The vibration response and noise caused by subway trains can affect the safety and comfort of superstructures.To study the dynamic response characteristics of subway stations and superstructures under train loads with...The vibration response and noise caused by subway trains can affect the safety and comfort of superstructures.To study the dynamic response characteristics of subway stations and superstructures under train loads with a hard combination,a numerical model is developed in this study.The indoor model test verified the accuracy of the numerical model.The influence laws of different hard combinations,train operating speeds and modes were studied and evaluated accordingly.The results show that the frequency corresponding to the peak vibration acceleration level of each floor of the superstructure property is concentrated at 10–20 Hz.The vibration response decreases in the high-frequency parts and increases in the lowfrequency parts with increasing distance from the source.Furthermore,the factors,such as train operating speed,operating mode,and hard combination type,will affect the vibration of the superstructure.The vibration response under the reversible operation of the train is greater than that of the unidirectional operation.The operating speed of the train is proportional to its vibration response.The vibration amplification area appears between the middle and the top of the superstructure at a higher train speed.Its vibration acceleration level will exceed the limit value of relevant regulations,and vibration-damping measures are required.Within the scope of application,this study provides some suggestions for constructing subway stations and superstructures.展开更多
Carbon materials are a key component in energy storage and conversion devices and their microstructure plays a crucial role in determining device performance.However,traditional carbon materials are unable to meet the...Carbon materials are a key component in energy storage and conversion devices and their microstructure plays a crucial role in determining device performance.However,traditional carbon materials are unable to meet the requirements for applications in emerging fields such as renewable energy and electric vehicles due to limitations including a disordered structure and uncontrolled defects.With an aim of realizing devisable structures,adjustable functions,and performance breakthroughs,superstructured carbons is proposed and represent a category of carbon-based materials,characterized by precisely-built pores,networks,and interfaces.Superstructured carbons can overcome the limitations of traditional carbon materials and improve the performance of energy storage and conversion devices.We review the structure-activity relationships of superstructured carbons and recent research advances from three aspects including a precisely customized pore structure,a dense carbon network framework,and a multi-component highly coupled interface between the different components.Finally,we provide an outlook on the future development of and practical challenges in energy storage and conversion devices.展开更多
Improving the surface atoms utilization efficiency of catalysts is extremely important for large-scale H_(2)production by electrochemical water splitting,but it remains a great challenge.Herein,we reported two kinds o...Improving the surface atoms utilization efficiency of catalysts is extremely important for large-scale H_(2)production by electrochemical water splitting,but it remains a great challenge.Herein,we reported two kinds of Mo O_(3)-polyoxometalate hybrid nanobelt superstructures(MoO_(3)-POM HNSs,POM=PW_(12)O_(40)and Si W_(12)O_(40))using a simple hydrothermal method.Such superstructure with highly uniform nanoparticles as building blocks can expose more surface atoms and emanate increased specific surface area.The incorporated POMs generated abundant oxygen vacancies,improved the electronic mobility,and modulated the surface electronic structure of MoO_(3),allowing to optimize the H^(*)adsorption/desorption and dehydrogenation kinetics of catalyst.Notably,the as-prepared MoO_(3)-PW_(12)O_(40)HNSs electrodes not only displayed the low overpotentials of 108 mV at 10 mA/cm^(2)current density in 0.5 mol/L H_(2)SO_(4)electrolyte but also displayed excellent long-term stability.The hydrogen evolution reaction(HER)performance of MoO_(3)-POM superstructures is significantly better than that of corresponding bulk materials MoO_(3)@PW_(12)O_(40)and Mo O_(3)@Si W_(12)O_(40),and the overpotentials are about 8.3 and 4.9 times lower than that of single Mo O_(3).This work opens an avenue for designing highly surface-exposed catalysts for electrocatalytic H_(2)production and other electrochemical applications.展开更多
