Meihua brand supermolecute polyethylene, a product of the Beijing No.2 Assistant Factory, is a chemically resistant thermoplastic for industrial use, grinding, and punching. With a low friction coefficient, it is good...Meihua brand supermolecute polyethylene, a product of the Beijing No.2 Assistant Factory, is a chemically resistant thermoplastic for industrial use, grinding, and punching. With a low friction coefficient, it is good in lubrication and insulauon situations and can be used at under -269 C in liquid展开更多
Photodynamic therapy(PDT)not only directly eradicates tumor cells but also boosts immunogenicity,promoting antigen presentation and immune cell infiltration.However,the robust antioxidant defense mechanisms within tum...Photodynamic therapy(PDT)not only directly eradicates tumor cells but also boosts immunogenicity,promoting antigen presentation and immune cell infiltration.However,the robust antioxidant defense mechanisms within tumor cells significantly weaken the efficacy of photodynamic immunotherapy.Herein,a supramolecular hybrid nanoassembly is constructed by exploring the synergistic effects of the photodynamic photosensitizer(pyropheophorbide a,PPa)and the ferroptosis inducer(erastin).The erastinmediated inhibition of system X_(c)−significantly downregulates glutathione(GSH)expression,amplifying intracellular oxidative stress,leading to pronounced cell apoptosis,and promoting the release of damageassociated molecular patterns(DAMPs).Additionally,the precise cooperation of PPa and erastin enhances ferroptosis efficiency,exacerbating the accumulation of lipid peroxides(LPOs).Ultimately,LPOs serve as a“find me”signal,while DMAPs act as an“eat me”signal,collectively promoting dendritic cell maturation,enhancing infiltration of the cytotoxic T lymphocytes,and eliciting a robust immune response.This study opens new horizons for enhancing tumor immunotherapy through simultaneous ferroptosis-PDT.展开更多
The development of high-performance transition metal sulfide(TMS)/carbon composites to replace conventional graphite anode remains a critical challenge for advancing lithium-ion batteries(LIBs).In this study,a facile ...The development of high-performance transition metal sulfide(TMS)/carbon composites to replace conventional graphite anode remains a critical challenge for advancing lithium-ion batteries(LIBs).In this study,a facile self-sacrifice template method is developed to prepare FeS encapsulated into N,S co-doped carbon(FeS/NSC)composite using melamine-cyanuric acid(MCA)supermolecule as a multifunctional template precursor.The function of MCA supermolecule for material synthesis is explored,revealing its special function as a dispersant,dopant and pore-forming agent.Furthermore,the effect of Fe source dosage on the morphology,structure and composition of the final products is explored.The resultant FeS/NSC-0.1(where 0.1 represents the mass of added Fe source)exhibits the most optimal proportion,characterized by a good dispersion status of FeS within the NSC matrix,effective N,S co-doping and ample porosity.Benefiting from these merits,the FeS/NSC-0.1 anode demonstrates significantly improved cycling stability and rate capability when compared to the counterparts.Undoubtedly,this work offers a universal method to produce advanced transition metal sulfide/carbon composite electrodes for energy storage and conversion systems.展开更多
文摘Meihua brand supermolecute polyethylene, a product of the Beijing No.2 Assistant Factory, is a chemically resistant thermoplastic for industrial use, grinding, and punching. With a low friction coefficient, it is good in lubrication and insulauon situations and can be used at under -269 C in liquid
基金financially supported by the National Natural Science Foundation of China(No.82161138029)the Basic Research Projects of Liaoning Provincial Department of Education(No.LJKZZ20220109)the Shenyang Youth Science and Technology Innovation Talents Program(No.RC210452).
文摘Photodynamic therapy(PDT)not only directly eradicates tumor cells but also boosts immunogenicity,promoting antigen presentation and immune cell infiltration.However,the robust antioxidant defense mechanisms within tumor cells significantly weaken the efficacy of photodynamic immunotherapy.Herein,a supramolecular hybrid nanoassembly is constructed by exploring the synergistic effects of the photodynamic photosensitizer(pyropheophorbide a,PPa)and the ferroptosis inducer(erastin).The erastinmediated inhibition of system X_(c)−significantly downregulates glutathione(GSH)expression,amplifying intracellular oxidative stress,leading to pronounced cell apoptosis,and promoting the release of damageassociated molecular patterns(DAMPs).Additionally,the precise cooperation of PPa and erastin enhances ferroptosis efficiency,exacerbating the accumulation of lipid peroxides(LPOs).Ultimately,LPOs serve as a“find me”signal,while DMAPs act as an“eat me”signal,collectively promoting dendritic cell maturation,enhancing infiltration of the cytotoxic T lymphocytes,and eliciting a robust immune response.This study opens new horizons for enhancing tumor immunotherapy through simultaneous ferroptosis-PDT.
基金supported by the Science Technology Talents Lifting Project of Hunan Province(No.2022TJ-N16)the Natural Science Foundation of Hunan Province(Nos.2024JJ4022,2023JJ30277,2025JJ60382)+3 种基金the China Postdoctoral Fellowship Program(GZC20233205)the Scientifc Research Fund of Hunan Provincial Education Department,China(No.24B0270)the National Natural Science Foundation of China(No.32201646)the Key Project of Jiangxi Provincial Research and Development Program(No.20243BBI91001).
文摘The development of high-performance transition metal sulfide(TMS)/carbon composites to replace conventional graphite anode remains a critical challenge for advancing lithium-ion batteries(LIBs).In this study,a facile self-sacrifice template method is developed to prepare FeS encapsulated into N,S co-doped carbon(FeS/NSC)composite using melamine-cyanuric acid(MCA)supermolecule as a multifunctional template precursor.The function of MCA supermolecule for material synthesis is explored,revealing its special function as a dispersant,dopant and pore-forming agent.Furthermore,the effect of Fe source dosage on the morphology,structure and composition of the final products is explored.The resultant FeS/NSC-0.1(where 0.1 represents the mass of added Fe source)exhibits the most optimal proportion,characterized by a good dispersion status of FeS within the NSC matrix,effective N,S co-doping and ample porosity.Benefiting from these merits,the FeS/NSC-0.1 anode demonstrates significantly improved cycling stability and rate capability when compared to the counterparts.Undoubtedly,this work offers a universal method to produce advanced transition metal sulfide/carbon composite electrodes for energy storage and conversion systems.