期刊文献+
共找到5,621篇文章
< 1 2 250 >
每页显示 20 50 100
Using Audiometric Data to Weigh and Prioritize Factors that Affect Workers’ Hearing Loss through Support Vector Machine (SVM) Algorithm 被引量:3
1
作者 Hossein ElahiShirvan MohammadReza Ghotbi-Ravandi +1 位作者 Sajad Zare Mostafa Ghazizadeh Ahsaee 《Sound & Vibration》 EI 2020年第2期99-112,共14页
Workers’exposure to excessive noise is a big universal work-related challenges.One of the major consequences of exposure to noise is permanent or transient hearing loss.The current study sought to utilize audiometric... Workers’exposure to excessive noise is a big universal work-related challenges.One of the major consequences of exposure to noise is permanent or transient hearing loss.The current study sought to utilize audiometric data to weigh and prioritize the factors affecting workers’hearing loss based using the Support Vector Machine(SVM)algorithm.This cross sectional-descriptive study was conducted in 2017 in a mining industry in southeast Iran.The participating workers(n=150)were divided into three groups of 50 based on the sound pressure level to which they were exposed(two experimental groups and one control group).Audiometric tests were carried out for all members of each group.The study generally entailed the following steps:(1)selecting predicting variables to weigh and prioritize factors affecting hearing loss;(2)conducting audiometric tests and assessing permanent hearing loss in each ear and then evaluating total hearing loss;(3)categorizing different types of hearing loss;(4)weighing and prioritizing factors that affect hearing loss based on the SVM algorithm;and(5)assessing the error rate and accuracy of the models.The collected data were fed into SPSS 18,followed by conducting linear regression and paired samples t-test.It was revealed that,in the first model(SPL<70 dBA),the frequency of 8 KHz had the greatest impact(with a weight of 33%),while noise had the smallest influence(with a weight of 5%).The accuracy of this model was 100%.In the second model(70<SPL<80 dBA),the frequency of 4 KHz had the most profound effect(with a weight of 21%),whereas the frequency of 250 Hz had the lowest impact(with a weight of 6%).The accuracy of this model was 100%too.In the third model(SPL>85 dBA),the frequency of 4 KHz had the highest impact(with a weight of 22%),while the frequency of 250 Hz had the smallest influence(with a weight of 3%).The accuracy of this model was 100%too.In the fourth model,the frequency of 4 KHz had the greatest effect(with a weight of 24%),while the frequency of 500 Hz had the smallest effect(with a weight of 4%).The accuracy of this model was found to be 94%.According to the modeling conducted using the SVM algorithm,the frequency of 4 KHz has the most profound effect on predicting changes in hearing loss.Given the high accuracy of the obtained model,this algorithm is an appropriate and powerful tool to predict and model hearing loss. 展开更多
关键词 Noise modeling hearing loss data mining support vector machine algorithm
暂未订购
Nonlinear model predictive control based on support vector machine and genetic algorithm 被引量:5
2
作者 冯凯 卢建刚 陈金水 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2015年第12期2048-2052,共5页
This paper presents a nonlinear model predictive control(NMPC) approach based on support vector machine(SVM) and genetic algorithm(GA) for multiple-input multiple-output(MIMO) nonlinear systems.Individual SVM is used ... This paper presents a nonlinear model predictive control(NMPC) approach based on support vector machine(SVM) and genetic algorithm(GA) for multiple-input multiple-output(MIMO) nonlinear systems.Individual SVM is used to approximate each output of the controlled plant Then the model is used in MPC control scheme to predict the outputs of the controlled plant.The optimal control sequence is calculated using GA with elite preserve strategy.Simulation results of a typical MIMO nonlinear system show that this method has a good ability of set points tracking and disturbance rejection. 展开更多
关键词 support vector machine Genetic algorithm Nonlinear model predictive control Neural network Modeling
在线阅读 下载PDF
Automatic target recognition of moving target based on empirical mode decomposition and genetic algorithm support vector machine 被引量:4
3
作者 张军 欧建平 占荣辉 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第4期1389-1396,共8页
