光谱特征实现地物目标的精确分类,本文在径向基核函数(RBF)的基础上,提出一种基于张量径向基核函数(Tensor-RBF)和支持向量机(SVM)的高光谱影像分类算法。首先,用像素及其空间邻域像素的光谱向量组成的... 针对如何利用高光谱影像的空间和光谱特征实现地物目标的精确分类,本文在径向基核函数(RBF)的基础上,提出一种基于张量径向基核函数(Tensor-RBF)和支持向量机(SVM)的高光谱影像分类算法。首先,用像素及其空间邻域像素的光谱向量组成的三阶空-谱张量块表达该像素空-谱信息,并作为后续高光谱影像分类的基本处理单元;然后,定义作用在张量数据上的Tensor-RBF核函数;最后,设计基于Tensor-RBF核函数SVM的多分类器,实现结合空-谱信息的高光谱影像多类地物目标分类。为了验证提出算法的有效性,分别对3幅高光谱影像进行实验,将本文算法与3种对比算法的分类结果进行定性和定量对比分析。实验结果表明,本文算法对3幅高光谱影像的总体精度分别为93.10%、93.43%和86.38%,相对3种对比算法具有更高的总体精度。 展开更多
关键词 空-谱张量块 张量径向基核函数 支持向量机 高光谱影像分类
原文传递
基于张量表示的直推式多模态视频语义概念检测 被引量:10
11
作者 吴飞 刘亚楠 庄越挺 《软件学报》 EI CSCD 北大核心 2008年第11期2853-2868,共16页
提出了一种基于高阶张量表示的视频语义分析与理解框架.在此框架中,视频镜头首先被表示成由视频中所包含的文本、视觉和听觉等多模态数据构成的三阶张量;其次,基于此三阶张量表达及视频的时序关联共生特性设计了一种子空间嵌入降维方法... 提出了一种基于高阶张量表示的视频语义分析与理解框架.在此框架中,视频镜头首先被表示成由视频中所包含的文本、视觉和听觉等多模态数据构成的三阶张量;其次,基于此三阶张量表达及视频的时序关联共生特性设计了一种子空间嵌入降维方法,称为张量镜头;由于直推式学习从已知样本出发能对特定的未知样本进行学习和识别.最后在这个框架中提出了一种基于张量镜头的直推式支持张量机算法,它不仅保持了张量镜头所在的流形空间的本征结构,而且能够将训练集合外数据直接映射到流形子空间,同时充分利用未标记样本改善分类器的学习性能.实验结果表明,该方法能够有效地进行视频镜头的语义概念检测. 展开更多
关键词 多模态 张量镜头 时序关联共生 高阶SVD 降维 直推式支持张量机
在线阅读 下载PDF
结合张量特征和孪生支持向量机的群体行为识别 被引量:5
12
作者 胡根生 张乐军 张艳 《北京理工大学学报》 EI CAS CSCD 北大核心 2019年第10期1063-1068,共6页
给出一种结合张量特征和孪生支持向量机的群体行为识别算法,以提高对视频中群体行为识别的准确率.首先通过群成员关节点骨架的姿态结构信息和群成员的社会网络信息描述群体在每一帧中的行为,并采用张量形式表示;然后使用多路非线性特征... 给出一种结合张量特征和孪生支持向量机的群体行为识别算法,以提高对视频中群体行为识别的准确率.首先通过群成员关节点骨架的姿态结构信息和群成员的社会网络信息描述群体在每一帧中的行为,并采用张量形式表示;然后使用多路非线性特征映射分解张量核,并利用粒子群优化张量核孪生支持向量机的模型参数;最后结合张量特征和孪生支持向量机实现视频中的群体行为识别.CAD2数据集和自建数据集上的实验结果表明,张量特征能够有效地表示群体行为,相比经典算法,所提算法能有效提高群体行为识别的准确率. 展开更多
