期刊文献+
共找到23篇文章
< 1 2 >
每页显示 20 50 100
Cation potential guiding structural regulation of lithium halide superionic conductors
1
作者 Yinghui Xia Yixi Lin Zhenming Xu 《Chinese Journal of Structural Chemistry》 2025年第3期12-14,共3页
Lithium halide solid-state electrolytes,with the general formula of Li_(3±m)M_(n)X_(6),are regarded as the promising families of electrolyte material for all solid-state lithium-ion batteries because of the relat... Lithium halide solid-state electrolytes,with the general formula of Li_(3±m)M_(n)X_(6),are regarded as the promising families of electrolyte material for all solid-state lithium-ion batteries because of the relatively good ionic conductivity,high oxidative stability against high-voltage oxide cathodes,and broad electrochemical stability window[1].Here,M stands for one or multiple metal elements and X for one or multiple halogen elements. 展开更多
关键词 metal elements lithium halide solid state electrolytes structural regulation halogen elements electrolyte material cation potential ionic conductivityhigh lithium halide superionic conductors
原文传递
IONIC CONDUCTION MECHANISM IN Na_(5+x)YA1_xSi_(4-x)O_(12) SUPERIONIC CONDUCTORS
2
作者 崔万秋 邹云 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 1989年第1期13-18,共6页
Na_(5+x) YAl_x Si_(4-x) O_(12) polycrystalline solid electrolytes are prepared by solid reactions. By the analyses of X-ray, TG and DTA, infrared spectu re, and SEM, the variasion of their density with the composition... Na_(5+x) YAl_x Si_(4-x) O_(12) polycrystalline solid electrolytes are prepared by solid reactions. By the analyses of X-ray, TG and DTA, infrared spectu re, and SEM, the variasion of their density with the composition X are discussed Their electric conductivity in the temperature range of R. T. to 300℃ are determined with electric brigde, and their variasions with the compositions X and temperature are studied. Their activations in the tem- perature range 140℃ to 300℃ are calculated, and their variation with the compositons X are discussed. 展开更多
关键词 IONIC Conduction mechanism superionic conductors
在线阅读 下载PDF
Sodium Superionic Conductors(NASICONs)as Cathode Materials for Sodium‑Ion Batteries 被引量:6
3
作者 Qingbo Zhou Linlin Wang +10 位作者 Wenyao Li Kangning Zhao Minmin Liu Qian Wu Yujie Yang Guanjie He Ivan P.Parkin Paul R.Shearing Dan J.L.Brett Jiujun Zhang Xueliang Sun 《Electrochemical Energy Reviews》 SCIE EI 2021年第4期793-823,共31页
Sodium-ion batteries(SIBs)have developed rapidly owing to the high natural abundance,wide distribution,and low cost of sodium.Among the various materials used in SIBs,sodium superion conductor(NASICON)-based electrode... Sodium-ion batteries(SIBs)have developed rapidly owing to the high natural abundance,wide distribution,and low cost of sodium.Among the various materials used in SIBs,sodium superion conductor(NASICON)-based electrode materials with remarkable structural stability and high ionic conductivity are one of the most promising candidates for sodium storage electrodes.Nevertheless,the relatively low electronic conductivity of these materials makes them display poor electrochemical performance,significantly limiting their practical application.In recent years,the strategies of enhancing the inherent conductivity of NASICON-based cathode materials have been extensively studied through coating the active material with a conductive carbon layer,reducing the size of the cathode material,combining the cathode material with various carbon materials,and doping elements in the bulk phase.In this paper,we review the recent progress in the development of NASICON-based cathode materials for SIBs in terms of their synthesis,characterization,functional mechanisms,and performance validation/optimization.The advantages and disadvantages of such SIB cathode materials are analyzed,and the relationship between electrode structures and electrochemical performance as well as the strategies for enhancing their electrical conductivity and structural stability is highlighted.Some technical challenges of NASICON-based cathode materials with respect to SIB performance are analyzed,and several future research directions are also proposed for overcoming the challenges toward practical applications. 展开更多