In order to improve measurement accuracy of moving target signals, an automatic target recognition model of moving target signals was established based on empirical mode decomposition(EMD) and support vector machine(S... In order to improve measurement accuracy of moving target signals, an automatic target recognition model of moving target signals was established based on empirical mode decomposition(EMD) and support vector machine(SVM). Automatic target recognition process on the nonlinear and non-stationary of Doppler signals of military target by using automatic target recognition model can be expressed as follows. Firstly, the nonlinearity and non-stationary of Doppler signals were decomposed into a set of intrinsic mode functions(IMFs) using EMD. After the Hilbert transform of IMF, the energy ratio of each IMF to the total IMFs can be extracted as the features of military target. Then, the SVM was trained through using the energy ratio to classify the military targets, and genetic algorithm(GA) was used to optimize SVM parameters in the solution space. The experimental results show that this algorithm can achieve the recognition accuracies of 86.15%, 87.93%, and 82.28% for tank, vehicle and soldier, respectively. 展开更多
关键词 automatic target recognition(ATR) moving target empirical mode decomposition genetic algorithm support vector machine
在线阅读 下载PDF
Fast Adaptive Support-Weight Stereo Matching Algorithm 被引量:2
4
作者 Kai He Yunfeng Ge +1 位作者 Rui Zhen Jiaxing Yan 《Transactions of Tianjin University》 EI CAS 2017年第3期295-300,共6页
Adaptive support-weight (ASW) stereo matching algorithm is widely used in the field of three-dimensional (3D) reconstruction owing to its relatively high matching accuracy. However, since all the weight coefficients n... Adaptive support-weight (ASW) stereo matching algorithm is widely used in the field of three-dimensional (3D) reconstruction owing to its relatively high matching accuracy. However, since all the weight coefficients need to be calculated in the whole disparity range for each pixel, the algorithm is extremely time-consuming. To solve this problem, a fast ASW algorithm is proposed using twice aggregation. First, a novel weight coefficient which adapts cosine function to satisfy the weight distribution discipline is proposed to accomplish the first cost aggregation. Then, the disparity range is divided into several sub-ranges and local optimal disparities are selected from each of them. For each pixel, only the ASW at the location of local optimal disparities is calculated, and thus, the complexity of the algorithm is greatly reduced. Experimental results show that the proposed algorithm can reduce the amount of calculation by 70% and improve the matching accuracy by 6% for the 15 images on Middlebury Website on average. © 2017, Tianjin University and Springer-Verlag Berlin Heidelberg. 展开更多
关键词 Computational complexity Cosine transforms PIXELS
在线阅读 下载PDF
Speech Analysis for Diagnosis of Parkinson’s Disease Using Genetic Algorithm and Support Vector Machine 被引量:1
5
作者 Mohammad Shahbakhi Danial Taheri Far Ehsan Tahami 《Journal of Biomedical Science and Engineering》 2014年第4期147-156,共10页
Parkinson’s disease (PD) is the most common disease of motor system degeneration that occurs when the dopamine-producing cells are damaged in substantia nigra. To detect PD, various signals have been investigated, in... Parkinson’s disease (PD) is the most common disease of motor system degeneration that occurs when the dopamine-producing cells are damaged in substantia nigra. To detect PD, various signals have been investigated, including EEG, gait and speech. Since approximately 90 percent of the people with PD suffer from speech disorders, speech analysis is considered as the most common technique for this aim. This paper proposes a new algorithm for diagnosing of Parkinson’s disease based on voice analysis. In the first step, genetic algorithm (GA) is undertaken for selecting optimized features from all extracted features. Afterwards a network based on support vector machine (SVM) is used for classification between healthy and people with Parkinson. The dataset of this research is composed of a range of biomedical voice signals from 31 people, 23 with Parkinson’s disease and 8 healthy people. The subjects were asked to pronounce letter “A” for 3 seconds. 22 linear and non-linear features were extracted from the signals that 14 features were based on F0 (fundamental frequency or pitch), jitter, shimmer and noise to harmonics ratio, which are main factors in voice signal. Because changing in these factors is noticeable for the people with PD, optimized features were selected among them. Of the various numbers of optimized features, the data classification was investigated. Results show that the classification accuracy percent of 94.50 per 4 optimized features, the accuracy percent of 93.66 per 7 optimized features and the accuracy percent of 94.22 per 9 optimized features, could be achieved. It can be observed that the best classification accuracy may be achieved using Fhi (Hz), Fho (Hz), jitter (RAP) and shimmer (APQ5). 展开更多