关键词 群体行为识别 张量特征 孪生支持向量机 粒子群优化
在线阅读 下载PDF
一种基于张量PCA的人耳识别的改进方法 被引量:2
13
作者 李一波 曹景亮 张海军 《计算机工程与应用》 CSCD 北大核心 2011年第25期171-174,共4页
张量主成分分析是一种新的主元分析方法,可以解决传统PCA方法对图像进行降维时出现的问题。小波变换具有良好的时频分析特性,同时还能起到降维的作用。综合利用这两个方法的优点,提出了一种基于张量PCA的人耳识别新方法。该方法对人耳... 张量主成分分析是一种新的主元分析方法,可以解决传统PCA方法对图像进行降维时出现的问题。小波变换具有良好的时频分析特性,同时还能起到降维的作用。综合利用这两个方法的优点,提出了一种基于张量PCA的人耳识别新方法。该方法对人耳图像采用小波变换做预处理得到4个子带图像,对其中"LL"低频子带图像用张量PCA进行特征提取,用支持向量机的方法进行识别。实验结果表明,利用此方法与传统主成分分析识别相比,提高了识别率,缩短了识别时间。在USTB人耳库上实验,该方法的识别率比传统PCA方法提高了6%,识别时间为传统PCA方法的35.23%。 展开更多
关键词 张量主成分分析 小波变换 人耳识别 支持向量机
在线阅读 下载PDF
基于支持张量机算法和3D脑白质图像的阿尔兹海默症诊断 被引量:6
14
作者 徐盼盼 杨宁 李淑龙 《中山大学学报(自然科学版)》 CAS CSCD 北大核心 2018年第2期52-60,共9页
结构磁共振成像(s MRI)本质上具有三维张量结构,而传统的向量空间机器学习方法将其展开成向量进行建模,这破坏了数据的内在结构信息的完整性,降低了机器学习性能。为了克服数据向量化的弊端,提出了一种基于支持张量机(Support tensor ma... 结构磁共振成像(s MRI)本质上具有三维张量结构,而传统的向量空间机器学习方法将其展开成向量进行建模,这破坏了数据的内在结构信息的完整性,降低了机器学习性能。为了克服数据向量化的弊端,提出了一种基于支持张量机(Support tensor machine,STM)的以3D T1加权MR脑白质图像为输入的阿尔兹海默症诊断算法。首先用SPM8软件将采集的MRI数据进行预处理,分割为灰质、白质、脑脊液3部分,提取脑白质各体素的灰度值构建三阶灰度张量,然后用递归特征消除(Recursive Feature Elimination,RFE)法结合支持张量机进行特征选择,最后用支持张量机进行分类。在阿尔兹海默症患者(AD),轻度认知障碍患者(MCI)(包括转化为AD的MCI-C和未转化的MCI-NC)以及正常对照(NC)4组人群中进行实验测试,并用10折交叉验证方法获得验证结果。用ROC曲线下面积AUC、分类准确率、敏感性、特异性这4个指标评价分类器的性能,AD vs NC组分别达到99.1%、97.14%、95.71%、98.57%;AD vs MCI组分别达到88.29%、84.07%、78.57%、91.07%;MCI vs NC组分别达到89.18%、87.91%、93.75%、78.57%;MCI-C vs MCI-NC组分别达到87.5%、82.08%、80.36%、82.14%。算法保持了原始图像的张量结构,提高了分类器的性能,实验结果表明此算法是一种有效的阿尔兹海默症诊断方法。 展开更多
关键词 阿尔兹海默症 3D脑白质图像 T1加权MRI 递归特征消除 支持张量机
暂未订购
一种融合光谱匹配和张量分析的高分辨率遥感影像目标探测器 被引量:1
15