关键词 Sodium-ion battery Cathode materials Energy storage Sodium superionic conductor(NASICON)
在线阅读 下载PDF
Amphoteric covalent organic framework as single Li+superionic conductor in all-solid-state 被引量:2
4
作者 Zhangzhen Cheng Liping Lu +7 位作者 Siyu Zhang Haiyan Liu Tao Xing Yan Lin Hao Ren Zhongtao Li Linjie Zhi Mingbo Wu 《Nano Research》 SCIE EI CSCD 2023年第1期528-535,共8页
As a novel class of porous crystalline solids,covalent organic frameworks(COFs)based electrolyte can combine the advantages of both inorganic and polymer electrolytes,leading to such as higher structural stability to ... As a novel class of porous crystalline solids,covalent organic frameworks(COFs)based electrolyte can combine the advantages of both inorganic and polymer electrolytes,leading to such as higher structural stability to inhibit lithium dendrites and better processing facility for improving interfacial contact.However,the ionic components of Li salt tend to be closely associated in the form of ion pairs or even ionic aggregates in the channel of COFs due to strong coulombic interactions,thus resulting in slow ionic diffusion dynamics and low ionic conductivity.Herein,we successfully designed and synthesized a novel single-ion conducting nitrogen hybrid conjugated skeleton(NCS)as all solid electrolyte,whose backbone is consisted with triazine and piperazine rings.A loose bonding between the triazine rings and cations would lower the energy barrier during ions transfer,and electrostatic forces with piperazine rings could“anchor”anions to increase the selectivity during ions transfer.Thus,the NCSelectrolyte exhibits excellent room temperature lithium-ion conductivity up to 1.49 mS·cm−1 and high transference number of 0.84 without employing any solvent,which to the best of our knowledge is one of the highest COF-based electrolytes so far.Moreover,the fabricated all-solid-state lithium metal batteries demonstrate highly attractive properties with quite stable cycling performance over 100 cycles with 82%capacity reservation at 0.5 C. 展开更多
关键词 covalent organic framework solid-state electrolyte superionic conductor TRIAZINE AMPHOTERIC
原文传递
Stable all-solid-state Li-Te battery with Li_(3)TbBr_(6) superionic conductor 被引量:1
5
作者 Zhichao Zeng Xiaomeng Shi +6 位作者 Mingzi Sun Hongtu Zhang Wei Luo Yunhui Huang Bolong Huang Yaping Du Chun-Hua Yan 《Nano Research》 SCIE EI CSCD 2023年第7期9344-9351,共8页
Rare-earth(RE)halide solid electrolytes(HSEs)have been an emerging research area due to their good electrochemical and mechanical properties for all-solid-state lithium batteries(ASSBs).However,only very limited types... Rare-earth(RE)halide solid electrolytes(HSEs)have been an emerging research area due to their good electrochemical and mechanical properties for all-solid-state lithium batteries(ASSBs).However,only very limited types of HSEs have been reported with high performance.In this work,tens of grams of RE-HSE Li_(3)TbBr_(6)(LTbB)was synthesized by a vacuum evaporationassisted method.The as-prepared LTbB displays a high ionic conductivity of 1.7 mS·cm^(-1),a wide electrochemical window,and good formability.Accordingly,the assembled solid lithium-tellurium(Li-Te)battery based on the LTbB HSE exhibits excellent cycling stability up to 600 cycles,which is superior to most previous reports.The processes and the chemicals during the discharge/charge of Li-Te batteries have been studied by various in situ and ex situ characterizations.Theoretical calculations have demonstrated the dominant conductivity contributions of the direct[octahedral]-[octahedral]([Oct]-[Oct])pathway for Li ion migrations in the electrolyte.The Tb sites guarantee efficient electron transfer while the Li 2s orbitals are not affected during migration,leading to a low activation barrier.Therefore,this successful fabrication and application of LTbB have offered a highly competitive solution for solid electrolytes in ASSBs,indicating the great potential of RE-based HSEs in energy devices. 展开更多
关键词 rare-earth halide solid electrolytes all-solid-state lithium batteries superionic conductor Li-Te solid battery