关键词 Parkinson’s Disease SPEECH Analysis GENETIC algorithm support VECTOR Machine
暂未订购
Parameters Optimization Using Genetic Algorithms in Support Vector Regression for Sales Volume Forecasting 被引量:1
6
作者 Fong-Ching Yuan 《Applied Mathematics》 2012年第10期1480-1486,共7页
Budgeting planning plays an important role in coordinating activities in organizations. An accurate sales volume forecasting is the key to the entire budgeting process. All of the other parts of the master budget are ... Budgeting planning plays an important role in coordinating activities in organizations. An accurate sales volume forecasting is the key to the entire budgeting process. All of the other parts of the master budget are dependent on the sales volume forecasting in some way. If the sales volume forecasting is sloppily done, then the rest of the budgeting process is largely a waste of time. Therefore, the sales volume forecasting process is a critical one for most businesses, and also a difficult area of management. Most of researches and companies use the statistical methods, regression analysis, or sophisticated computer simulations to analyze the sales volume forecasting. Recently, various prediction Artificial Intelligent (AI) techniques have been proposed in forecasting. Support Vector Regression (SVR) has been applied successfully to solve problems in numerous fields and proved to be a better prediction model. However, the select of appropriate SVR parameters is difficult. Therefore, to improve the accuracy of SVR, a hybrid intelligent support system based on evolutionary computation to solve the difficulties involved with the parameters selection is presented in this research. Genetic Algorithms (GAs) are used to optimize free parameters of SVR. The experimental results indicate that GA-SVR can achieve better forecasting accuracy and performance than traditional SVR and artificial neural network (ANN) prediction models in sales volume forecasting. 展开更多
关键词 BUDGETING Planning SALES Volume Forecasting Artificial Intelligent support VECTOR Regression GENETIC algorithms Artificial NEURAL Network
暂未订购
Parameter selection of support vector regression based on hybrid optimization algorithm and its application 被引量:9
7
作者 Xin WANG Chunhua YANG +1 位作者 Bin QIN Weihua GUI 《控制理论与应用(英文版)》 EI 2005年第4期371-376,共6页
Choosing optimal parameters for support vector regression (SVR) is an important step in SVR. design, which strongly affects the pefformance of SVR. In this paper, based on the analysis of influence of SVR parameters... Choosing optimal parameters for support vector regression (SVR) is an important step in SVR. design, which strongly affects the pefformance of SVR. In this paper, based on the analysis of influence of SVR parameters on generalization error, a new approach with two steps is proposed for selecting SVR parameters, First the kernel function and SVM parameters are optimized roughly through genetic algorithm, then the kernel parameter is finely adjusted by local linear search, This approach has been successfully applied to the prediction model of the sulfur content in hot metal. The experiment results show that the proposed approach can yield better generalization performance of SVR than other methods, 展开更多
关键词 support vector regression Parameters tuning Hybrid optimization Genetic algorithm(GA)
在线阅读 下载PDF
The Comparison between Random Forest and Support Vector Machine Algorithm for Predicting β-Hairpin Motifs in Proteins
8
作者 Shaochun Jia Xiuzhen Hu Lixia Sun 《Engineering(科研)》 2013年第10期391-395,共5页
Based on the research of predictingβ-hairpin motifs in proteins, we apply Random Forest and Support Vector Machine algorithm to predictβ-hairpin motifs in ArchDB40 dataset. The motifs with the loop length of 2 to 8 ... Based on the research of predictingβ-hairpin motifs in proteins, we apply Random Forest and Support Vector Machine algorithm to predictβ-hairpin motifs in ArchDB40 dataset. The motifs with the loop length of 2 to 8 amino acid residues are extracted as research object and thefixed-length pattern of 12 amino acids are selected. When using the same characteristic parameters and the same test method, Random Forest algorithm is more effective than Support Vector Machine. In addition, because of Random Forest algorithm doesn’t produce overfitting phenomenon while the dimension of characteristic parameters is higher, we use Random Forest based on higher dimension characteristic parameters to predictβ-hairpin motifs. The better prediction results are obtained;the overall accuracy and Matthew’s correlation coefficient of 5-fold cross-validation achieve 83.3% and 0.59, respectively. 展开更多
