期刊文献+
共找到125篇文章
< 1 2 7 >
每页显示 20 50 100
A Detection Algorithm for Two-Wheeled Vehicles in Complex Scenarios Based on Semi-Supervised Learning
1
作者 Mingen Zhong Kaibo Yang +4 位作者 Ziji Xiao Jiawei Tan Kang Fan Zhiying Deng Mengli Zhou 《Computers, Materials & Continua》 2025年第7期1055-1071,共17页
With the rapid urbanization and exponential population growth in China,two-wheeled vehicles have become a popular mode of transportation,particularly for short-distance travel.However,due to a lack of safety awareness... With the rapid urbanization and exponential population growth in China,two-wheeled vehicles have become a popular mode of transportation,particularly for short-distance travel.However,due to a lack of safety awareness,traffic violations by two-wheeled vehicle riders have become a widespread concern,contributing to urban traffic risks.Currently,significant human and material resources are being allocated to monitor and intercept non-compliant riders to ensure safe driving behavior.To enhance the safety,efficiency,and cost-effectiveness of traffic monitoring,automated detection systems based on image processing algorithms can be employed to identify traffic violations from eye-level video footage.In this study,we propose a robust detection algorithm specifically designed for two-wheeled vehicles,which serves as a fundamental step toward intelligent traffic monitoring.Our approach integrates a novel convolutional and attention mechanism to improve detection accuracy and efficiency.Additionally,we introduce a semi-supervised training strategy that leverages a large number of unlabeled images to enhance the model’s learning capability by extracting valuable background information.This method enables the model to generalize effectively to diverse urban environments and varying lighting conditions.We evaluate our proposed algorithm on a custom-built dataset,and experimental results demonstrate its superior performance,achieving an average precision(AP)of 95%and a recall(R)of 90.6%.Furthermore,the model maintains a computational efficiency of only 25.7 GFLOPs while achieving a high processing speed of 249 FPS,making it highly suitable for deployment on edge devices.Compared to existing detection methods,our approach significantly enhances the accuracy and robustness of two-wheeled vehicle identification while ensuring real-time performance. 展开更多
关键词 Two wheeled vehicles illegal behavior detection object detection semi supervised learning deep learning TRANSFORMER convolutional neural network
在线阅读 下载PDF
Welding anomaly detection based on supervised learning and unsupervised learning 被引量:1
2
作者 Fa Yongzhe Zhang Baoxin +4 位作者 Ya Wei Rook Remco Mahadevan Gautham Tulini Isotta Yu Xinghua 《China Welding》 CAS 2022年第3期24-29,共6页
In order to solve the problem of automatic defect detection and process control in the welding and arc additive process,the paper monitors the current,voltage,audio,and other data during the welding process and extrac... In order to solve the problem of automatic defect detection and process control in the welding and arc additive process,the paper monitors the current,voltage,audio,and other data during the welding process and extracts the minimum value,standard deviation,deviation from the voltage and current data.It extracts spectral features such as root mean square,spectral centroid,and zero-crossing rate from audio data,fuses the features extracted from multiple sensor signals,and establishes multiple machine learning supervised and unsupervised models.They are used to detect abnormalities in the welding process.The experimental results show that the established multiple machine learning models have high accuracy,among which the supervised learning model,the balanced accuracy of Ada boost is 0.957,and the unsupervised learning model Isolation Forest has a balanced accuracy of 0.909. 展开更多
关键词 welding anomaly detection machine learning unsupervised learning supervised learning
在线阅读 下载PDF
Radar emitter signal recognition method based on improved collaborative semi-supervised learning 被引量:2
3
作者 JIN Tao ZHANG Xindong 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2023年第5期1182-1190,共9页