The rise of Zn-ion hybrid capacitor(ZHC)has imposed high requirements on carbon cathodes,including reasonable configuration,high specific surface area,multiscale pores,and abundant defects.To achieve this objective,a ...The rise of Zn-ion hybrid capacitor(ZHC)has imposed high requirements on carbon cathodes,including reasonable configuration,high specific surface area,multiscale pores,and abundant defects.To achieve this objective,a template-oriented strategy coupled with multi-heteroatom modification is proposed to precisely synthesize a three-dimensional boron/nitrogen-rich carbon nanoflake-interconnected micro/nano superstructure,referred to as BNPC.The hierarchically porous framework of BNPC shares short channels for fast Zn2+transport,increased adsorption-site accessibility,and structural robustness.Additionally,the boron/nitrogen incorporation effect significantly augments Zn2+adsorption capability and more distinctive pseudocapacitive nature,notably enhancing Zn-ion storage and transmission kinetics by performing the dual-storage mechanism of the electric double-layer capacitance and Faradaic redox process in BNPC cathode.These merits contribute to a high capacity(143.7 mAh g^(-1)at 0.2 A g^(-1))and excellent rate capability(84.5 mAh g^(-1)at 30 A g^(-1))of BNPC-based aqueous ZHC,and the ZHC still shows an ultrahigh capacity of 108.5 mAh g^(-1)even under a high BNPC mass loading of 12 mg cm^(-2).More critically,the BNPC-based flexible device also sustains notable cyclability over 30,000 cycles and low-rate self-discharge of 2.13 mV h-1 along with a preeminent energy output of 117.15 Wh kg^(-1)at a power density of 163.15Wkg^(-1),favoring a creditable applicability in modern electronics.In/ex-situ analysis and theoretical calculations elaborately elucidate the enhanced charge storage mechanism in depth.The findings offer a promising platform for the development of advanced carbon cathodes and corresponding electrochemical devices.展开更多
Designing carbon materials with ideal stable hierarchical porous structures and fiexible functional properties for efficient and sustainable Zn2+ion storage still faces great challenges. Herein, the threedimensional c...Designing carbon materials with ideal stable hierarchical porous structures and fiexible functional properties for efficient and sustainable Zn2+ion storage still faces great challenges. Herein, the threedimensional carbon superstructures with spherical nanofiower-like structures were tailor-made by the self-assembly strategy. Specifically, organic polymer units(i.e., organic motifs) were formed by tetrachloro-p-benzoquinone(TBQ) and 2,6-diamino anthraquinone(DAQ) via a noble-metal-free catalyzed coupling reaction. Subsequently, the organic motifs assemble into spherical nanofiower-like superstructures induced by intermolecular hydrogen bonding and aromatic π-π stacking interactions. Welldesigned carbon superstructures can provide a stable backbone that effectively blocks structural stacking and collapse. Meanwhile, the hierarchical porous structures in 3D carbon superstructures provide continuous charge transport pathways to greatly shorten the ion diffusion distance, and as a result, the carbon superstructures-based zinc-ion hybrid capacitors(ZIHCs) provide a capacity of 245 m Ah/g at 0.5 A/g, a high energy density of 152 Wh/kg and an ultra-long life of 300,000 cycles at 20 A/g. The excellent electrochemical performance is also attributed to the corresponding charge storage mechanism, i.e., the alternate binding of Zn^(2+)/CF_(3)SO_(3)^(-) ions. Besides, the high-level N/O motifs improve the surface properties of the carbon superstructures and reduce the ion migration barriers for more efficient charge storage. This paper provides insights into the design of advanced carbon-based cathodes and presents a fundamental understanding of their charge storage mechanisms.展开更多
Pyrrhotite naturally occurs in various superstructures including magnetic(4C)and non-magnetic(5C,6C)types,each with distinct physicochemical properties and flotation behaviors.Challenges in accurately identifying and ...Pyrrhotite naturally occurs in various superstructures including magnetic(4C)and non-magnetic(5C,6C)types,each with distinct physicochemical properties and flotation behaviors.Challenges in accurately identifying and quantifying these superstructures hinder the optimization of pyrrhotite depression in flotation processes.To address this critical issue,synchrotron X-ray powder diffraction(S-XRPD)with Rietveld refinement was employed to quantify the distribution of superstructures in the feed and flotation concentrates of a copper–gold ore.To elucidate the mechanisms influencing depression,density functional theory(DFT)calculations were conducted to explore the electronic structures and surface reactivity of the pyrrhotite superstructures toward the adsorption of water,oxygen and hydroxyl ions(OH-)as dominant species present in the flotation process.S-XRPD analysis revealed that flotation recovery rates of pyrrhotite followed the order of 4C<6C<5C.DFT calculations indicated that the Fe 3d and S 3p orbital band centers exhibited a similar trend relative to the Fermi level with 4C being the closest.The Fe3d band center suggested that the 4C structure possessed a more reactive surface toward