关键词 Random FOREST algorithm support Vector Machine algorithm β-Hairpin MOTIF INCREMENT of Diversity SCORING Function Predicted Secondary Structure Information
暂未订购
Using the Support Vector Machine Algorithm to Predict β-Turn Types in Proteins
9
作者 Xiaobo Shi Xiuzhen Hu 《Engineering(科研)》 2013年第10期386-390,共5页
The structure and function of proteins are closely related, and protein structure decides its function, therefore protein structure prediction is quite important.β-turns are important components of protein secondary ... The structure and function of proteins are closely related, and protein structure decides its function, therefore protein structure prediction is quite important.β-turns are important components of protein secondary structure. So development of an accurate prediction method ofβ-turn types is very necessary. In this paper, we used the composite vector with position conservation scoring function, increment of diversity and predictive secondary structure information as the input parameter of support vector machine algorithm for predicting theβ-turn types in the database of 426 protein chains, obtained the overall prediction accuracy of 95.6%, 97.8%, 97.0%, 98.9%, 99.2%, 91.8%, 99.4% and 83.9% with the Matthews Correlation Coefficient values of 0.74, 0.68, 0.20, 0.49, 0.23, 0.47, 0.49 and 0.53 for types I, II, VIII, I’, II’, IV, VI and nonturn respectively, which is better than other prediction. 展开更多
关键词 support Vector Machine algorithm INCREMENT of Diversity VALUE Position Conservation SCORING Function VALUE Secondary Structure Information
暂未订购
Assessing supply chain performance using genetic algorithm and support vector machine
10
作者 ZHAO Yu 《Ecological Economy》 2019年第2期101-108,共8页
The rough set-genetic support vector machine(SVM) model is applied to supply chain performance evaluation. First, the rough set theory is used to remove the redundant factors that affect the performance evaluation of ... The rough set-genetic support vector machine(SVM) model is applied to supply chain performance evaluation. First, the rough set theory is used to remove the redundant factors that affect the performance evaluation of supply chain to obtain the core influencing factors. Then the support vector machine is used to extract the core influencing factors to predict the level of supply chain performance. In the process of SVM classification, the genetic algorithm is used to optimize the parameters of the SVM algorithm to obtain the best parameter model, and then the supply chain performance evaluation level is predicted. Finally, an example is used to predict this model, and compared with the result of using only rough set-support vector machine to predict. The results show that the method of rough set-genetic support vector machine can predict the level of supply chain performance more accurately and the prediction result is more realistic, which is a scientific and feasible method. 展开更多
关键词 supply CHAIN performance evaluation ROUGH set theory support VECTOR machine GENETIC algorithm
原文传递
Exploring the Key Supports and Industry Adaptation Strategies of Artificial Intelligence Technology in Medical Data Applications
11
作者 Chenxi Zhang 《Journal of Electronic Research and Application》 2025年第6期26-34,共9页
With the rapid evolution of artificial intelligence(AI)technologies,the medical industry is undergoing a profound transformation driven by data intelligence.As the foundational element for intelligent diagnosis,precis... With the rapid evolution of artificial intelligence(AI)technologies,the medical industry is undergoing a profound transformation driven by data intelligence.As the foundational element for intelligent diagnosis,precision prevention,and public health governance,medical data is characterized by massive volume,complex structure,diverse sources,high dimensionality,strong privacy,and high timeliness.Traditional data analysis methods are no longer sufficient to meet the comprehensive requirements of data security,intelligent processing,and decision support.Through techniques such as machine learning,deep learning,natural language processing,and multimodal fusion,AI provides robust technical support for medical data cleaning,governance,mining,and application.At