Rare labeled data are difficult to recognize by using conventional methods in the process of radar emitter recogni-tion.To solve this problem,an optimized cooperative semi-supervised learning radar emitter recognition... Rare labeled data are difficult to recognize by using conventional methods in the process of radar emitter recogni-tion.To solve this problem,an optimized cooperative semi-supervised learning radar emitter recognition method based on a small amount of labeled data is developed.First,a small amount of labeled data are randomly sampled by using the bootstrap method,loss functions for three common deep learning net-works are improved,the uniform distribution and cross-entropy function are combined to reduce the overconfidence of softmax classification.Subsequently,the dataset obtained after sam-pling is adopted to train three improved networks so as to build the initial model.In addition,the unlabeled data are preliminarily screened through dynamic time warping(DTW)and then input into the initial model trained previously for judgment.If the judg-ment results of two or more networks are consistent,the unla-beled data are labeled and put into the labeled data set.Lastly,the three network models are input into the labeled dataset for training,and the final model is built.As revealed by the simula-tion results,the semi-supervised learning method adopted in this paper is capable of exploiting a small amount of labeled data and basically achieving the accuracy of labeled data recognition. 展开更多
关键词 emitter signal identification time series BOOTSTRAP semi supervised learning cross entropy function homogeniza-tion dynamic time warping(DTW)
在线阅读 下载PDF
Supervised learning with probability interpretation in airfoil transition judgment 被引量:2
4
作者 Binbin WEI Yongwei GAO +1 位作者 Dong LI Lei DENG 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2023年第1期91-104,共14页
Transition prediction has always been a frontier issue in the field of aerodynamics.A supervised learning model with probability interpretation for transition judgment based on experimental data was developed in this ... Transition prediction has always been a frontier issue in the field of aerodynamics.A supervised learning model with probability interpretation for transition judgment based on experimental data was developed in this paper.It solved the shortcomings of the point detection method in the experiment,that which was often only one transition point could be obtained,and comparison of multi-point data was necessary.First,the Variable-Interval Time Average(VITA)method was used to transform the fluctuating pressure signal measured on the airfoil surface into a sequence of states which was described by Markov chain model.Second,a feature vector consisting of one-step transition matrix and its stationary distribution was extracted.Then,the Hidden Markov Model(HMM)was used to pre-classify the feature vectors marked using the traditional Root Mean Square(RMS)criteria.Finally,a classification model with probability interpretation was established,and the cross-validation method was used for model validation.The research results show that the developed model is effective and reliable,and it has strong Reynolds number generalization ability.The developed model was theoretically analyzed in depth,and the effect of parameters on the model was studied in detail.Compared with the traditional RMS criterion,a reasonable transition zone can be obtained using the developed classification model.In addition,the developed model does not require comparison of multi-point data.The developed supervised learning model provides new ideas for the transition detection in flight experiments and other experiments. 展开更多
关键词 Classification model Hidden Markov model Markov chain model supervised learning Transition judgment
原文传递
Physics-constrained indirect supervised learning 被引量:2
5
作者 Yuntian Chen Dongxiao Zhang 《Theoretical & Applied Mechanics Letters》 CAS CSCD 2020年第3期155-160,共6页
This study proposes a supervised learning method that does not rely on labels.We use variables associated with the label as indirect labels,and construct an indirect physics-constrained loss based on the physical mech... This study proposes a supervised learning method that does not rely on labels.We use variables associated with the label as indirect labels,and construct an indirect physics-constrained loss based on the physical mechanism to train the model.In the training process,the model prediction is mapped to the space of value that conforms to the physical mechanism through the projection matrix,and then the model is trained based on the indirect labels.The final prediction result of the model conforms to the physical mechanism between indirect label and label,and also meets the constraints of the indirect label.The present study also develops projection matrix normalization and prediction covariance analysis to ensure that the model can be fully trained.Finally,the effect of the physics-constrained indirect supervised learning is verified based on a well log generation problem. 展开更多
关键词 supervised learning Indirect label Physics constrained Physics informed Well logs
在线阅读 下载PDF
Lexicalized Dependency Paths Based Supervised Learning for Relation Extraction 被引量:2
6
作者 Huiyu Sun Ralph Grishman 《Computer Systems Science & Engineering》 SCIE EI 2022年第12期861-870,共10页
