This paper introduces a kind of Feeder Control Units (FCUs) which treat feeders or main transformers as its objects. Being carefully designed, the FCU can separately meet the requirements such as signals’ acquisition...This paper introduces a kind of Feeder Control Units (FCUs) which treat feeders or main transformers as its objects. Being carefully designed, the FCU can separately meet the requirements such as signals’ acquisition, local control, on-time switchgear interlocking, etc. Equipped with a sort of high-speed serial communicahon interface, the FCUs can be distributively arranged near or into the switchgear, therefore a kind of distributed substation supervisory system can be formed.展开更多
FIGHTING against corruption according to the law is a hallmark of China’s anti-corruption campaign since the 18th National Congress of the Communist Party of China(CPC),convened in 2012;and creating a sound,law-based...FIGHTING against corruption according to the law is a hallmark of China’s anti-corruption campaign since the 18th National Congress of the Communist Party of China(CPC),convened in 2012;and creating a sound,law-based supervisory system is a key focus and task of China’s efforts to establish a system of socialist rule of law with Chinese characteristics and comprehensively advance law-based governance.In 2018,both the government and the CPC stepped up the formulation of laws and Party regulations for the fight against corruption.展开更多
With the development of cyber-physical systems,system security faces more risks from cyber-attacks.In this work,we study the problem that an external attacker implements covert sensor and actuator attacks with resourc...With the development of cyber-physical systems,system security faces more risks from cyber-attacks.In this work,we study the problem that an external attacker implements covert sensor and actuator attacks with resource constraints(the total resource consumption of the attacks is not greater than a given initial resource of the attacker)to mislead a discrete event system under supervisory control to reach unsafe states.We consider that the attacker can implement two types of attacks:One by modifying the sensor readings observed by a supervisor and the other by enabling the actuator commands disabled by the supervisor.Each attack has its corresponding resource consumption and remains covert.To solve this problem,we first introduce a notion of combined-attackability to determine whether a closedloop system may reach an unsafe state after receiving attacks with resource constraints.We develop an algorithm to construct a corrupted supervisor under attacks,provide a verification method for combined-attackability in polynomial time based on a plant,a corrupted supervisor,and an attacker's initial resource,and propose a corresponding attack synthesis algorithm.The effectiveness of the proposed method is illustrated by an example.展开更多
As quantum computing continues to advance,traditional cryptographic methods are increasingly challenged,particularly when it comes to securing critical systems like Supervisory Control andData Acquisition(SCADA)system...As quantum computing continues to advance,traditional cryptographic methods are increasingly challenged,particularly when it comes to securing critical systems like Supervisory Control andData Acquisition(SCADA)systems.These systems are essential for monitoring and controlling industrial operations,making their security paramount.A key threat arises from Shor’s algorithm,a powerful quantum computing tool that can compromise current hash functions,leading to significant concerns about data integrity and confidentiality.To tackle these issues,this article introduces a novel Quantum-Resistant Hash Algorithm(QRHA)known as the Modular Hash Learning Algorithm(MHLA).This algorithm is meticulously crafted to withstand potential quantum attacks by incorporating advanced mathematical and algorithmic techniques,enhancing its overall security framework.Our research delves into the effectiveness ofMHLA in defending against both traditional and quantum-based threats,with a particular emphasis on its resilience to Shor’s algorithm.The findings from our study demonstrate that MHLA significantly enhances the security of SCADA systems in the context of quantum technology.By ensuring that sensitive data remains protected and confidential,MHLA not only fortifies individual systems but also contributes to the broader efforts of safeguarding industrial and infrastructure control systems against future quantumthreats.Our evaluation demonstrates that MHLA improves security by 38%against quantumattack simulations compared to traditional hash functionswhilemaintaining a computational efficiency ofO(m⋅n⋅k+v+n).The algorithm achieved a 98%success rate in detecting data tampering during integrity testing.These findings underline MHLA’s effectiveness in enhancing SCADA system security amidst evolving quantum technologies.This research represents a crucial step toward developing more secure cryptographic systems that can adapt to the rapidly changing technological landscape,ultimately ensuring the reliability and integrity of critical infrastructure in an era where quantum computing poses a growing risk.展开更多
The control system for the Experimental Advanced Superconductive Tokamak (EAST) cryogenic system is designed and constructed based on Delta-V DCS (Distribution Control System), which consists of engineering workst...The control system for the Experimental Advanced Superconductive Tokamak (EAST) cryogenic system is designed and constructed based on Delta-V DCS (Distribution Control System), which consists of engineering workstations, operator workstations, application workstations, redundant controller units, input/output (I/O) cards and a redundant control network. Our task is to design a supervisory and control system to provide the operator interface for control and monitoring, sending alarms, archiving of selected signals, and other routines to analyze realtime and historic data. The hardware configuration, software structure and control algorithms are illustrated in detail in this paper. Hvpothetic oroblems and further research are also mentioned.展开更多