the data level,intelligent algorithms enable the standardization,structuring,and interoperability of medical data,promoting information sharing across medical systems.At the model level,AI supports auxiliary diagnosis and precision treatment through image recognition,medical record analysis,and knowledge graph construction.At the system level,intelligent decision-support platforms continuously enhance the efficiency and accuracy of healthcare services.However,the widespread adoption of AI in medicine still faces challenges such as privacy protection,data security,model interpretability,and the lack of unified industry standards.Based on a systematic review of AI’s key supporting technologies in medical data processing and application,this paper focuses on the compliance challenges and adaptation strategies during industry integration and proposes an adaptation framework centered on“technological trustworthiness,data security,and industry collaboration.”The study provides theoretical and practical insights for promoting the standardized and sustainable development of AI in the healthcare industry. 展开更多
关键词 algorithmic support Artificial intelligence Data governance Industry adaptation Medical data Privacy protection
在线阅读 下载PDF
Parameters selection in gene selection using Gaussian kernel support vector machines by genetic algorithm 被引量:11
12
作者 毛勇 周晓波 +2 位作者 皮道映 孙优贤 WONG Stephen T.C. 《Journal of Zhejiang University-Science B(Biomedicine & Biotechnology)》 SCIE EI CAS CSCD 2005年第10期961-973,共13页
In microarray-based cancer classification, gene selection is an important issue owing to the large number of variables and small number of samples as well as its non-linearity. It is difficult to get satisfying result... In microarray-based cancer classification, gene selection is an important issue owing to the large number of variables and small number of samples as well as its non-linearity. It is difficult to get satisfying results by using conventional linear sta- tistical methods. Recursive feature elimination based on support vector machine (SVM RFE) is an effective algorithm for gene selection and cancer classification, which are integrated into a consistent framework. In this paper, we propose a new method to select parameters of the aforementioned algorithm implemented with Gaussian kernel SVMs as better alternatives to the common practice of selecting the apparently best parameters by using a genetic algorithm to search for a couple of optimal parameter. Fast implementation issues for this method are also discussed for pragmatic reasons. The proposed method was tested on two repre- sentative hereditary breast cancer and acute leukaemia datasets. The experimental results indicate that the proposed method per- forms well in selecting genes and achieves high classification accuracies with these genes. 展开更多
关键词 Gene selection support VECTOR machine (SVM) RECURSIVE feature ELIMINATION (RFE) GENETIC algorithm (GA) Parameter SELECTION
暂未订购
Seasonal Least Squares Support Vector Machine with Fruit Fly Optimization Algorithm in Electricity Consumption Forecasting
13
作者 WANG Zilong XIA Chenxia 《Journal of Donghua University(English Edition)》 EI CAS 2019年第1期67-76,共10页
Electricity is the guarantee of economic development and daily life. Thus, accurate monthly electricity consumption forecasting can provide reliable guidance for power construction planning. In this paper, a hybrid mo... Electricity is the guarantee of economic development and daily life. Thus, accurate monthly electricity consumption forecasting can provide reliable guidance for power construction planning. In this paper, a hybrid model in combination of least squares support vector machine(LSSVM) model with fruit fly optimization algorithm(FOA) and the seasonal index adjustment is constructed to predict monthly electricity consumption. The monthly electricity consumption demonstrates a nonlinear characteristic and seasonal tendency. The LSSVM has a good fit for nonlinear data, so it has been widely applied to handling nonlinear time series prediction. However, there is no unified selection method for key parameters and no unified method to deal with the effect of seasonal tendency. Therefore, the FOA was hybridized with the LSSVM and the seasonal index adjustment to solve this problem. In order to evaluate the forecasting performance of hybrid model, two samples of monthly electricity consumption of China and the United States were employed, besides several different models were applied to forecast the two empirical time series. The results of the two samples all show that, for seasonal data, the adjusted model with seasonal indexes has better forecasting performance. The forecasting performance is better than the models without seasonal indexes. The fruit fly optimized LSSVM model outperforms other alternative models. In other words, the proposed hybrid model is a feasible method for the electricity consumption forecasting. 展开更多