作者 陈勇 杜博 +1 位作者 张乐飞 张良培 《武汉大学学报(信息科学版)》 EI CSCD 北大核心 2013年第3期274-277,共4页
提出了一种基于光谱分析理论和张量代数理论的高分辨率遥感影像目标探测器。首先在向量空间中对目标光谱进行特征匹配;然后对光谱特征与目标相似的像素进行空间-光谱特征一体化张量描述,进而在张量特征空间中对目标和背景进行分类。实... 提出了一种基于光谱分析理论和张量代数理论的高分辨率遥感影像目标探测器。首先在向量空间中对目标光谱进行特征匹配;然后对光谱特征与目标相似的像素进行空间-光谱特征一体化张量描述,进而在张量特征空间中对目标和背景进行分类。实验表明,张量学习机能够有效地对高分辨率影像进行目标识别。加入光谱特征匹配后的目标探测器能够极大地降低目标探测时间,同时进一步提高目标探测精度。 展开更多
关键词 自适应余弦探测器 张量学习机 目标探测
原文传递
基于支持张量机回归的三维荧光光谱法水体有机污染物浓度检测 被引量:2
16
作者 杜树新 蒋丹红 李林军 《高技术通讯》 CAS CSCD 北大核心 2014年第1期80-85,共6页
根据三维荧光光谱二阶张量的数据模式特点,提出了应用基于核函数的支持张量机回归进行三维荧光光谱定量分析的方法,并用其实现了水体有机污染物浓度的检测。在建立回归校正模型中,将二阶张量数据作为模型的输入,充分利用了二阶张量原有... 根据三维荧光光谱二阶张量的数据模式特点,提出了应用基于核函数的支持张量机回归进行三维荧光光谱定量分析的方法,并用其实现了水体有机污染物浓度的检测。在建立回归校正模型中,将二阶张量数据作为模型的输入,充分利用了二阶张量原有的流形结构信息以及数据的内在相关性,提高了模型的推广能力,同时也克服了平行因子法(PARAFAC)、多维偏最小二乘算法等常规二阶校正法需要预先估计组分数、对所预估组分数敏感、要求光谱数据服从三线性分解模型的缺点。对水体中的有机污染物浓度化学耗氧量、总有机碳的检测实验。 展开更多
关键词 光谱学 光谱分析 三维荧光光谱 有机污染物浓度检测 支持张量机
在线阅读 下载PDF
基于加权高阶奇异值分解的支持张量机图像分类 被引量:3
17
作者 刘亚楠 涂铮铮 罗斌 《微电子学与计算机》 CSCD 北大核心 2014年第5期28-31,共4页
为了有效提高图像分类的准确率,充分利用图像本身的结构信息并压缩图像数据,首先构造三阶图像特征张量,利用非负矩阵分解(NMF)在张量子空间降维,提出了一种基于二维主成分分析(2DPCA)来得到NMF初始点的方法,保证了图像信息的有效利用.然... 为了有效提高图像分类的准确率,充分利用图像本身的结构信息并压缩图像数据,首先构造三阶图像特征张量,利用非负矩阵分解(NMF)在张量子空间降维,提出了一种基于二维主成分分析(2DPCA)来得到NMF初始点的方法,保证了图像信息的有效利用.然后,为了保持降维后的张量子空间所在的流形空间的本征结构,根据图像类标构造权值矩阵,并把图像集合构造成四阶张量实现图像的分类.通过对两个图像数据库的实验,表明该方法能有效提升图像分类的准确率. 展开更多
关键词 高阶奇异值分解 非负矩阵分解 支持张量机 二维主成分分析
在线阅读 下载PDF
基于支持张量机的多维光谱定量分析方法 被引量:1
18
作者 杜树新 李林军 《发光学报》 EI CAS CSCD 北大核心 2013年第4期523-528,共6页