FDES(fuzzy discrete event systems) can effectively represent a kind of complicated systems involving deterministic uncertainties and vagueness as well as human subjective observation and judgement from the view of dis...FDES(fuzzy discrete event systems) can effectively represent a kind of complicated systems involving deterministic uncertainties and vagueness as well as human subjective observation and judgement from the view of discrete events, here the information system is divided into some independent intelligent entitative Agents. The concept of information processing state based on Agents was proposed. The processing state of Agent can be judged by some assistant observation parameters about the Agent and its environment around, and the transition among these states can be represented by FDES based on rules. In order to ensure the harmony of the Agents for information processing, its upstream and downstream buffers are considered in the modeling of the Agent system, and the supervisory controller based on FDES is constructed. The processing state of Agent can be adjusted by the supervisory controller to improve the stability of the system and the efficiency of resource utilization during the process according to the control policies. The result of its application was provided to illustrate the validity of the supervisory adjustment.展开更多
In this paper, a hybrid neural-genetic fuzzy system is proposed to control the flow and height of water in the reservoirs of water transfer networks. These controls will avoid probable water wastes in the reservoirs a...In this paper, a hybrid neural-genetic fuzzy system is proposed to control the flow and height of water in the reservoirs of water transfer networks. These controls will avoid probable water wastes in the reservoirs and pressure drops in water distribution networks. The proposed approach combines the artificial neural network, genetic algorithm, and fuzzy inference system to improve the performance of the supervisory control and data acquisition stations through a new control philosophy for instruments and control valves in the reservoirs of the water transfer networks. First, a multi-core artificial neural network model, including a multi-layer perceptron and radial based function, is proposed to forecast the daily consumption of the water in a reservoir. A genetic algorithm is proposed to optimize the parameters of the artificial neural networks. Then, the online height of water in the reservoir and the output of artificial neural networks are used as inputs of a fuzzy inference system to estimate the flow rate of the reservoir inlet. Finally, the estimated inlet flow is translated into the input valve position using a transform control unit supported by a nonlinear autoregressive exogenous model. The proposed approach is applied in the Tehran water transfer network. The results of this study show that the usage of the proposed approach significantly reduces the deviation of the reservoir height from the desired levels.展开更多
The paper demonstrates the possibility to enhance the damping of inter-area oscillations using Wide Area Measurement (WAM) based adaptive supervisory controller (ASC) which considers the wide-area signal transmission ...The paper demonstrates the possibility to enhance the damping of inter-area oscillations using Wide Area Measurement (WAM) based adaptive supervisory controller (ASC) which considers the wide-area signal transmission delays. The paper uses an LMI-based iterative nonlinear optimization algorithm to establish a method of designing state-feedback controllers for power systems with a time-varying delay. This method is based on the delay-dependent stabilization conditions obtained by the improved free weighting matrix (IFWM) approach. In the stabilization conditions, the upper bound of feedback signal’s transmission delays is taken into consideration. Combining theoriesof state feedback control and state observer, the ASC is designed and time-delay output feedback robust controller is realized for power system. The ASC uses the input information from Phase Measurement Units (PMUs) in the system and dispatches supplementary control signals to the available local controllers. The design of the ASC is explained in detail and its performance validated by time domain simulations on a New England test power system (NETPS).展开更多
I the context of the Corporate Governance Code enactment in Japan, we examine how newly introduced outside directors in Japanese boards obtain information to take part in the decision-making process. We conducted a sy...I the context of the Corporate Governance Code enactment in Japan, we examine how newly introduced outside directors in Japanese boards obtain information to take part in the decision-making process. We conducted a systematic review of the literature and found 18 peer-reviewed publications in a time span between 2000 and 2016 that described the asymmetry of information between the insider group of board directors (including the CEO) and the outside board members. Our fmdings show that for the course of more than a decade, despite all changes and reforms, the role of board directors, whether insiders or outsiders, is still supplementary. They are treated more as advisors than active part in the decision-making process. We reveal different insider sources of information as forming social ties with the CEO and/or inside board directors and collaboration with Audit & Supervisory Board (Kansayaku), which can help reduce this asymmetry and improve the decision-making process. We assume that it will be easier for the outsiders to establish contacts and form social ties with the Audit & Supervisory Board members because of their unspoken lower status and thus to obtain more information about the company internal affairs and discussions that take place during the informal meetings, where only insiders (including the CEO) are present.展开更多
Bronchiectasis is a chronic inflammatory airway disease,and patients often suffer from recurrent airway infections leading to decreased lung function and impaired quality of life.In this study,the effects of supervise...Bronchiectasis is a chronic inflammatory airway disease,and patients often suffer from recurrent airway infections leading to decreased lung function and impaired quality of life.In this study,the effects of supervised pulmonary rehabilitation training on pulmonary function,training compliance,and quality of life in patients with bronchiectasis under home rehabilitation mode are investigated.Ninety stable patients were selected,and the observation group adopted the home-supervised mode of pulmonary rehabilitation training.The results showed that the observation group’s pulmonary function indexes,quality of life,and training adherence were better than those of the control group.The differences were statistically significant(P<0.05).The supervised pulmonary rehabilitation training in home rehabilitation mode can effectively improve patients’pulmonary function and quality of life,and improve training compliance,which has good clinical application value.展开更多