Log-linear models and more recently neural network models used forsupervised relation extraction requires substantial amounts of training data andtime, limiting the portability to new relations and domains. To this en... Log-linear models and more recently neural network models used forsupervised relation extraction requires substantial amounts of training data andtime, limiting the portability to new relations and domains. To this end, we propose a training representation based on the dependency paths between entities in adependency tree which we call lexicalized dependency paths (LDPs). We showthat this representation is fast, efficient and transparent. We further propose representations utilizing entity types and its subtypes to refine our model and alleviatethe data sparsity problem. We apply lexicalized dependency paths to supervisedlearning using the ACE corpus and show that it can achieve similar performancelevel to other state-of-the-art methods and even surpass them on severalcategories. 展开更多
关键词 Relation extraction dependency paths lexicalized dependency paths supervised learning rule-based models
在线阅读 下载PDF
EEG classification based on probabilistic neural network with supervised learning in brain computer interface 被引量:1
7
作者 吴婷 Yan Guozheng +1 位作者 Yang Banghua Sun Hong 《High Technology Letters》 EI CAS 2009年第4期384-387,共4页
Aiming at the topic of electroencephalogram (EEG) pattern recognition in brain computer interface (BCI), a classification method based on probabilistic neural network (PNN) with supervised learning is presented ... Aiming at the topic of electroencephalogram (EEG) pattern recognition in brain computer interface (BCI), a classification method based on probabilistic neural network (PNN) with supervised learning is presented in this paper. It applies the recognition rate of training samples to the learning progress of network parameters. The learning vector quantization is employed to group training samples and the Genetic algorithm (GA) is used for training the network' s smoothing parameters and hidden central vector for detemlining hidden neurons. Utilizing the standard dataset I (a) of BCI Competition 2003 and comparing with other classification methods, the experiment results show that the best performance of pattern recognition Js got in this way, and the classification accuracy can reach to 93.8%, which improves over 5% compared with the best result (88.7 % ) of the competition. This technology provides an effective way to EEG classification in practical system of BCI. 展开更多
关键词 Probabilistic neural network (PNN) supervised learning brain computer interface (BCI) electroencephalogram (EEG)
在线阅读 下载PDF
Instance reduction for supervised learning using input-output clustering method
8
作者 YODJAIPHET Anusorn THEERA-UMPON Nipon AUEPHANWIRIYAKUL Sansanee 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第12期4740-4748,共9页
A method that applies clustering technique to reduce the number of samples of large data sets using input-output clustering is proposed.The proposed method clusters the output data into groups and clusters the input d... A method that applies clustering technique to reduce the number of samples of large data sets using input-output clustering is proposed.The proposed method clusters the output data into groups and clusters the input data in accordance with the groups of output data.Then,a set of prototypes are selected from the clustered input data.The inessential data can be ultimately discarded from the data set.The proposed method can reduce the effect from outliers because only the prototypes are used.This method is applied to reduce the data set in regression problems.Two standard synthetic data sets and three standard real-world data sets are used for evaluation.The root-mean-square errors are compared from support vector regression models trained with the original data sets and the corresponding instance-reduced data sets.From the experiments,the proposed method provides good results on the reduction and the reconstruction of the standard synthetic and real-world data sets.The numbers of instances of the synthetic data sets are decreased by 25%-69%.The reduction rates for the real-world data sets of the automobile miles per gallon and the 1990 census in CA are 46% and 57%,respectively.The reduction rate of 96% is very good for the electrocardiogram(ECG) data set because of the redundant and periodic nature of ECG signals.For all of the data sets,the regression results are similar to those from the corresponding original data sets.Therefore,the regression performance of the proposed method is good while only a fraction of the data is needed in the training process. 展开更多
关键词 instance reduction input-output clustering fuzzy c-means clustering support vector regression supervised learning