原文传递
Superionic conductor-mediated growth of ternary ZnCdS nanorods over a wide composition range 被引量:1
6
作者 Yongliang Zhang Jing Cai Tianpei Ji Qiang Wu Yuyang Xu Xizhang Wang Tao Sun Lijun Yang Zheng Hu 《Nano Research》 SCIE EI CAS CSCD 2015年第2期584-591,共8页
Composition regulation of semiconductors can engineer their bandgaps and hence tune their properties. Herein, we report the first synthesis of ternary ZnxCd1-xS semiconductor nanorods by superionic conductor (AgRS)-... Composition regulation of semiconductors can engineer their bandgaps and hence tune their properties. Herein, we report the first synthesis of ternary ZnxCd1-xS semiconductor nanorods by superionic conductor (AgRS)-mediated growth with [(C4H9)2NCS2]2M (M = Zn, ca) as single-source precursors. The compositions of the ZnKCd1-xS nanorods are conveniently tuned over a wide range by adjusting the molar ratio of the corresponding precursors, leading to tunable bandgaps and hence the progressive evolution of the light absorption and photoluminescence spectra. The nanorods present well-distributed size and length, which are controlled by the uniform Ag2S nanoparticles and the fixed amount of the precursors. The results suggest the great potential of superionic conductor-mediated growth in composition regulation and bandgap engineering of chalcogenide nanowires/nanorods. 展开更多
关键词 superionic conductor solution-solid-solid growth ternary ZnxCd1-xS bandgap engineering
原文传递
An end-to-end artificial intelligence platform enables real-time assessment of superionic conductors
7
作者 Zhilong Wang Yanqiang Han +2 位作者 Junfei Cai An Chen Jinjin Li 《SmartMat》 2023年第6期56-71,共16页
Superionic conductors(SCs)exhibiting low ion migration activation energy(Ea)are critical to the performance of electrochemical energy storage devices such as solid-state batteries and fuel cells.However,it is challeng... Superionic conductors(SCs)exhibiting low ion migration activation energy(Ea)are critical to the performance of electrochemical energy storage devices such as solid-state batteries and fuel cells.However,it is challenging to obtain Ea experimentally and theoretically,and the artificial intelligence(AI)method is expected to bring a breakthrough in predicting Ea.Here,we proposed an AI platform(named AI-IMAE)to predict the Ea of cation and anion conductors,including Li^(+),Na^(+),Ag^(+),Al^(3+),Mg^(2+),Zn^(2+),Cu^((2)+),F^(−),and O^(2−),which is~105 times faster than traditional methods.The proposed AI-IMAE is based on crystal graph neural network models and achieves a holistic average absolute error of 0.19 eV,a median absolute error of 0.09 eV,and a Pearson coefficient of 0.92.Using AI-IMAE,we rapidly discovered 316 promising SCs as solid-state electrolytes and 129 SCs as cathode materials from 144,595 inorganic compounds.AI-IMAE is expected to completely solve the challenge of time-consuming Ea prediction and blaze a new trail for large-scale studies of SCs with excellent performance.As more experimental and high-precision theoretical data become available,AI-IMAE can train custom models and transfer the existing models to new models through transfer learning to constantly meet more demands. 展开更多
关键词 artificial intelligence cathode material solid-state battery solid-state electrolyte superionic conductor
原文传递
Expediting solid electrolyte synthesis:Microwave-assisted wet synthesis of halogen-rich Li-argyrodite
8
作者 Suk-Ho Hwang Seung-Deok Seo +3 位作者 Dohyun Kim Jung Been Park Sung-Chul Kim Dong-Wan Kim 《Journal of Energy Chemistry》 2025年第5期527-539,共13页