the oxygen reduction reaction,promoting the formation of hydrophilic Fe-OH sites.The S 3p band center order also implied that xanthate on the non-magnetic 5C and 6C surfaces could oxidize to dixanthogen,increasing hydrophobicity and floatability,while 4C formed less hydrophobic metal-xanthate complexes.Adsorption energy and charge transfer analyses of water,hydroxyl ions and molecular oxygen further supported the high reactivity and hydrophilic nature of 4C pyrrhotite.The strong bonding with hydroxyl ions indicated enhanced surface passivation by hydrophilic Fe–OOH complexes,aligning with the experimentally observed flotation order(4C<6C<5C).These findings provide a compelling correlation between experimental flotation results and electronic structure calculations,delivering crucial insights for optimizing flotation processes and improving pyrrhotite depression.This breakthrough opens up new opportunities to enhance the efficiency of flotation processes in the mining industry.展开更多
In the realm of the synthesis of heat-integrated distillation configurations,the conventional approach for exploring more heat integration possibilities typically entails the splitting of a single column into a twocol...In the realm of the synthesis of heat-integrated distillation configurations,the conventional approach for exploring more heat integration possibilities typically entails the splitting of a single column into a twocolumn configuration.However,this approach frequently necessitates tedious enumeration procedures,resulting in a considerable computational burden.To surmount this formidable challenge,the present study introduces an innovative remedy:The proposition of a superstructure that encompasses both single-column and multiple two-column configurations.Additionally,a simultaneous optimization algorithm is applied to optimize both the process parameters and heat integration structures of the twocolumn configurations.The effectiveness of this approach is demonstrated through a case study focusing on industrial organosilicon separation.The results underscore that the superstructure methodology not only substantially mitigates computational time compared to exhaustive enumeration but also furnishes solutions that exhibit comparable performance.展开更多
Hydrogen evolution electrocatalysts derived from metal-organic crystalline frameworks can inherit the merits of ordered and adjustable structures with high surface area.In this paper,organic-octamolybdate crystalline ...Hydrogen evolution electrocatalysts derived from metal-organic crystalline frameworks can inherit the merits of ordered and adjustable structures with high surface area.In this paper,organic-octamolybdate crystalline superstructures(OOCS)with a fixed stoichiometric ratio of Mo_(8)(L)_(2) and high Mo content(>40 wt%)were synthesized using flexible ligands with controllable lengths(named as OOCS-1-3).Then,molybdenum carbides coated with carbon layers as electrocatalysts(Mo_(2)C@C-1-3)can be obtained directly from a one-step high-temperature carbonization process using OOCS-1-3 as precursors.As a typical example,Mo_(2)C@C-3 exhibits satisfactory hydrogen evolution activity with a low overpotential of 151 m V(1.0 mol/L KOH)at 10 m A/cm^(2) and stability for 24 h.The electrocatalytic activity is mainly from the synergistic interactions between the carbon layers and molybdenum carbide species.Furthermore,compared with the initial content of C,N,Mo in OOCS and Mo_(2)C@C,the catalytic activity increases with the N amount.This work makes organic-octamolybdate crystalline superstructures used as general precursors to product high Mo content electrocatalysts applied in energy storage and conversion fields.展开更多
Controllable design of the catalytic electrodes with hierarchical superstructures is expected to improve their electrochemical performance.Herein,a self-supported integrated electrode(NiCo-ZLDH/NF)with a unique hierar...Controllable design of the catalytic electrodes with hierarchical superstructures is expected to improve their electrochemical performance.Herein,a self-supported integrated electrode(NiCo-ZLDH/NF)with a unique hierarchical quaternary superstructure was fabricated through a self-sacrificing template strategy from the metal–organic framework(Co-ZIF-67)nanoplate arrays,which features an intriguing well-defined hierarchy when taking the unit cells of the NiCo-based layered double hydroxide(NiCo-LDH)as the primary structure,the ultrathin LDH nanoneedles as the secondary structure,the mesoscale hollow plates of the LDH nanoneedle arrays as the tertiary structure,and the macroscale three-dimensional frames of the plate arrays as the quaternary structure.Notably,the distinctive structure of NiCo-ZLDH/NF can not only accelerate both mass and charge transfer,but also expose plentiful accessible active sites with high intrinsic activity,endowing it with an excellent electrochemical performance for urea oxidation reaction(UOR).Specially,it only required the low potentials of 1.335,1.368 and 1.388 V to deliver the current densities of 10,100 and 200 mA cm^(-2),respectively,much superior to those for typical NiCo-LDH.Employing NiCo-ZLDH/NF as the bifunctional electrode for both anodic UOR and cathodic HER,an energy-saving electrolysis system was further explored which can greatly reduce the needed voltage of 213 mV to deliver the current density of 100 mA cm^(-2),as compared to the conventional water electrolysis system composed of OER.This work manifests that it is prospective to explore the hierarchically nanostructured electrodes and the innovative electrolytic technologies for high-efficiency electrocatalysis.展开更多