在线阅读 下载PDF
New supervised learning classifiers for structural damage diagnosis using time series features from a new feature extraction technique
9
作者 Masoud Haghani Chegeni Mohammad Kazem Sharbatdar +1 位作者 Reza Mahjoub Mahdi Raftari 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2022年第1期169-191,共23页
The motivation for this article is to propose new damage classifiers based on a supervised learning problem for locating and quantifying damage.A new feature extraction approach using time series analysis is introduce... The motivation for this article is to propose new damage classifiers based on a supervised learning problem for locating and quantifying damage.A new feature extraction approach using time series analysis is introduced to extract damage-sensitive features from auto-regressive models.This approach sets out to improve current feature extraction techniques in the context of time series modeling.The coefficients and residuals of the AR model obtained from the proposed approach are selected as the main features and are applied to the proposed supervised learning classifiers that are categorized as coefficient-based and residual-based classifiers.These classifiers compute the relative errors in the extracted features between the undamaged and damaged states.Eventually,the abilities of the proposed methods to localize and quantify single and multiple damage scenarios are verified by applying experimental data for a laboratory frame and a four-story steel structure.Comparative analyses are performed to validate the superiority of the proposed methods over some existing techniques.Results show that the proposed classifiers,with the aid of extracted features from the proposed feature extraction approach,are able to locate and quantify damage;however,the residual-based classifiers yield better results than the coefficient-based classifiers.Moreover,these methods are superior to some classical techniques. 展开更多
关键词 structural damage diagnosis statistical pattern recognition feature extraction time series analysis supervised learning CLASSIFICATION
在线阅读 下载PDF
Prediction of Extremist Behaviour and Suicide Bombing from Terrorism Contents Using Supervised Learning
10
作者 Nasir Mahmood Muhammad Usman Ghani Khan 《Computers, Materials & Continua》 SCIE EI 2022年第3期4411-4428,共18页
This study proposes an architecture for the prediction of extremist human behaviour from projected suicide bombings.By linking‘dots’of police data comprising scattered information of people,groups,logistics,location... This study proposes an architecture for the prediction of extremist human behaviour from projected suicide bombings.By linking‘dots’of police data comprising scattered information of people,groups,logistics,locations,communication,and spatiotemporal characters on different social media groups,the proposed architecture will spawn beneficial information.This useful information will,in turn,help the police both in predicting potential terrorist events and in investigating previous events.Furthermore,this architecture will aid in the identification of criminals and their associates and handlers.Terrorism is psychological warfare,which,in the broadest sense,can be defined as the utilisation of deliberate violence for economic,political or religious purposes.In this study,a supervised learning-based approach was adopted to develop the proposed architecture.The dataset was prepared from the suicide bomb blast data of Pakistan obtained from the South Asia Terrorism Portal(SATP).As the proposed architecture was simulated,the supervised learning-based classifiers na飗e Bayes and Hoeffding Tree reached 72.17%accuracy.One of the additional benefits this study offers is the ability to predict the target audience of potential suicide bomb blasts,which may be used to eliminate future threats or,at least,minimise the number of casualties and other property losses. 展开更多
关键词 EXTREMISM TERRORISM suicide bombing crime prediction pattern recognition machine learning supervised learning
在线阅读 下载PDF
CoLM^(2)S:Contrastive self‐supervised learning on attributed multiplex graph network with multi‐scale information
11
作者 Beibei Han Yingmei Wei +1 位作者 Qingyong Wang Shanshan Wan 《CAAI Transactions on Intelligence Technology》 SCIE EI 2023年第4期1464-1479,共16页