This paper describes a supervisory hierarchical fuzzy controller (SHFC) for regulating pressure in a real-time pilot pressure control system. The input scaling factor tuning of a direct expert controller is made usi...This paper describes a supervisory hierarchical fuzzy controller (SHFC) for regulating pressure in a real-time pilot pressure control system. The input scaling factor tuning of a direct expert controller is made using the error and process input parameters in a closed loop system in order to obtain better controller performance for set-point change and load disturbances. This on-line tuning method reduces operator involvement and enhances the controller performance to a wide operating range. The hierarchical control scheme consists of an intelligent upper level supervisory fuzzy controller and a lower level direct fuzzy controller. The upper level controller provides a mechanism to the main goal of the system and the lower level controller delivers the solutions to a particular situation. The control algorithm for the proposed scheme has been developed and tested using an ARM7 microcontroller-based embedded target board for a nonlinear pressure process having dead time. To demonstrate the effectiveness, the results of the proposed hierarchical controller, fuzzy controller and conventional proportional-integral (PI) controller are analyzed. The results prove that the SHFC performance is better in terms of stability and robustness than the conventional control methods.展开更多
With the wide application of electronic hardware in aircraft such as air-to-ground communication,satellite communication,positioning system and so on,aircraft hardware is facing great secure pressure.Focusing on the s...With the wide application of electronic hardware in aircraft such as air-to-ground communication,satellite communication,positioning system and so on,aircraft hardware is facing great secure pressure.Focusing on the secure problem of aircraft hardware,this paper proposes a supervisory control architecture based on secure System-on-a-Chip(So C)system.The proposed architecture is attack-immune and trustworthy,which can support trusted escrow application and Dynamic Integrity Measurement(DIM)without interference.This architecture is characterized by a Trusted Monitoring System(TMS)hardware isolated from the Main Processor System(MPS),a secure access channel from TMS to the running memory of the MPS,and the channel is unidirectional.Based on this architecture,the DIM program running on TMS is used to measure and call the Lightweight Measurement Agent(LMA)program running on MPS.By this method,the Operating System(OS)kernel,key software and data of the MPS can be dynamically measured without disturbance,which makes it difficult for adversaries to attack through software.Besides,this architecture has been fully verified on FPGA prototype system.Compared with the existing systems,our architecture achieves higher security and is more efficient on DIM,which can fully supervise the running of application and aircraft hardware OS.展开更多
The supervisory control problem for discrete event system(DES) under control involves identifying the supervisor, if one exists, which, when synchronously composed with the DES,results in a system that conforms to the...The supervisory control problem for discrete event system(DES) under control involves identifying the supervisor, if one exists, which, when synchronously composed with the DES,results in a system that conforms to the control specification. In this context, we consider a non-deterministic DES under complete observation and control specification expressed in action-based propositional μ-calculus. The key to our solution is the process of quotienting the control specification against the plan resulting in a new μ-calculus formula such that a model for the formula is the supervisor. Thus the task of control synthesis is reduced a problem of μ-calculus satisfiability. In contrast to the existing μ-calculus quotienting-based techniques that are developed in deterministic setting, our quotienting rules can handle nondeterminism in the plant models. Another distinguishing feature of our technique is that while existing techniques use a separate μ-calculus formula to describe the controllability constraint(that uncontrollable events of plants are never disabled by a supervisor), we absorb this constraint as part of quotienting which allows us to directly capture more general state-dependent controllability constraints. Finally, we develop a tableau-based technique for verifying satisfiability of quotiented formula and model generation. The runtime for the technique is exponential in terms of the size of the plan and the control specification. A better complexity result that is polynomial to plant size and exponential to specification size is obtained when the controllability property is state-independent. A prototype implementation in a tabled logic programming language as well as some experimental results are presented.展开更多
This paper studied a supervisory control system for a hybrid off-highway electric vehicle under the chargesustaining(CS)condition.A new predictive double Q-learning with backup models(PDQL)scheme is proposed to optimi...This paper studied a supervisory control system for a hybrid off-highway electric vehicle under the chargesustaining(CS)condition.A new predictive double Q-learning with backup models(PDQL)scheme is proposed to optimize the engine fuel in real-world driving and improve energy efficiency with a faster and more robust learning process.Unlike the existing“model-free”methods,which solely follow on-policy and off-policy to update knowledge bases(Q-tables),the PDQL is developed with the capability to merge both on-policy and off-policy learning by introducing a backup model(Q-table).Experimental evaluations are conducted based on software-in-the-loop(SiL)and hardware-in-the-loop(HiL)test platforms based on real-time modelling of the studied vehicle.Compared to the standard double Q-learning(SDQL),the PDQL only needs half of the learning iterations to achieve better energy efficiency than the SDQL at the end learning process.In the SiL under 35 rounds of learning,the results show that the PDQL can improve the vehicle energy efficiency by 1.75%higher than SDQL.By implementing the PDQL in HiL under four predefined real-world conditions,the PDQL can robustly save more than 5.03%energy than the SDQL scheme.展开更多