Li-argyrodites are promising solid electrolytes(SEs)for solid-state Li-ion batteries(SSLBs),but their large-scale industrial application remains a challenge.Conventional synthesis methods for SEs suffer from long reac... Li-argyrodites are promising solid electrolytes(SEs)for solid-state Li-ion batteries(SSLBs),but their large-scale industrial application remains a challenge.Conventional synthesis methods for SEs suffer from long reaction times and high energy consumption.In this study,we present a wet process for the synthesis of halogen-rich argyrodite Li_(6-a)PS_(5-a)Cl_(1+a)precursors(LPSCl_(1+a)-P,a=0–0.7)via an energysaving microwave-assisted process.Utilizing vibrational heating,we accelerate the formation of Liargyrodite precursor,even at excessive Cl-ion concentration,which significantly shortens the reaction time compared to traditional methods.After crystallization,we successfully synthesize the Liargyrodite,Li_(5.5)PS_(4.5)Cl_(1.5),which exhibits the superior ionic conductivity(7.8 mS cm^(-1))and low activation energy(0.23 eV)along with extremely low electric conductivity.The Li_(5.5)PS_(4.5)Cl_(1.5)exhibits superior Li compatibility owing to its high reversible striping/plating ability(over 5000 h)and high current density acceptability(1.3 mA cm^(-2)).It also exhibits excellent cycle reversibility and rate capability with NCM622 cathode(148.3 mA h g^(-1)at 1 C for 100 cycles with capacity retention of 85.6%).This finding suggests a potentially simpler and more scalable synthetic route to produce high-performance SEs. 展开更多
关键词 Solid-state batteries Sulfide solid electrolyte Li-argyrodite superionic conductor Wet-chemical synthesis Scalable
在线阅读 下载PDF
Structural and transport properties ofα-RbCu_(4)Cl_(3)I_(2)at room temperature by molecular dynamics simulation
9
作者 Yueqiang Lan Tushagu Abudouwufu +1 位作者 Alexander Tolstoguzov Dejun Fu 《Chinese Physics B》 2025年第7期470-474,共5页
Consideringα-RbCu_(4)Cl_(3)I_(2)is isostructural withα-RbAg4I5,in this work,we built a molecular dynamics simulation system of the former superionic conductor with an empirical pairwise potential model,which was ver... Consideringα-RbCu_(4)Cl_(3)I_(2)is isostructural withα-RbAg4I5,in this work,we built a molecular dynamics simulation system of the former superionic conductor with an empirical pairwise potential model,which was verified on the latter crystal,including long-ranging Coulomb,short-ranging Born-Mayer,charge-dipole,and dipole-quadrupole interactions.The corresponding parameters were collected from the crystal structure and several reports of interionic potentials in alkali halides.The coordination number of fixed ions was examined,and the dynamic distribution of dissociative Cu+was described by the radial distribution function.The diffusion behavior of the ions was evaluated with mean square displacements and velocity auto-correlation functions.The diffusion coefficient of copper ions obtained is(47.9±6.1)×10-7cm^(2)/s,which is approximately 37 times that of the simulation result(1.3±0.1)×10^(-7)cm^(2)/s of silver inα-RbAg4I5at room temperature.In this work,the diffusion coefficient of Cu+was first discussed by molecule simulation,while there are few experimental reports. 展开更多
关键词 diffusion coefficients Cu+conductors superionic conductor microcanonical ensemble empirical pair potential
原文传递
Ultra-stable carbon-coated sodium vanadium phosphate as cathode material for sodium-ion battery 被引量:6
10
作者 Di Wang Peng Cai +4 位作者 Guo-Qiang Zou Hong-Shuai Hou Xiao-Bo Ji Ye Tian Zhen Long 《Rare Metals》 SCIE EI CAS CSCD 2022年第1期115-124,共10页
Based on the excellent sodium ion mobility of sodium superionic conductor structures,Na_(3)V_(2)(PO_(4))_(3)materials have become promising cathode materials in sodium-ion batteries(SIBs).However,inadequate electronic... Based on the excellent sodium ion mobility of sodium superionic conductor structures,Na_(3)V_(2)(PO_(4))_(3)materials have become promising cathode materials in sodium-ion batteries(SIBs).However,inadequate electronic transport of Na_(3)V_(2)(PO_(4))_(3)limits the cycling stability and rate performances in SIBs.In this work,high-performance conductive carbon-coated Na_(3)V_(2)(PO_(4))_(3)materials are obtained via a simple and facile ball-milling assisted solid-state method by utilizing citric acid as carbon sources.The carbon-coated composite electrodes display a high initial specific capacity of 111.6 mAh·g^(-1),and the specific capacity could retention reach 92.83%after 100 cycles at 1C with the high coulombic efficiency(99.95%).More importantly,the capacity of conductive carbon-coated nano-sized Na_(3)V_(2)(PO_(4))_(3)can remain 48.5 mAh·g^(-1) at 10℃after 3000 cycles(initial capacity of 101.2 mAh·g^(-1)).At the same time,high coulombic efficiency(near 100%)has little decay even at a high rate of 20℃during 1000 cycles,demonstrating the excellent cycling stability and remarkable rate performances,and showing potential in largescale productions and applications. 展开更多
