A high-sensitivity magnetic sensing system based on giant magneto-impedance(GMI)effect is designed and fabricated.The system comprises a GMI sensor equipped with a gradient probe and an signal acquisition and processi...A high-sensitivity magnetic sensing system based on giant magneto-impedance(GMI)effect is designed and fabricated.The system comprises a GMI sensor equipped with a gradient probe and an signal acquisition and processing module.A segmented superposition algorithm is used to increase target signal and reduce the random noise.The results show that under unshielded,room temperature conditions,the system achieves successful detection of weak magnetic fields down to 2 pT with a notable sensitivity of 1.84×10^(8)V/T(G=1000).By applying 17 overlays,the segmented superposition algorithm increases the power proportion of the target signal at 31 Hz from6.89%to 45.91%,surpassing the power proportion of the 2 Hz low-frequency interference signal.Simultaneously,it reduces the power proportion of the 20 Hz random noise.The segmented superposition process effectively cancels out certain random noise elements,leading to a reduction in their respective power proportions.This high-sensitivity magnetic sensing system features a simple structure,and is easy to operate,making it highly valuable for both practical applications and broader dissemination.展开更多
We develop a new method for smooth and continuous space-variant alignment of the liquid crystal medium in micro-patterned structures, which is based on a radial micro-structured pattern of polymeric ribbons exhibiting...We develop a new method for smooth and continuous space-variant alignment of the liquid crystal medium in micro-patterned structures, which is based on a radial micro-structured pattern of polymeric ribbons exhibiting out-of-plane orientation with respect to the ITO-coated glass plates. Thanks to the broad range of electrical tunability of the optical retardation for the micro-patterned liquid crystal structures, transformation of the fundamental Gaussian beam into different types of specific beams, including generalized cylindrical vector beams, vortex beams, and vectorial vortex beams, is efficiently demonstrated.展开更多
基金National Natural Science Foundation of China(No.51977214)。
文摘A high-sensitivity magnetic sensing system based on giant magneto-impedance(GMI)effect is designed and fabricated.The system comprises a GMI sensor equipped with a gradient probe and an signal acquisition and processing module.A segmented superposition algorithm is used to increase target signal and reduce the random noise.The results show that under unshielded,room temperature conditions,the system achieves successful detection of weak magnetic fields down to 2 pT with a notable sensitivity of 1.84×10^(8)V/T(G=1000).By applying 17 overlays,the segmented superposition algorithm increases the power proportion of the target signal at 31 Hz from6.89%to 45.91%,surpassing the power proportion of the 2 Hz low-frequency interference signal.Simultaneously,it reduces the power proportion of the 20 Hz random noise.The segmented superposition process effectively cancels out certain random noise elements,leading to a reduction in their respective power proportions.This high-sensitivity magnetic sensing system features a simple structure,and is easy to operate,making it highly valuable for both practical applications and broader dissemination.
基金supported by the National Natural Science Foundation of China(No.11674182)the National Basic Research Program of China(No.2013CB328702)+5 种基金the Tianjin Natural Science Foundation(No.17JCYBJC16700)the 111 Project(No.B07013)the PCSIRT(No.IRT_13R29)the National Research Program of Slovenia(No.P1-0192)the Hundred Young Academic Leaders Program of Nankai Universitythe Collaborative Innovation Center of Extreme Optics,Shanxi University
文摘We develop a new method for smooth and continuous space-variant alignment of the liquid crystal medium in micro-patterned structures, which is based on a radial micro-structured pattern of polymeric ribbons exhibiting out-of-plane orientation with respect to the ITO-coated glass plates. Thanks to the broad range of electrical tunability of the optical retardation for the micro-patterned liquid crystal structures, transformation of the fundamental Gaussian beam into different types of specific beams, including generalized cylindrical vector beams, vortex beams, and vectorial vortex beams, is efficiently demonstrated.