Contrastive self‐supervised representation learning on attributed graph networks with Graph Neural Networks has attracted considerable research interest recently.However,there are still two challenges.First,most of t... Contrastive self‐supervised representation learning on attributed graph networks with Graph Neural Networks has attracted considerable research interest recently.However,there are still two challenges.First,most of the real‐word system are multiple relations,where entities are linked by different types of relations,and each relation is a view of the graph network.Second,the rich multi‐scale information(structure‐level and feature‐level)of the graph network can be seen as self‐supervised signals,which are not fully exploited.A novel contrastive self‐supervised representation learning framework on attributed multiplex graph networks with multi‐scale(named CoLM^(2)S)information is presented in this study.It mainly contains two components:intra‐relation contrast learning and interrelation contrastive learning.Specifically,the contrastive self‐supervised representation learning framework on attributed single‐layer graph networks with multi‐scale information(CoLMS)framework with the graph convolutional network as encoder to capture the intra‐relation information with multi‐scale structure‐level and feature‐level selfsupervised signals is introduced first.The structure‐level information includes the edge structure and sub‐graph structure,and the feature‐level information represents the output of different graph convolutional layer.Second,according to the consensus assumption among inter‐relations,the CoLM^(2)S framework is proposed to jointly learn various graph relations in attributed multiplex graph network to achieve global consensus node embedding.The proposed method can fully distil the graph information.Extensive experiments on unsupervised node clustering and graph visualisation tasks demonstrate the effectiveness of our methods,and it outperforms existing competitive baselines. 展开更多
关键词 attributed multiplex graph network contrastive self‐supervised learning graph representation learning multiscale information
在线阅读 下载PDF
Supervised Learning Algorithm on Unstructured Documents for the Classification of Job Offers: Case of Cameroun
12
作者 Fritz Sosso Makembe Roger Atsa Etoundi Hippolyte Tapamo 《Journal of Computer and Communications》 2023年第2期75-88,共14页
Nowadays, in data science, supervised learning algorithms are frequently used to perform text classification. However, African textual data, in general, have been studied very little using these methods. This article ... Nowadays, in data science, supervised learning algorithms are frequently used to perform text classification. However, African textual data, in general, have been studied very little using these methods. This article notes the particularity of the data and measures the level of precision of predictions of naive Bayes algorithms, decision tree, and SVM (Support Vector Machine) on a corpus of computer jobs taken on the internet. This is due to the data imbalance problem in machine learning. However, this problem essentially focuses on the distribution of the number of documents in each class or subclass. Here, we delve deeper into the problem to the word count distribution in a set of documents. The results are compared with those obtained on a set of French IT offers. It appears that the precision of the classification varies between 88% and 90% for French offers against 67%, at most, for Cameroonian offers. The contribution of this study is twofold. Indeed, it clearly shows that, in a similar job category, job offers on the internet in Cameroon are more unstructured compared to those available in France, for example. Moreover, it makes it possible to emit a strong hypothesis according to which sets of texts having a symmetrical distribution of the number of words obtain better results with supervised learning algorithms. 展开更多
关键词 Job Offer Underemployment Text Classification Imbalanced Data Symmetric Word Distribution supervised learning
在线阅读 下载PDF
ICA-Net:improving class activation for weakly supervised semantic segmentation via joint contrastive and simulation learning
13
作者 YE Zhuang LIU Ruyu SUN Bo 《Optoelectronics Letters》 2025年第3期188-192,共5页
In the field of optoelectronics,certain types of data may be difficult to accurately annotate,such as high-resolution optoelectronic imaging or imaging in certain special spectral ranges.Weakly supervised learning can... In the field of optoelectronics,certain types of data may be difficult to accurately annotate,such as high-resolution optoelectronic imaging or imaging in certain special spectral ranges.Weakly supervised learning can provide a more reliable approach in these situations.Current popular approaches mainly adopt the classification-based class activation maps(CAM)as initial pseudo labels to solve the task. 展开更多
关键词 high resolution imaging supervised learning class activation maps joint contrastive simulation learning special spectral ranges weakly supervised learning OPTOELECTRONICS
原文传递
Methodology for Detecting Non-Technical Energy Losses Using an Ensemble of Machine Learning Algorithms