Metal oxide mesocrystals are the alignment of metal oxide nanoparticles building blocks into the ordered superstructure,which have potentially tunable optical,electronic,and electrical properties suitable for practica...Metal oxide mesocrystals are the alignment of metal oxide nanoparticles building blocks into the ordered superstructure,which have potentially tunable optical,electronic,and electrical properties suitable for practical applications.Herein,we report an effective method for synthesizing mesocrystal zinc oxide nanorods(ZnONRs).The crystal,surface,and internal structures of the zinc oxide mesocrystals were fully characterized.Mesocrystal zinc oxide nanorods/reduced graphene oxide(ZnONRs/rGO)nanocomposite superstructure were synthesized also using the hydrothermal method.The crystal,surface,chemical,and internal structures of the ZnONRs/rGO nanocomposite superstructure were also fully characterized.The optical absorption coefficient,bandgap energy,band structure,and electrical conductivity of the ZnONRs/rGO nanocomposite superstructure were investigated to understand its optoelectronic and electrical properties.Finally,the photoconductivity of the ZnONRs/rGO nanocomposite superstructure was explored to find the possibilities of using this nanocomposite superstructure for ultraviolet(UV)photodetection applications.Finally,we concluded that the ZnONRs/rGO nanocomposite superstructure has high UV sensitivity and is suitable for UV detector applications.展开更多
The self-assembly of two-dimensional(2D)semiconductor nanosheets into three-dimensional(3D)ordered superstructures represents an ingenious way to avoid aggregation,expose massive available active sites and benefit the...The self-assembly of two-dimensional(2D)semiconductor nanosheets into three-dimensional(3D)ordered superstructures represents an ingenious way to avoid aggregation,expose massive available active sites and benefit the mass transfer,which maximizes the advantages of the 2D nanostructures in photo-catalysis.Herein,a flower-like superstructure of ternary semiconducting boron carbon nitride nanosheets(FS-BCNNSs)was synthesized through the morphology-preserved thermal transformation of a flower-like superstructure of boron-containing metal-organic framework nanosheets(FS-MOFNSs).Taking advantage of this functional superstructure,FS-BCNNSs was employed for the pioneering application in the field of photocatalytic hydrogen peroxide(H_(2)O_(2))production and exhibited excellent photocatalytic performance,yielding an impressive rate of 1415.9μmol g^(−1)h^(−1)for the production of H_(2)O_(2).The results of this work offer not just a promising catalyst for photocatalytic H_(2)O_(2)production but also a facile strategy to fabricate unique superstructures constructed from 2D nanosheets for catalysis,energy conversion,and other related fields.展开更多
基金National Natural Science Foundation of China under Grant No.51578463。
文摘The vibration response and noise caused by subway trains can affect the safety and comfort of superstructures.To study the dynamic response characteristics of subway stations and superstructures under train loads with a hard combination,a numerical model is developed in this study.The indoor model test verified the accuracy of the numerical model.The influence laws of different hard combinations,train operating speeds and modes were studied and evaluated accordingly.The results show that the frequency corresponding to the peak vibration acceleration level of each floor of the superstructure property is concentrated at 10–20 Hz.The vibration response decreases in the high-frequency parts and increases in the lowfrequency parts with increasing distance from the source.Furthermore,the factors,such as train operating speed,operating mode,and hard combination type,will affect the vibration of the superstructure.The vibration response under the reversible operation of the train is greater than that of the unidirectional operation.The operating speed of the train is proportional to its vibration response.The vibration amplification area appears between the middle and the top of the superstructure at a higher train speed.Its vibration acceleration level will exceed the limit value of relevant regulations,and vibration-damping measures are required.Within the scope of application,this study provides some suggestions for constructing subway stations and superstructures.