The supervisory system and the examination system are two indigenous political systems of China,and the former has a longer history than the latter when it comes to the origin.Having inherited the essence of the super...The supervisory system and the examination system are two indigenous political systems of China,and the former has a longer history than the latter when it comes to the origin.Having inherited the essence of the supervisory system since the Qin Dynasty,the supervisory rules in the Ming Dynasty opened a new chapter of legal thoughts of monitoring.This paper started with the design of the supervisory institutions in the Ming Dynasty recorded in the historical materials such as the Memoir of Ming Dynasty and The Interpretive Supplements to"The Great Learning",to get a glimpse of the main content of the legal thoughts of supervisory at that time,and tried to"take history as a mirror"to provide insights and lessons of the legal thoughts of supervisory in the Ming Dynasty for the later generations.展开更多
Supervisory control is a very popular paradigm for computer-controlled systems. Knowledge and tracking the control effect of every control operation is crucial to the control tasks. In the paper, we present a message-...Supervisory control is a very popular paradigm for computer-controlled systems. Knowledge and tracking the control effect of every control operation is crucial to the control tasks. In the paper, we present a message-array-based mechanism to track control effects in supervisory control software. A novel data type, message array, is designed to efficiently support this tracking mechanism. The operation algorithms, adding algorithm (AA), removing algorithm (RA), and scheduler algorithm (SA) are proposed to operate the tracking messages in message array, which forms the special first input X output (FIXO) strategy of message array. Automatically tracking, recording, and rolling back are the characteristics of our tracking mechanism. We implement this messagearray-based mechanism on the famous human machine interface (HMI) software platform-proficy iFix, and construct experiments to evaluate the performance of the mechanism in various cases. The results show our mechanism can be well satisfied with supervisory control software.展开更多
Due to space availability limitations and high land costs,there is an increasing development of multi-floor manufacturing(MFM)systems in urban and industrial areas.The problem of coordination in a multi-floor manufact...Due to space availability limitations and high land costs,there is an increasing development of multi-floor manufacturing(MFM)systems in urban and industrial areas.The problem of coordination in a multi-floor manufacturing process,in the Ramadge Wonham framework,is introduced.The manufacturing chain of each floor and the elevator system are modeled in the form of finite deterministic automata.The models of the multi-floor manufacturing process are parametric with respect to the number of floors and the number of manufacturing machines on each floor.The coordination desired performance is formulated in the form of desired regular languages in analytic forms.The languages are realized by appropriate supervisors in the form of finite deterministic automata.The models of the supervisors are also parametric with respect to the number of floors and the number of manufacturing machines on each floor.The total control of the coordination of the multi-floor manufacturing process is accomplished via a modular supervisory control architecture.The complexity of the supervisors as well as the complexity of the total modular supervisory architecture are determined in analytic forms with respect to the number of floors and the number of manufacturing machines on each floor.The special case of a two floor manufacturing process is presented as an illustrative example.展开更多
The responses of vehicles to the changes in traffic situations inevitably have delays in observing an event and implementing a control command,which often causes fatal accidents.So far,the methods for handling delays ...The responses of vehicles to the changes in traffic situations inevitably have delays in observing an event and implementing a control command,which often causes fatal accidents.So far,the methods for handling delays are empirical and cannot be mathematically proven.To eliminate the accidents caused by such delays,in this paper,we develop mathematically provable methods to handle these delays.Specifically,we use networked discrete event systems to model the process of driving vehicles and present a supervisory controller for handling delay situations.The method developed in this paper could serve as a new start for modeling and controlling the responsive behaviors of self-driving vehicles in the future.展开更多
After an introduction to the implementation of supervisory computer control (SCC) through networks and the relevant security issues, this paper centers on the core of network security design: intelligent front-end pro...After an introduction to the implementation of supervisory computer control (SCC) through networks and the relevant security issues, this paper centers on the core of network security design: intelligent front-end processor (FEP), encryption/decryption method and authentication protocol. Some other system-specific security measures are also proposed. Although these are examples only, the techniques discussed can also be used in and provide reference for other remote control systems.展开更多
文摘This paper introduces a kind of Feeder Control Units (FCUs) which treat feeders or main transformers as its objects. Being carefully designed, the FCU can separately meet the requirements such as signals’ acquisition, local control, on-time switchgear interlocking, etc. Equipped with a sort of high-speed serial communicahon interface, the FCUs can be distributively arranged near or into the switchgear, therefore a kind of distributed substation supervisory system can be formed.