14
作者 Irbek Morgoev Roman Klyuev Angelika Morgoeva 《Computer Modeling in Engineering & Sciences》 2025年第5期1381-1399,共19页
Non-technical losses(NTL)of electric power are a serious problem for electric distribution companies.The solution determines the cost,stability,reliability,and quality of the supplied electricity.The widespread use of... Non-technical losses(NTL)of electric power are a serious problem for electric distribution companies.The solution determines the cost,stability,reliability,and quality of the supplied electricity.The widespread use of advanced metering infrastructure(AMI)and Smart Grid allows all participants in the distribution grid to store and track electricity consumption.During the research,a machine learning model is developed that allows analyzing and predicting the probability of NTL for each consumer of the distribution grid based on daily electricity consumption readings.This model is an ensemble meta-algorithm(stacking)that generalizes the algorithms of random forest,LightGBM,and a homogeneous ensemble of artificial neural networks.The best accuracy of the proposed meta-algorithm in comparison to basic classifiers is experimentally confirmed on the test sample.Such a model,due to good accuracy indicators(ROC-AUC-0.88),can be used as a methodological basis for a decision support system,the purpose of which is to form a sample of suspected NTL sources.The use of such a sample will allow the top management of electric distribution companies to increase the efficiency of raids by performers,making them targeted and accurate,which should contribute to the fight against NTL and the sustainable development of the electric power industry. 展开更多
关键词 Non-technical losses smart grid machine learning electricity theft FRAUD ensemble algorithm hybrid method forecasting classification supervised learning
在线阅读 下载PDF
Adaptive Marine Predator Optimization Algorithm(AOMA)-Deep Supervised Learning Classification(DSLC)based IDS framework for MANET security
15
作者 M.Sahaya Sheela A.Gnana Soundari +4 位作者 Aditya Mudigonda C.Kalpana K.Suresh K.Somasundaram Yousef Farhaoui 《Intelligent and Converged Networks》 EI 2024年第1期1-18,共18页
Due to the dynamic nature and node mobility,assuring the security of Mobile Ad-hoc Networks(MANET)is one of the difficult and challenging tasks today.In MANET,the Intrusion Detection System(IDS)is crucial because it a... Due to the dynamic nature and node mobility,assuring the security of Mobile Ad-hoc Networks(MANET)is one of the difficult and challenging tasks today.In MANET,the Intrusion Detection System(IDS)is crucial because it aids in the identification and detection of malicious attacks that impair the network’s regular operation.Different machine learning and deep learning methodologies are used for this purpose in the conventional works to ensure increased security of MANET.However,it still has significant flaws,including increased algorithmic complexity,lower system performance,and a higher rate of misclassification.Therefore,the goal of this paper is to create an intelligent IDS framework for significantly enhancing MANET security through the use of deep learning models.Here,the min-max normalization model is applied to preprocess the given cyber-attack datasets for normalizing the attributes or fields,which increases the overall intrusion detection performance of classifier.Then,a novel Adaptive Marine Predator Optimization Algorithm(AOMA)is implemented to choose the optimal features for improving the speed and intrusion detection performance of classifier.Moreover,the Deep Supervise Learning Classification(DSLC)mechanism is utilized to predict and categorize the type of intrusion based on proper learning and training operations.During evaluation,the performance and results of the proposed AOMA-DSLC based IDS methodology is validated and compared using various performance measures and benchmarking datasets. 展开更多
关键词 Intrusion Detection System(IDS) Security Mobile Ad-hoc Network(MANET) min-max normalization Adaptive Marine Predator Optimization Algorithm(AOMA) Deep Supervise learning Classification(DSLC)
原文传递
Machine learning applications in stroke medicine:advancements,challenges,and future prospectives 被引量:12
16
作者 Mario Daidone Sergio Ferrantelli Antonino Tuttolomondo 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第4期769-773,共5页