文摘Carbon materials are a key component in energy storage and conversion devices and their microstructure plays a crucial role in determining device performance.However,traditional carbon materials are unable to meet the requirements for applications in emerging fields such as renewable energy and electric vehicles due to limitations including a disordered structure and uncontrolled defects.With an aim of realizing devisable structures,adjustable functions,and performance breakthroughs,superstructured carbons is proposed and represent a category of carbon-based materials,characterized by precisely-built pores,networks,and interfaces.Superstructured carbons can overcome the limitations of traditional carbon materials and improve the performance of energy storage and conversion devices.We review the structure-activity relationships of superstructured carbons and recent research advances from three aspects including a precisely customized pore structure,a dense carbon network framework,and a multi-component highly coupled interface between the different components.Finally,we provide an outlook on the future development of and practical challenges in energy storage and conversion devices.
基金financially supported by the Program for the Development of Science and Technology of Jilin Province(Nos.YDZJ202201ZYTS313,YDZJ202201ZYTS395,20240402072GH,and 20240101004JJ)the National Natural Science Foundation of China(Nos.22201097 and 52171210)。
文摘Improving the surface atoms utilization efficiency of catalysts is extremely important for large-scale H_(2)production by electrochemical water splitting,but it remains a great challenge.Herein,we reported two kinds of Mo O_(3)-polyoxometalate hybrid nanobelt superstructures(MoO_(3)-POM HNSs,POM=PW_(12)O_(40)and Si W_(12)O_(40))using a simple hydrothermal method.Such superstructure with highly uniform nanoparticles as building blocks can expose more surface atoms and emanate increased specific surface area.The incorporated POMs generated abundant oxygen vacancies,improved the electronic mobility,and modulated the surface electronic structure of MoO_(3),allowing to optimize the H^(*)adsorption/desorption and dehydrogenation kinetics of catalyst.Notably,the as-prepared MoO_(3)-PW_(12)O_(40)HNSs electrodes not only displayed the low overpotentials of 108 mV at 10 mA/cm^(2)current density in 0.5 mol/L H_(2)SO_(4)electrolyte but also displayed excellent long-term stability.The hydrogen evolution reaction(HER)performance of MoO_(3)-POM superstructures is significantly better than that of corresponding bulk materials MoO_(3)@PW_(12)O_(40)and Mo O_(3)@Si W_(12)O_(40),and the overpotentials are about 8.3 and 4.9 times lower than that of single Mo O_(3).This work opens an avenue for designing highly surface-exposed catalysts for electrocatalytic H_(2)production and other electrochemical applications.