现代光谱仪器强大的多维光谱数据产生能力使得多维光谱数据定量分析方法成为迫切需要研究的课题。针对多维光谱定量分析中的多维光谱数据以张量模式表达的特点,研究了基于支持张量机的多维光谱定量分析方法。该方法保留了多维光谱数据... 现代光谱仪器强大的多维光谱数据产生能力使得多维光谱数据定量分析方法成为迫切需要研究的课题。针对多维光谱定量分析中的多维光谱数据以张量模式表达的特点,研究了基于支持张量机的多维光谱定量分析方法。该方法保留了多维光谱数据所固有的结构信息及数据的内在相关性,减少了模型中的待定模型参数,也克服了平行因子法、多维偏最小二乘等方法中需要预估组分数的缺点。对水体中化学耗氧量和总有机碳的检测进行了实验检验。实验结果表明:与现有的多维光谱定量分析方法比较,本方法提高了校正模型性能,并且模型对需预先确定的参数C和ε的变化不敏感。 展开更多
关键词 多维光谱 定量分析 支持张量机 校正模型
在线阅读 下载PDF
基于同步性脑网络的支持张量机情绪分类研究 被引量:2
19
作者 黄丽亚 苏义博 +2 位作者 马捃凯 丁威威 宋传承 《电子与信息学报》 EI CSCD 北大核心 2020年第10期2462-2470,共9页
一直以来,情绪是心理学、教育学、信息科学等多个学科的研究热点,脑电信号(EEG)因其客观、不易伪装的特点,在情绪识别领域受到广泛关注。由于人类情绪是大脑多个脑区相互作用产生的,该文提出一种基于同步性脑网络的支持张量机情绪分类算... 一直以来,情绪是心理学、教育学、信息科学等多个学科的研究热点,脑电信号(EEG)因其客观、不易伪装的特点,在情绪识别领域受到广泛关注。由于人类情绪是大脑多个脑区相互作用产生的,该文提出一种基于同步性脑网络的支持张量机情绪分类算法(SBN-STM),该算法采用相位锁定值(PLV)构建了同步性脑网络,分析多导联脑电信号之间的同步性和相关性,并生成2阶张量序列作为训练集,运用支持张量机(STM)模型实现正负情绪的二分类。该文基于DEAP脑电情绪数据库,详细分析了同步性脑网络张量序列的选取方法,最佳张量序列窗口的大小和位置,解决了传统情绪分类算法特征冗余的问题,提高了模型训练速度。仿真实验表明,基于支持张量机的同步性脑网络分类方法的情绪准确率优于支持向量机、C4.5决策树、人工神经网络、K近邻等以向量为特征的情绪分类模型。 展开更多
关键词 情绪分类 同步性脑网络 支持张量机 相位锁定值
在线阅读 下载PDF
基于张量子空间的半脑对称度特征与癫痫识别
20
作者 姜慧研 刘若楠 +1 位作者 高菲菲 苗宇 《东北大学学报(自然科学版)》 EI CAS CSCD 北大核心 2017年第7期923-926,945,共5页
结合脑PET图像信息,提出了一种基于张量子空间的半脑对称度特征的识别方法用于识别PET图像中癫痫病灶.首先计算全部脑PET图像中所有体素的SUV,并基于SUV建立三阶张量;然后提取半脑对称度特征,建立半脑对称度张量模型;其次利用多线性主... 结合脑PET图像信息,提出了一种基于张量子空间的半脑对称度特征的识别方法用于识别PET图像中癫痫病灶.首先计算全部脑PET图像中所有体素的SUV,并基于SUV建立三阶张量;然后提取半脑对称度特征,建立半脑对称度张量模型;其次利用多线性主成分分析(MPCA)方法对半脑对称度张量模型进行特征选择;最后基于支持向量机(SVM)分类器进行癫痫识别.实验结果表明:提出的算法能够有效地识别脑PET图像中的癫痫病灶,可以作为计算机辅助诊断方式帮助医生进行癫痫疾病的诊断. 展开更多
关键词 癫痫 张量 PET 多线性主成分分析 支持向量机
在线阅读 下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部