Stroke is a leading cause of disability and mortality worldwide,necessitating the development of advanced technologies to improve its diagnosis,treatment,and patient outcomes.In recent years,machine learning technique... Stroke is a leading cause of disability and mortality worldwide,necessitating the development of advanced technologies to improve its diagnosis,treatment,and patient outcomes.In recent years,machine learning techniques have emerged as promising tools in stroke medicine,enabling efficient analysis of large-scale datasets and facilitating personalized and precision medicine approaches.This abstract provides a comprehensive overview of machine learning’s applications,challenges,and future directions in stroke medicine.Recently introduced machine learning algorithms have been extensively employed in all the fields of stroke medicine.Machine learning models have demonstrated remarkable accuracy in imaging analysis,diagnosing stroke subtypes,risk stratifications,guiding medical treatment,and predicting patient prognosis.Despite the tremendous potential of machine learning in stroke medicine,several challenges must be addressed.These include the need for standardized and interoperable data collection,robust model validation and generalization,and the ethical considerations surrounding privacy and bias.In addition,integrating machine learning models into clinical workflows and establishing regulatory frameworks are critical for ensuring their widespread adoption and impact in routine stroke care.Machine learning promises to revolutionize stroke medicine by enabling precise diagnosis,tailored treatment selection,and improved prognostication.Continued research and collaboration among clinicians,researchers,and technologists are essential for overcoming challenges and realizing the full potential of machine learning in stroke care,ultimately leading to enhanced patient outcomes and quality of life.This review aims to summarize all the current implications of machine learning in stroke diagnosis,treatment,and prognostic evaluation.At the same time,another purpose of this paper is to explore all the future perspectives these techniques can provide in combating this disabling disease. 展开更多
关键词 cerebrovascular disease deep learning machine learning reinforcement learning STROKE stroke therapy supervised learning unsupervised learning
暂未订购
Pre-training with asynchronous supervised learning for reinforcement learning based autonomous driving 被引量:5
17
作者 Yunpeng WANG Kunxian ZHENG +2 位作者 Daxin TIAN Xuting DUAN Jianshan ZHOU 《Frontiers of Information Technology & Electronic Engineering》 SCIE EI CSCD 2021年第5期673-686,共14页
Rule-based autonomous driving systems may suffer from increased complexity with large-scale intercoupled rules,so many researchers are exploring learning-based approaches.Reinforcement learning(RL)has been applied in ... Rule-based autonomous driving systems may suffer from increased complexity with large-scale intercoupled rules,so many researchers are exploring learning-based approaches.Reinforcement learning(RL)has been applied in designing autonomous driving systems because of its outstanding performance on a wide variety of sequential control problems.However,poor initial performance is a major challenge to the practical implementation of an RL-based autonomous driving system.RL training requires extensive training data before the model achieves reasonable performance,making an RL-based model inapplicable in a real-world setting,particularly when data are expensive.We propose an asynchronous supervised learning(ASL)method for the RL-based end-to-end autonomous driving model to address the problem of poor initial performance before training this RL-based model in real-world settings.Specifically,prior knowledge is introduced in the ASL pre-training stage by asynchronously executing multiple supervised learning processes in parallel,on multiple driving demonstration data sets.After pre-training,the model is deployed on a real vehicle to be further trained by RL to adapt to the real environment and continuously break the performance limit.The presented pre-training method is evaluated on the race car simulator,TORCS(The Open Racing Car Simulator),to verify that it can be sufficiently reliable in improving the initial performance and convergence speed of an end-to-end autonomous driving model in the RL training stage.In addition,a real-vehicle verification system is built to verify the feasibility of the proposed pre-training method in a real-vehicle deployment.Simulations results show that using some demonstrations during a supervised pre-training stage allows significant improvements in initial performance and convergence speed in the RL training stage. 展开更多
关键词 SELF-DRIVING Autonomous vehicles Reinforcement learning supervised learning
原文传递
A Hybrid Learning Algorithm for Breast Cancer Diagnosis
18
作者 Alio Boubacar Goga Harouna Naroua Chaibou Kadri 《Journal of Intelligent Learning Systems and Applications》 2024年第3期262-273,共12页