关键词 forecasting FRUIT FLY optimization algorithm(FOA) least SQUARES support vector machine(LSSVM) SEASONAL index
在线阅读 下载PDF
Blind source separation algorithm based on support vector machines 被引量:1
14
作者 HE Xuan-sen HU Bo-ping 《通讯和计算机(中英文版)》 2008年第11期7-12,共6页
关键词 通信技术 盲源分离算法 计算方法 径向基函数 概率密度函数
在线阅读 下载PDF
Some Results for Exact Support Recovery of Block Joint Sparse Matrix via Block Multiple Measurement Vectors Algorithm
15
作者 Yingna Pan Pingping Zhang 《Journal of Applied Mathematics and Physics》 2023年第4期1098-1112,共15页
Block multiple measurement vectors (BMMV) is a reconstruction algorithm that can be used to recover the support of block K-joint sparse matrix X from Y = ΨX + V. In this paper, we propose a sufficient condition for a... Block multiple measurement vectors (BMMV) is a reconstruction algorithm that can be used to recover the support of block K-joint sparse matrix X from Y = ΨX + V. In this paper, we propose a sufficient condition for accurate support recovery of the block K-joint sparse matrix via the BMMV algorithm in the noisy case. Furthermore, we show the optimality of the condition we proposed in the absence of noise when the problem reduces to single measurement vector case. 展开更多
关键词 support Recovery Compressed Sensing Block Multiple Measurement Vectors algorithm Block Restricted Isometry Property
在线阅读 下载PDF
基于RFE-SHAP的具有可解释性纱线质量预测研究
16
作者 张保威 郭智林 王永华 《棉纺织技术》 2026年第1期2-9,共8页
为优化纱线质量预测的特征选择过程,进一步消除小样本环境下存在的冗余特征,提高后续预测过程的准确性、可靠性,提出了一种基于结合递归特征消除算法(RFE)和SHAP的具有可解释性的纱线质量预测方法,即RFE⁃SHAP。首先,选择RFE作为迭代特... 为优化纱线质量预测的特征选择过程,进一步消除小样本环境下存在的冗余特征,提高后续预测过程的准确性、可靠性,提出了一种基于结合递归特征消除算法(RFE)和SHAP的具有可解释性的纱线质量预测方法,即RFE⁃SHAP。首先,选择RFE作为迭代特征选择方法,将支持向量回归(SVR)作为其评估器;然后,引入SHAP技术去量化原始特征对纱线强力及毛羽H值两种纱线质量指标的边际贡献值,从而辅助特征选择,进而提供更直观且解释性更强的特征选择策略;最后,结合神经网络构建纱线强力以及毛羽H值的预测模型。试验结果证明:经RFE⁃SHAP算法得到的最优特征子集作为纱线强力及毛羽H值预测模型的输入时,模型多个评价指标的效果均有提升,其中,对两种纱线质量指标预测的平均绝对百分比误差均未超过3%。认为:该方法具有较高的可行性,可以在一定程度上提高模型的预测性能。 展开更多
关键词 纱线质量预测 特征选择 递归特征消除算法 支持向量回归 SHAP技术
在线阅读 下载PDF
Location and allocation problem for spare parts depots on integrated logistics support 被引量:4
17
作者 WEN Meilin LU Bohan +1 位作者 LI Shuyu KANG Rui 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2019年第6期1252-1259,共8页
In equipment integrated logistics support(ILS), the supply capability of spare parts is a significant factor. There are lots of depots in the traditional support system, which makes too many redundant spare parts and ... In equipment integrated logistics support(ILS), the supply capability of spare parts is a significant factor. There are lots of depots in the traditional support system, which makes too many redundant spare parts and causes high cost of support. Meanwhile,the inconsistency among depots makes it difficult to manage spare parts. With the development of information technology and transportation, the supply network has become more efficient. In order to further improve the efficiency of supply-support work and the availability of the equipment system, building a system of one centralized depot with multiple depots becomes an appropriate way.In this case, location selection of the depots including centralized depots and multiple depots becomes a top priority in the support system. This paper will focus on the location selection problem of centralized depots considering ILS factors. Unlike the common location selection problem, depots in ILS require a higher service level. Therefore, it becomes desperately necessary to take the high requirement of the mission into account while determining location of depots. Based on this, we raise an optimal depot location model. First, the expected transportation cost is calculated.Next, factors in ILS such as response time, availability and fill rate are analyzed for evaluating positions of open depots. Then, an optimization model of depot location is developed with the minimum expected cost of transportation as objective and ILS factors as constraints. Finally, a numerical case is studied to prove the validity of the model by using the genetic algorithm. Results show that depot location obtained by this model can guarantee the effectiveness and capability of ILS well. 展开更多
关键词 location problem spare parts depot integrated logis tics support genetic algorithm.