文摘FIGHTING against corruption according to the law is a hallmark of China’s anti-corruption campaign since the 18th National Congress of the Communist Party of China(CPC),convened in 2012;and creating a sound,law-based supervisory system is a key focus and task of China’s efforts to establish a system of socialist rule of law with Chinese characteristics and comprehensively advance law-based governance.In 2018,both the government and the CPC stepped up the formulation of laws and Party regulations for the fight against corruption.
基金partially supported by the Science Technology Development Fund,Macao Special Administrative Region(0029/2023/RIA1)the National Research Foundation Singapore under its AI Singapore Programme(AISG2-GC-2023-007)
文摘With the development of cyber-physical systems,system security faces more risks from cyber-attacks.In this work,we study the problem that an external attacker implements covert sensor and actuator attacks with resource constraints(the total resource consumption of the attacks is not greater than a given initial resource of the attacker)to mislead a discrete event system under supervisory control to reach unsafe states.We consider that the attacker can implement two types of attacks:One by modifying the sensor readings observed by a supervisor and the other by enabling the actuator commands disabled by the supervisor.Each attack has its corresponding resource consumption and remains covert.To solve this problem,we first introduce a notion of combined-attackability to determine whether a closedloop system may reach an unsafe state after receiving attacks with resource constraints.We develop an algorithm to construct a corrupted supervisor under attacks,provide a verification method for combined-attackability in polynomial time based on a plant,a corrupted supervisor,and an attacker's initial resource,and propose a corresponding attack synthesis algorithm.The effectiveness of the proposed method is illustrated by an example.
基金Princess Nourah bint Abdulrahman University Researchers Supporting Project number(PNURSP2025R343),Princess Nourah bint Abdulrahman University,Riyadh,Saudi Arabiathe Deanship of Scientific Research at Northern Border University,Arar,Saudi Arabia for funding this research work through the project number NBU-FFR-2025-1092-10.
文摘As quantum computing continues to advance,traditional cryptographic methods are increasingly challenged,particularly when it comes to securing critical systems like Supervisory Control andData Acquisition(SCADA)systems.These systems are essential for monitoring and controlling industrial operations,making their security paramount.A key threat arises from Shor’s algorithm,a powerful quantum computing tool that can compromise current hash functions,leading to significant concerns about data integrity and confidentiality.To tackle these issues,this article introduces a novel Quantum-Resistant Hash Algorithm(QRHA)known as the Modular Hash Learning Algorithm(MHLA).This algorithm is meticulously crafted to withstand potential quantum attacks by incorporating advanced mathematical and algorithmic techniques,enhancing its overall security framework.Our research delves into the effectiveness ofMHLA in defending against both traditional and quantum-based threats,with a particular emphasis on its resilience to Shor’s algorithm.The findings from our study demonstrate that MHLA significantly enhances the security of SCADA systems in the context of quantum technology.By ensuring that sensitive data remains protected and confidential,MHLA not only fortifies individual systems but also contributes to the broader efforts of safeguarding industrial and infrastructure control systems against future quantumthreats.Our evaluation demonstrates that MHLA improves security by 38%against quantumattack simulations compared to traditional hash functionswhilemaintaining a computational efficiency ofO(m⋅n⋅k+v+n).The algorithm achieved a 98%success rate in detecting data tampering during integrity testing.These findings underline MHLA’s effectiveness in enhancing SCADA system security amidst evolving quantum technologies.This research represents a crucial step toward developing more secure cryptographic systems that can adapt to the rapidly changing technological landscape,ultimately ensuring the reliability and integrity of critical infrastructure in an era where quantum computing poses a growing risk.