关键词 Na_(3)V_(2)(PO_(4))_(3) Sodium superionic conductor structures Ball-milling CATHODE Sodium-ion battery
原文传递
Improved electrical transport properties and optimized thermoelectric figure of merit in lithium-doped copper sulfides 被引量:5
11
作者 Meng-Jia Guan Peng-Fei Qiu +4 位作者 Qing-Feng Song Jiong Yang Du-Di Ren Xun Shi Li-Dong Chen 《Rare Metals》 SCIE EI CAS CSCD 2018年第4期282-289,共8页
Copper sulfide Cu2S is a p-type semiconducting compound that has attracted great attentions in the thermoelectric (TE) community most recently. Considering the intrinsic ultralow lattice thermal conductivity, the en... Copper sulfide Cu2S is a p-type semiconducting compound that has attracted great attentions in the thermoelectric (TE) community most recently. Considering the intrinsic ultralow lattice thermal conductivity, the enhancement of TE performance in CuzS should be achieved through improving its electrical transport properties. To achieve this goal, lithium element was doped into CuzS in this study. A series of Cu2_xLixS samples with different Li contents (x = 0, 0.005, 0.010, 0.050, and 0.100) was synthesized by the melting-annealing method. When x 〈 0.05, the Cuz_xLixS samples are stable and pure phases, having the same monoclinic structure with the pristine Cu2S at room temperature. The electrical conductivities in the Cu2_xLixS samples are greatly improved with the Li-doping content increasing due to the enhanced carrier concentrations. Meanwhile, doping Li into CuzS increases the ionic activation energy and lessens the influence of mobile Cu ions on the heat-carrying phonons. Thus, the thermal conductivities of the Li-doped Cu2S samples increase. A maximal figure of merit (zT) of 0.84 at 900 K is obtained in Cul.99Lio.018, about 133% improvement as compared with that in Cu2S matrix. 展开更多
关键词 THERMOELECTRIC Copper sulfide DOPING superionic conductor
原文传递
Na_(3)Zr_(2)Si_(2)PO_(12) solid-state electrolyte with glass-like morphology for enhanced dendrite suppression 被引量:3
12
作者 Hang Su Shi-Wei Zhang +4 位作者 Yi-Meng Liu Chao Yang Li-Xiao Zhang Sen Xin Ya You 《Rare Metals》 SCIE EI CAS CSCD 2022年第12期4086-4093,共8页
Rechargeable batteries based on solid-state electrolytes are of great interest and importance for the next-generation energy storage due to their high energy output and improved safety.For building the solid-state bat... Rechargeable batteries based on solid-state electrolytes are of great interest and importance for the next-generation energy storage due to their high energy output and improved safety.For building the solid-state batteries,Na_(3)Zr_(2)Si_(2)PO_(12)(NZSP)represents a promising candidate as it features high chemical stability against air exposure and a high Na^(+)conductivity.NZSP pellets were usually calcined at a high temperature,and the high volatility of Na and P elements easily led to the formation of impurity phase.In this work,the effects of calcination temperature and stoichiometry on the phase purity and ionic conductivity of the NZSP electrolyte were studied.At an elevated sintering temperature,the NZSP electrolyte showed a high ionic conductivity owing to decreased porosity,and the highest ionic conductivity at 30℃was observed to be 2.75×10^(-5)S·cm^(-1)with an activation energy of 0.41 eV.For the stoichiometry,the introduction of 5 mol%excessive P results in formation of more Na_(3)PO_(4) and glass-like phase at the grain boundary,which caused the blurred grain boundary and reduced grain barrier,and effectively suppressed Na dendrite growth,then accounted for improved cycling performance of a Na‖Na symmetric cell.Our work provided insights on reasonable design and preparation of NZSP electrolyte towards practical realization of solid-state Na-metal batteries. 展开更多