在线阅读 下载PDF
CLASSIFICATION OF SKIN AUTOFLUORESCENCE SPECTRUM USING SUPPORT VECTOR MACHINE IN TYPE 2 DIABETES SCREENING 被引量:1
18
作者 YUANZHI ZHANG LING ZHU +4 位作者 YIKUN WANG LONG ZHANG SHANDONG YE YONG LIU GONG ZHANG 《Journal of Innovative Optical Health Sciences》 SCIE EI CAS 2013年第4期42-48,共7页
Advanced glycation end products(AGEs)are a complex and heterogencous group of compounds that have been implicated in diabetes related complfcations.Sk in autofluorescence was recently introduced as an altemative tool ... Advanced glycation end products(AGEs)are a complex and heterogencous group of compounds that have been implicated in diabetes related complfcations.Sk in autofluorescence was recently introduced as an altemative tool for skin AGEs accumulation assessment in diabetes.Sucossful optical diagnosis of diabetes requires a rapid and accurate classification algorithm.In order to improve the performance of noninvasive and optical diagnosis of type 2 diabetes,support vector machines(SVM)algorithm was implemented for the clasification of skin autofluorescence from diabetics and control subjects.Cross-validation and grid optimization methods were employed to calculate the optimal parameters that ma ximize classification accuracy.Classification model was set up according to the training set and then veri fied by the testing set.The results show that radical basis fiunction is the best choice in the four common kernels in SVM.Moreover,a diagnostic accuracy of 82.61%,a sensitivity of 69.57%,and a specificity of 95.65%for discriminating diabetics from control subjects were achieved using a mixed kemel function,which is based on liner kernel function and radical basis function.In comparison with fasting plasma glucose and HbAue test,the clasifcation method of skin autofuorescence spectrum based on SVM shows great potential in screening of diabetes. 展开更多
关键词 Skin autofuorescence support vector machines algorithm type 2 diabetes noninvasive screening
原文传递
Method of Modulation Recognition Based on Combination Algorithm of K-Means Clustering and Grading Training SVM 被引量:11
19
作者 Faquan Yang Ling Yang +3 位作者 Dong Wang Peihan Qi Haiyan Wang 《China Communications》 SCIE CSCD 2018年第12期55-63,共9页
For the existing support vector machine, when recognizing more questions, the shortcomings of high computational complexity and low recognition rate under the low SNR are emerged. The characteristic parameter of the s... For the existing support vector machine, when recognizing more questions, the shortcomings of high computational complexity and low recognition rate under the low SNR are emerged. The characteristic parameter of the signal is extracted and optimized by using a clustering algorithm, support vector machine is trained by grading algorithm so as to enhance the rate of convergence, improve the performance of recognition under the low SNR and realize modulation recognition of the signal based on the modulation system of the constellation diagram in this paper. Simulation results show that the average recognition rate based on this algorithm is enhanced over 30% compared with methods that adopting clustering algorithm or support vector machine respectively under the low SNR. The average recognition rate can reach 90% when the SNR is 5 dB, and the method is easy to be achieved so that it has broad application prospect in the modulating recognition. 展开更多
关键词 CLUSTERING algorithm FEATURE extraction GRADING algorithm support VECTOR machine MODULATION recognition
在线阅读 下载PDF
数智时代的态势分析与决策支持方法
20
作者 靳薇 张志恒 《计算机应用文摘》 2026年第1期235-237,共3页
在数智时代背景下,传统态势分析方法面临多源异构数据融合困难与实时性不足等挑战,亟需构建智能化决策支持体系。为实现对多维态势特征的精准提取与量化评估,文章通过融合大数据处理、机器学习算法及实时计算架构,构建了态势驱动的智能... 在数智时代背景下,传统态势分析方法面临多源异构数据融合困难与实时性不足等挑战,亟需构建智能化决策支持体系。为实现对多维态势特征的精准提取与量化评估,文章通过融合大数据处理、机器学习算法及实时计算架构,构建了态势驱动的智能化决策支持方法,同时引入自适应权重调整机制,有效增强了系统在复杂环境中的决策响应能力。实验验证表明,相较于传统方法,该方法在决策准确率上具有明显提升,为数智时代的态势感知与智能决策提供了可行的技术路径。 展开更多
关键词 数智时代 态势分析 决策支持系统 多源数据融合 智能算法
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部