基金Natural Science Foundation of Xinjiang Uygur Autonomous Region,Grant/Award Number:2023D01C11National Natural Science Foundation of China,Grant/Award Numbers:22369019,U2003216+2 种基金Special Projects on Regional Collaborative Innovation-SCO Science and Technology Partnership Program,International Science and Technology Cooperation Program,Grant/Award Number:2022E01020Tianshan Talent Training Program,Grant/Award Number:2023TSYCLJ0019National Key Research and Development Program of China,Grant/Award Numbers:2022YFB4101600,2022YFB4101601。
文摘The rise of Zn-ion hybrid capacitor(ZHC)has imposed high requirements on carbon cathodes,including reasonable configuration,high specific surface area,multiscale pores,and abundant defects.To achieve this objective,a template-oriented strategy coupled with multi-heteroatom modification is proposed to precisely synthesize a three-dimensional boron/nitrogen-rich carbon nanoflake-interconnected micro/nano superstructure,referred to as BNPC.The hierarchically porous framework of BNPC shares short channels for fast Zn2+transport,increased adsorption-site accessibility,and structural robustness.Additionally,the boron/nitrogen incorporation effect significantly augments Zn2+adsorption capability and more distinctive pseudocapacitive nature,notably enhancing Zn-ion storage and transmission kinetics by performing the dual-storage mechanism of the electric double-layer capacitance and Faradaic redox process in BNPC cathode.These merits contribute to a high capacity(143.7 mAh g^(-1)at 0.2 A g^(-1))and excellent rate capability(84.5 mAh g^(-1)at 30 A g^(-1))of BNPC-based aqueous ZHC,and the ZHC still shows an ultrahigh capacity of 108.5 mAh g^(-1)even under a high BNPC mass loading of 12 mg cm^(-2).More critically,the BNPC-based flexible device also sustains notable cyclability over 30,000 cycles and low-rate self-discharge of 2.13 mV h-1 along with a preeminent energy output of 117.15 Wh kg^(-1)at a power density of 163.15Wkg^(-1),favoring a creditable applicability in modern electronics.In/ex-situ analysis and theoretical calculations elaborately elucidate the enhanced charge storage mechanism in depth.The findings offer a promising platform for the development of advanced carbon cathodes and corresponding electrochemical devices.
基金financially supported by the National Natural Science Foundation of China (Nos. 22272118, 22172111, 21905207, and 22309134)the Science and Technology Commission of Shanghai Municipality (Nos. 22ZR1464100, 20ZR1460300, and 19DZ2271500)+2 种基金China Postdoctoral Science Foundation (No. 2022M712402), Shanghai Rising-Star Program (No. 23YF1449200)Zhejiang Provincial Science and Technology Project (No. 2022C01182)the Fundamental Research Funds for the Central Universities (Nos. 22120210529 and 2023–3-YB-07)。
文摘Designing carbon materials with ideal stable hierarchical porous structures and fiexible functional properties for efficient and sustainable Zn2+ion storage still faces great challenges. Herein, the threedimensional carbon superstructures with spherical nanofiower-like structures were tailor-made by the self-assembly strategy. Specifically, organic polymer units(i.e., organic motifs) were formed by tetrachloro-p-benzoquinone(TBQ) and 2,6-diamino anthraquinone(DAQ) via a noble-metal-free catalyzed coupling reaction. Subsequently, the organic motifs assemble into spherical nanofiower-like superstructures induced by intermolecular hydrogen bonding and aromatic π-π stacking interactions. Welldesigned carbon superstructures can provide a stable backbone that effectively blocks structural stacking and collapse. Meanwhile, the hierarchical porous structures in 3D carbon superstructures provide continuous charge transport pathways to greatly shorten the ion diffusion distance, and as a result, the carbon superstructures-based zinc-ion hybrid capacitors(ZIHCs) provide a capacity of 245 m Ah/g at 0.5 A/g, a high energy density of 152 Wh/kg and an ultra-long life of 300,000 cycles at 20 A/g. The excellent electrochemical performance is also attributed to the corresponding charge storage mechanism, i.e., the alternate binding of Zn^(2+)/CF_(3)SO_(3)^(-) ions. Besides, the high-level N/O motifs improve the surface properties of the carbon superstructures and reduce the ion migration barriers for more efficient charge storage. This paper provides insights into the design of advanced carbon-based cathodes and presents a fundamental understanding of their charge storage mechanisms.