基金The project supported by the National Meg-science Engineering Project of the Chinese Government
文摘The control system for the Experimental Advanced Superconductive Tokamak (EAST) cryogenic system is designed and constructed based on Delta-V DCS (Distribution Control System), which consists of engineering workstations, operator workstations, application workstations, redundant controller units, input/output (I/O) cards and a redundant control network. Our task is to design a supervisory and control system to provide the operator interface for control and monitoring, sending alarms, archiving of selected signals, and other routines to analyze realtime and historic data. The hardware configuration, software structure and control algorithms are illustrated in detail in this paper. Hvpothetic oroblems and further research are also mentioned.
文摘FDES(fuzzy discrete event systems) can effectively represent a kind of complicated systems involving deterministic uncertainties and vagueness as well as human subjective observation and judgement from the view of discrete events, here the information system is divided into some independent intelligent entitative Agents. The concept of information processing state based on Agents was proposed. The processing state of Agent can be judged by some assistant observation parameters about the Agent and its environment around, and the transition among these states can be represented by FDES based on rules. In order to ensure the harmony of the Agents for information processing, its upstream and downstream buffers are considered in the modeling of the Agent system, and the supervisory controller based on FDES is constructed. The processing state of Agent can be adjusted by the supervisory controller to improve the stability of the system and the efficiency of resource utilization during the process according to the control policies. The result of its application was provided to illustrate the validity of the supervisory adjustment.
文摘In this paper, a hybrid neural-genetic fuzzy system is proposed to control the flow and height of water in the reservoirs of water transfer networks. These controls will avoid probable water wastes in the reservoirs and pressure drops in water distribution networks. The proposed approach combines the artificial neural network, genetic algorithm, and fuzzy inference system to improve the performance of the supervisory control and data acquisition stations through a new control philosophy for instruments and control valves in the reservoirs of the water transfer networks. First, a multi-core artificial neural network model, including a multi-layer perceptron and radial based function, is proposed to forecast the daily consumption of the water in a reservoir. A genetic algorithm is proposed to optimize the parameters of the artificial neural networks. Then, the online height of water in the reservoir and the output of artificial neural networks are used as inputs of a fuzzy inference system to estimate the flow rate of the reservoir inlet. Finally, the estimated inlet flow is translated into the input valve position using a transform control unit supported by a nonlinear autoregressive exogenous model. The proposed approach is applied in the Tehran water transfer network. The results of this study show that the usage of the proposed approach significantly reduces the deviation of the reservoir height from the desired levels.
文摘The paper demonstrates the possibility to enhance the damping of inter-area oscillations using Wide Area Measurement (WAM) based adaptive supervisory controller (ASC) which considers the wide-area signal transmission delays. The paper uses an LMI-based iterative nonlinear optimization algorithm to establish a method of designing state-feedback controllers for power systems with a time-varying delay. This method is based on the delay-dependent stabilization conditions obtained by the improved free weighting matrix (IFWM) approach. In the stabilization conditions, the upper bound of feedback signal’s transmission delays is taken into consideration. Combining theoriesof state feedback control and state observer, the ASC is designed and time-delay output feedback robust controller is realized for power system. The ASC uses the input information from Phase Measurement Units (PMUs) in the system and dispatches supplementary control signals to the available local controllers. The design of the ASC is explained in detail and its performance validated by time domain simulations on a New England test power system (NETPS).
文摘I the context of the Corporate Governance Code enactment in Japan, we examine how newly introduced outside directors in Japanese boards obtain information to take part in the decision-making process. We conducted a systematic review of the literature and found 18 peer-reviewed publications in a time span between 2000 and 2016 that described the asymmetry of information between the insider group of board directors (including the CEO) and the outside board members. Our fmdings show that for the course of more than a decade, despite all changes and reforms, the role of board directors, whether insiders or outsiders, is still supplementary. They are treated more as advisors than active part in the decision-making process. We reveal different insider sources of information as forming social ties with the CEO and/or inside board directors and collaboration with Audit & Supervisory Board (Kansayaku), which can help reduce this asymmetry and improve the decision-making process. We assume that it will be easier for the outsiders to establish contacts and form social ties with the Audit & Supervisory Board members because of their unspoken lower status and thus to obtain more information about the company internal affairs and discussions that take place during the informal meetings, where only insiders (including the CEO) are present.