In many fields, particularly that of health, the diagnosis of diseases is a very difficult task to carry out. Therefore, early detection of diseases using artificial intelligence tools can be of paramount importance i... In many fields, particularly that of health, the diagnosis of diseases is a very difficult task to carry out. Therefore, early detection of diseases using artificial intelligence tools can be of paramount importance in the medical field. In this study, we proposed an intelligent system capable of performing diagnoses for radiologists. The support system is designed to evaluate mammographic images, thereby classifying normal and abnormal patients. The proposed method (DiagBC for Breast Cancer Diagnosis) combines two (2) intelligent unsupervised learning algorithms (the C-Means clustering algorithm and the Gaussian Mixture Model) for the segmentation of medical images and an algorithm for supervised learning (a modified DenseNet) for the diagnosis of breast images. Ultimately, a prototype of the proposed system was implemented for the Magori Polyclinic in Niamey (Niger) making it possible to diagnose (or classify) breast cancer into two (2) classes: the normal class and the abnormal class. 展开更多
关键词 Image Diagnosis SEGMENTATION DenseNet Unsupervised learning supervised learning Breast Cancer
暂未订购
PCA-FA:Applying Supervised Learning to Analyze Gene Expression Data
19
作者 翁时锋 张长水 张学工 《Tsinghua Science and Technology》 SCIE EI CAS 2004年第4期428-434,共7页
In previous gene expression data analyses, supervised learning has mainly focused on the clas-sification of attribute data, such as the different experimental conditions, different known classes of the same tumor and ... In previous gene expression data analyses, supervised learning has mainly focused on the clas-sification of attribute data, such as the different experimental conditions, different known classes of the same tumor and sex. However, supervised learning classification is not suitable for interval-scaled attributes, such as age and survival outcome of cancer patients. For this problem, this paper proposed a new method by combining two well-known methods: principal component analysis (PCA) and Fisher analysis (FA). The method, PCA-FA, realizes supervised learning with two types of attributes (nominal attributes and interval-scaled attributes). The fuzzy FA was introduced to model the interval-scaled attributes. In this paper, an ap-proximate linear relationship between gene expression data of lung adenocarcinoma patients and survival outcome is successfully revealed by PCA-TA. 展开更多
关键词 supervised learning gene expression data principal component analysis Fisher analysis
原文传递
Lesion region segmentation via weakly supervised learning
20
作者 Ran Yi Rui Zeng +3 位作者 Yang Weng Minjing Yu Yu-Kun Lai Yong-Jin Liu 《Quantitative Biology》 CSCD 2022年第3期239-252,共14页
Background:Image-based automatic diagnosis of field diseases can help increase crop yields and is of great importance.However,crop lesion regions tend to be scattered and of varying sizes,this along with substantial i... Background:Image-based automatic diagnosis of field diseases can help increase crop yields and is of great importance.However,crop lesion regions tend to be scattered and of varying sizes,this along with substantial intraclass variation and small inter-class variation makes segmentation difficult.Methods:We propose a novel end-to-end system that only requires weak supervision of image-level labels for lesion region segmentation.First,a two-branch network is designed for joint disease classification and seed region generation.The generated seed regions are then used as input to the next segmentation stage where we design to use an encoder-decoder network.Different from previous works that use an encoder in the segmentation network,the encoder-decoder network is critical for our system to successfully segment images with small and scattered regions,which is the major challenge in image-based diagnosis of field diseases.We further propose a novel weakly supervised training strategy for the encoder-decoder semantic segmentation network,making use of the extracted seed regions.Results:Experimental results show that our system achieves better lesion region segmentation results than state of the arts.In addition to crop images,our method is also applicable to general scattered object segmentation.We demonstrate this by extending our framework to work on the PASCAL VOC dataset,which achieves comparable performance with the state-of-the-art DSRG(deep seeded region growing)method.Conclusion:Our method not only outperforms state-of-the-art semantic segmentation methods by a large margin for the lesion segmentation task,but also shows its capability to perform well on more general tasks. 展开更多
关键词 weakly supervised learning lesion segmentation disease detection semantic segmentation AGRICULTURE
原文传递
上一页 1 2 7 下一页 到第
使用帮助 返回顶部