基金supported by the Australian Research Council Linkage Project(No.LP200200717)co sponsored by Newmont Corporation(United States)and Vega Industries(India)+1 种基金the Powder Diffraction Beamline at the Australia’s Nuclear Science and Technology Organisation(No.PDR19870),Australiathe Centre for Microscopy and Microanalysis at the University of Queensland(No.1366),Australia。
文摘Pyrrhotite naturally occurs in various superstructures including magnetic(4C)and non-magnetic(5C,6C)types,each with distinct physicochemical properties and flotation behaviors.Challenges in accurately identifying and quantifying these superstructures hinder the optimization of pyrrhotite depression in flotation processes.To address this critical issue,synchrotron X-ray powder diffraction(S-XRPD)with Rietveld refinement was employed to quantify the distribution of superstructures in the feed and flotation concentrates of a copper–gold ore.To elucidate the mechanisms influencing depression,density functional theory(DFT)calculations were conducted to explore the electronic structures and surface reactivity of the pyrrhotite superstructures toward the adsorption of water,oxygen and hydroxyl ions(OH-)as dominant species present in the flotation process.S-XRPD analysis revealed that flotation recovery rates of pyrrhotite followed the order of 4C<6C<5C.DFT calculations indicated that the Fe 3d and S 3p orbital band centers exhibited a similar trend relative to the Fermi level with 4C being the closest.The Fe3d band center suggested that the 4C structure possessed a more reactive surface toward the oxygen reduction reaction,promoting the formation of hydrophilic Fe-OH sites.The S 3p band center order also implied that xanthate on the non-magnetic 5C and 6C surfaces could oxidize to dixanthogen,increasing hydrophobicity and floatability,while 4C formed less hydrophobic metal-xanthate complexes.Adsorption energy and charge transfer analyses of water,hydroxyl ions and molecular oxygen further supported the high reactivity and hydrophilic nature of 4C pyrrhotite.The strong bonding with hydroxyl ions indicated enhanced surface passivation by hydrophilic Fe–OOH complexes,aligning with the experimentally observed flotation order(4C<6C<5C).These findings provide a compelling correlation between experimental flotation results and electronic structure calculations,delivering crucial insights for optimizing flotation processes and improving pyrrhotite depression.This breakthrough opens up new opportunities to enhance the efficiency of flotation processes in the mining industry.
文摘In the realm of the synthesis of heat-integrated distillation configurations,the conventional approach for exploring more heat integration possibilities typically entails the splitting of a single column into a twocolumn configuration.However,this approach frequently necessitates tedious enumeration procedures,resulting in a considerable computational burden.To surmount this formidable challenge,the present study introduces an innovative remedy:The proposition of a superstructure that encompasses both single-column and multiple two-column configurations.Additionally,a simultaneous optimization algorithm is applied to optimize both the process parameters and heat integration structures of the twocolumn configurations.The effectiveness of this approach is demonstrated through a case study focusing on industrial organosilicon separation.The results underscore that the superstructure methodology not only substantially mitigates computational time compared to exhaustive enumeration but also furnishes solutions that exhibit comparable performance.
基金financially supported by Joint Fund Project of the Natural Science Foundation of Jilin Province(No.YDZJ202301ZYTS290)。
文摘Hydrogen evolution electrocatalysts derived from metal-organic crystalline frameworks can inherit the merits of ordered and adjustable structures with high surface area.In this paper,organic-octamolybdate crystalline superstructures(OOCS)with a fixed stoichiometric ratio of Mo_(8)(L)_(2) and high Mo content(>40 wt%)were synthesized using flexible ligands with controllable lengths(named as OOCS-1-3).Then,molybdenum carbides coated with carbon layers as electrocatalysts(Mo_(2)C@C-1-3)can be obtained directly from a one-step high-temperature carbonization process using OOCS-1-3 as precursors.As a typical example,Mo_(2)C@C-3 exhibits satisfactory hydrogen evolution activity with a low overpotential of 151 m V(1.0 mol/L KOH)at 10 m A/cm^(2) and stability for 24 h.The electrocatalytic activity is mainly from the synergistic interactions between the carbon layers and molybdenum carbide species.Furthermore,compared with the initial content of C,N,Mo in OOCS and Mo_(2)C@C,the catalytic activity increases with the N amount.This work makes organic-octamolybdate crystalline superstructures used as general precursors to product high Mo content electrocatalysts applied in energy storage and conversion fields.
基金support of the National Natural Science Foundation of China(21901246,22105203 and 22175174)the Natural Science Foundation of Fujian Province(2020J01116 and 2021J06033)the China Postdoctoral Science Foundation(2021TQ0332 and 2021M703215).