文摘Bronchiectasis is a chronic inflammatory airway disease,and patients often suffer from recurrent airway infections leading to decreased lung function and impaired quality of life.In this study,the effects of supervised pulmonary rehabilitation training on pulmonary function,training compliance,and quality of life in patients with bronchiectasis under home rehabilitation mode are investigated.Ninety stable patients were selected,and the observation group adopted the home-supervised mode of pulmonary rehabilitation training.The results showed that the observation group’s pulmonary function indexes,quality of life,and training adherence were better than those of the control group.The differences were statistically significant(P<0.05).The supervised pulmonary rehabilitation training in home rehabilitation mode can effectively improve patients’pulmonary function and quality of life,and improve training compliance,which has good clinical application value.
文摘This paper describes a supervisory hierarchical fuzzy controller (SHFC) for regulating pressure in a real-time pilot pressure control system. The input scaling factor tuning of a direct expert controller is made using the error and process input parameters in a closed loop system in order to obtain better controller performance for set-point change and load disturbances. This on-line tuning method reduces operator involvement and enhances the controller performance to a wide operating range. The hierarchical control scheme consists of an intelligent upper level supervisory fuzzy controller and a lower level direct fuzzy controller. The upper level controller provides a mechanism to the main goal of the system and the lower level controller delivers the solutions to a particular situation. The control algorithm for the proposed scheme has been developed and tested using an ARM7 microcontroller-based embedded target board for a nonlinear pressure process having dead time. To demonstrate the effectiveness, the results of the proposed hierarchical controller, fuzzy controller and conventional proportional-integral (PI) controller are analyzed. The results prove that the SHFC performance is better in terms of stability and robustness than the conventional control methods.
基金supported by the National Key Research and Development Program of China(No.2017YFB0802502)by the Aeronautical Science Foundation(No.2017ZC51038)+4 种基金by the National Natural Science Foundation of China(Nos.62002006,61702028,61672083,61370190,61772538,61532021,61472429,and 61402029)by the Foundation of Science and Technology on Information Assurance Laboratory(No.1421120305162112006)by the National Cryptography Development Fund(No.MMJJ20170106)by the Defense Industrial Technology Development Program(No.JCKY2016204A102)by the Liaoning Collaboration Innovation Center For CSLE,China。
文摘With the wide application of electronic hardware in aircraft such as air-to-ground communication,satellite communication,positioning system and so on,aircraft hardware is facing great secure pressure.Focusing on the secure problem of aircraft hardware,this paper proposes a supervisory control architecture based on secure System-on-a-Chip(So C)system.The proposed architecture is attack-immune and trustworthy,which can support trusted escrow application and Dynamic Integrity Measurement(DIM)without interference.This architecture is characterized by a Trusted Monitoring System(TMS)hardware isolated from the Main Processor System(MPS),a secure access channel from TMS to the running memory of the MPS,and the channel is unidirectional.Based on this architecture,the DIM program running on TMS is used to measure and call the Lightweight Measurement Agent(LMA)program running on MPS.By this method,the Operating System(OS)kernel,key software and data of the MPS can be dynamically measured without disturbance,which makes it difficult for adversaries to attack through software.Besides,this architecture has been fully verified on FPGA prototype system.Compared with the existing systems,our architecture achieves higher security and is more efficient on DIM,which can fully supervise the running of application and aircraft hardware OS.
基金supported in part by the National Sci-ence Foundation (NSF-ECCS-1509420, NSF-CSSI-2004766)。
文摘The supervisory control problem for discrete event system(DES) under control involves identifying the supervisor, if one exists, which, when synchronously composed with the DES,results in a system that conforms to the control specification. In this context, we consider a non-deterministic DES under complete observation and control specification expressed in action-based propositional μ-calculus. The key to our solution is the process of quotienting the control specification against the plan resulting in a new μ-calculus formula such that a model for the formula is the supervisor. Thus the task of control synthesis is reduced a problem of μ-calculus satisfiability. In contrast to the existing μ-calculus quotienting-based techniques that are developed in deterministic setting, our quotienting rules can handle nondeterminism in the plant models. Another distinguishing feature of our technique is that while existing techniques use a separate μ-calculus formula to describe the controllability constraint(that uncontrollable events of plants are never disabled by a supervisor), we absorb this constraint as part of quotienting which allows us to directly capture more general state-dependent controllability constraints. Finally, we develop a tableau-based technique for verifying satisfiability of quotiented formula and model generation. The runtime for the technique is exponential in terms of the size of the plan and the control specification. A better complexity result that is polynomial to plant size and exponential to specification size is obtained when the controllability property is state-independent. A prototype implementation in a tabled logic programming language as well as some experimental results are presented.