文摘Controllable design of the catalytic electrodes with hierarchical superstructures is expected to improve their electrochemical performance.Herein,a self-supported integrated electrode(NiCo-ZLDH/NF)with a unique hierarchical quaternary superstructure was fabricated through a self-sacrificing template strategy from the metal–organic framework(Co-ZIF-67)nanoplate arrays,which features an intriguing well-defined hierarchy when taking the unit cells of the NiCo-based layered double hydroxide(NiCo-LDH)as the primary structure,the ultrathin LDH nanoneedles as the secondary structure,the mesoscale hollow plates of the LDH nanoneedle arrays as the tertiary structure,and the macroscale three-dimensional frames of the plate arrays as the quaternary structure.Notably,the distinctive structure of NiCo-ZLDH/NF can not only accelerate both mass and charge transfer,but also expose plentiful accessible active sites with high intrinsic activity,endowing it with an excellent electrochemical performance for urea oxidation reaction(UOR).Specially,it only required the low potentials of 1.335,1.368 and 1.388 V to deliver the current densities of 10,100 and 200 mA cm^(-2),respectively,much superior to those for typical NiCo-LDH.Employing NiCo-ZLDH/NF as the bifunctional electrode for both anodic UOR and cathodic HER,an energy-saving electrolysis system was further explored which can greatly reduce the needed voltage of 213 mV to deliver the current density of 100 mA cm^(-2),as compared to the conventional water electrolysis system composed of OER.This work manifests that it is prospective to explore the hierarchically nanostructured electrodes and the innovative electrolytic technologies for high-efficiency electrocatalysis.
文摘Metal oxide mesocrystals are the alignment of metal oxide nanoparticles building blocks into the ordered superstructure,which have potentially tunable optical,electronic,and electrical properties suitable for practical applications.Herein,we report an effective method for synthesizing mesocrystal zinc oxide nanorods(ZnONRs).The crystal,surface,and internal structures of the zinc oxide mesocrystals were fully characterized.Mesocrystal zinc oxide nanorods/reduced graphene oxide(ZnONRs/rGO)nanocomposite superstructure were synthesized also using the hydrothermal method.The crystal,surface,chemical,and internal structures of the ZnONRs/rGO nanocomposite superstructure were also fully characterized.The optical absorption coefficient,bandgap energy,band structure,and electrical conductivity of the ZnONRs/rGO nanocomposite superstructure were investigated to understand its optoelectronic and electrical properties.Finally,the photoconductivity of the ZnONRs/rGO nanocomposite superstructure was explored to find the possibilities of using this nanocomposite superstructure for ultraviolet(UV)photodetection applications.Finally,we concluded that the ZnONRs/rGO nanocomposite superstructure has high UV sensitivity and is suitable for UV detector applications.
基金supported by the National Natural Science Foundation of China(No.51702365)the Natural Science Foundation of Shandong Province(No.ZR2022MB133)+1 种基金Key Research and Development Plan of Shandong Province(Nos.2019GGX102056,2018GGX104018)New Faculty Start-up funding in China University of Petroleum(East China)(No.YJ201501029).
文摘The self-assembly of two-dimensional(2D)semiconductor nanosheets into three-dimensional(3D)ordered superstructures represents an ingenious way to avoid aggregation,expose massive available active sites and benefit the mass transfer,which maximizes the advantages of the 2D nanostructures in photo-catalysis.Herein,a flower-like superstructure of ternary semiconducting boron carbon nitride nanosheets(FS-BCNNSs)was synthesized through the morphology-preserved thermal transformation of a flower-like superstructure of boron-containing metal-organic framework nanosheets(FS-MOFNSs).Taking advantage of this functional superstructure,FS-BCNNSs was employed for the pioneering application in the field of photocatalytic hydrogen peroxide(H_(2)O_(2))production and exhibited excellent photocatalytic performance,yielding an impressive rate of 1415.9μmol g^(−1)h^(−1)for the production of H_(2)O_(2).The results of this work offer not just a promising catalyst for photocatalytic H_(2)O_(2)production but also a facile strategy to fabricate unique superstructures constructed from 2D nanosheets for catalysis,energy conversion,and other related fields.