基金Project(KF2029)supported by the State Key Laboratory of Automotive Safety and Energy(Tsinghua University),ChinaProject(102253)supported partially by the Innovate UK。
文摘This paper studied a supervisory control system for a hybrid off-highway electric vehicle under the chargesustaining(CS)condition.A new predictive double Q-learning with backup models(PDQL)scheme is proposed to optimize the engine fuel in real-world driving and improve energy efficiency with a faster and more robust learning process.Unlike the existing“model-free”methods,which solely follow on-policy and off-policy to update knowledge bases(Q-tables),the PDQL is developed with the capability to merge both on-policy and off-policy learning by introducing a backup model(Q-table).Experimental evaluations are conducted based on software-in-the-loop(SiL)and hardware-in-the-loop(HiL)test platforms based on real-time modelling of the studied vehicle.Compared to the standard double Q-learning(SDQL),the PDQL only needs half of the learning iterations to achieve better energy efficiency than the SDQL at the end learning process.In the SiL under 35 rounds of learning,the results show that the PDQL can improve the vehicle energy efficiency by 1.75%higher than SDQL.By implementing the PDQL in HiL under four predefined real-world conditions,the PDQL can robustly save more than 5.03%energy than the SDQL scheme.
基金Scientific Planning Project of Tianjin Philosophy and Social Science Monitoring the legal system and political trend-Research on the relationship between the Duchayuan during Tianqi period and the political situation of the late Ming DynastyProject No.TJFX19-002。
文摘The supervisory system and the examination system are two indigenous political systems of China,and the former has a longer history than the latter when it comes to the origin.Having inherited the essence of the supervisory system since the Qin Dynasty,the supervisory rules in the Ming Dynasty opened a new chapter of legal thoughts of monitoring.This paper started with the design of the supervisory institutions in the Ming Dynasty recorded in the historical materials such as the Memoir of Ming Dynasty and The Interpretive Supplements to"The Great Learning",to get a glimpse of the main content of the legal thoughts of supervisory at that time,and tried to"take history as a mirror"to provide insights and lessons of the legal thoughts of supervisory in the Ming Dynasty for the later generations.
文摘Supervisory control is a very popular paradigm for computer-controlled systems. Knowledge and tracking the control effect of every control operation is crucial to the control tasks. In the paper, we present a message-array-based mechanism to track control effects in supervisory control software. A novel data type, message array, is designed to efficiently support this tracking mechanism. The operation algorithms, adding algorithm (AA), removing algorithm (RA), and scheduler algorithm (SA) are proposed to operate the tracking messages in message array, which forms the special first input X output (FIXO) strategy of message array. Automatically tracking, recording, and rolling back are the characteristics of our tracking mechanism. We implement this messagearray-based mechanism on the famous human machine interface (HMI) software platform-proficy iFix, and construct experiments to evaluate the performance of the mechanism in various cases. The results show our mechanism can be well satisfied with supervisory control software.
基金Open access funding provided by HEAL-Link Greece.
文摘Due to space availability limitations and high land costs,there is an increasing development of multi-floor manufacturing(MFM)systems in urban and industrial areas.The problem of coordination in a multi-floor manufacturing process,in the Ramadge Wonham framework,is introduced.The manufacturing chain of each floor and the elevator system are modeled in the form of finite deterministic automata.The models of the multi-floor manufacturing process are parametric with respect to the number of floors and the number of manufacturing machines on each floor.The coordination desired performance is formulated in the form of desired regular languages in analytic forms.The languages are realized by appropriate supervisors in the form of finite deterministic automata.The models of the supervisors are also parametric with respect to the number of floors and the number of manufacturing machines on each floor.The total control of the coordination of the multi-floor manufacturing process is accomplished via a modular supervisory control architecture.The complexity of the supervisors as well as the complexity of the total modular supervisory architecture are determined in analytic forms with respect to the number of floors and the number of manufacturing machines on each floor.The special case of a two floor manufacturing process is presented as an illustrative example.
文摘The responses of vehicles to the changes in traffic situations inevitably have delays in observing an event and implementing a control command,which often causes fatal accidents.So far,the methods for handling delays are empirical and cannot be mathematically proven.To eliminate the accidents caused by such delays,in this paper,we develop mathematically provable methods to handle these delays.Specifically,we use networked discrete event systems to model the process of driving vehicles and present a supervisory controller for handling delay situations.The method developed in this paper could serve as a new start for modeling and controlling the responsive behaviors of self-driving vehicles in the future.
文摘After an introduction to the implementation of supervisory computer control (SCC) through networks and the relevant security issues, this paper centers on the core of network security design: intelligent front-end processor (FEP), encryption/decryption method and authentication protocol. Some other system-specific security measures are also proposed. Although these are examples only, the techniques discussed can also be used in and provide reference for other remote control systems.