关键词 Na_(3)Zr_(2)Si_(2)PO_(12)(NZSP) Natrium superionic conductor(NASICON)solid-state electrolytes Grain boundary Ionic conductivity Glass-like morphology
原文传递
Fast synthesis and improved electrical stability in n-type Ag_(2)Te thermoelectric materials 被引量:1
13
作者 Huiping Hu Kaiyang Xia +3 位作者 Yuechu Wang Chenguang Fu Tiejun Zhu Xinbing Zhao 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2021年第32期241-250,共10页
Cu-and Ag-based superionic conductors are promising thermoelectric materials due to their good electrical properties and intrinsically low thermal conductivity. However, the poor electrical and thermal stability restr... Cu-and Ag-based superionic conductors are promising thermoelectric materials due to their good electrical properties and intrinsically low thermal conductivity. However, the poor electrical and thermal stability restrict their application. In this work, n-type pure phase Ag_(2) Te compound is synthesized by simply grinding elemental powders at room temperature and compacted by spark plasma sintering. It is found that, because of the migration of Ag+after the phase transition around 425 K, submicron pores are formed inside the samples during the electrical performance measurement, resulting in poor electrical stability and repeatability of Ag_(2) Te samples. However, Pb-doped Ag_(2-x)Pb_(x)Te(x = 0–0.05) specimens exhibit improved electrical stability by the precipitation of the secondary phase Pb Te in the Ag_(2) Te matrix, which is confirmed via cyclic electrical property measurement and microstructure characterization.A maximum z T = 0.72 is obtained at 570 K for x = 0.03 mainly due to the increased power factor. 展开更多
关键词 THERMOELECTRIC superionic conductor Silver telluride Phase transition Stability
原文传递
Synthesis and Characterization of NASICON Nanoparticles by Sol-gel Method 被引量:1
14
作者 WANG Biao LIANG Xi-shuang LIU Feng-min ZHONG Tie-gang ZHAO Chun LU Ge-yu QUAN Bao-fu 《Chemical Research in Chinese Universities》 SCIE CAS CSCD 2009年第1期13-16,共4页
Na superionic conductor(NASICON) nanoparticles were synthesized by a modified sol-gel method and sintered at a temperature range of 800--1000℃. The performance of the samples was characterized by the analysis metho... Na superionic conductor(NASICON) nanoparticles were synthesized by a modified sol-gel method and sintered at a temperature range of 800--1000℃. The performance of the samples was characterized by the analysis methods of X-ray diffraction(XRD), Fourier transform infrared spectroscopy(FTIR), and transmission electron microscopy(TEM) as well as conductivity measurement. Compared with those sintered at other temperatures, the NASICON material sintered at 900 ℃ had the best crystalline structure and higher conductivity. 展开更多
关键词 Na superionic conductor(NASICON) NANOPARTICLES Sol-gel method
在线阅读 下载PDF
Dynamic Probe of Superionic Transition in Fluorite Structured Compounds
15
作者 Chen Ling Chuhong Wang 《Renewables》 2024年第3期173-182,共10页
Superionic transition(SIT)is an extraordinary phenomenon where a compound attains high ionic conductivity through anomalous disordering of mobile-ion sublattice.Comprehending SIT offers notable prospects for the advan... Superionic transition(SIT)is an extraordinary phenomenon where a compound attains high ionic conductivity through anomalous disordering of mobile-ion sublattice.Comprehending SIT offers notable prospects for the advancement of superionic conductors(SICs)for diverse applications.However,the investigation of SIT is impeded by its intricate and stochastic characteristics,coupled with the absence of adequate methods for characterizing,quantifying,and analyzing its microscopic properties.Here we show that the SIT can be discerned through the dynamic signatures of disordering events underlying the increase in ionic conductivity.The adoption of a dynamic perspective as opposed to the conventional treatment of equilibrium properties brings significant advantage to scrutinize the microscopic characteristics of SIT.Our results show the SIT in the prototypical family of fluorite compounds is characterized by the scaleinvariant disordering dynamics independent of temperature or extent of disorder.The observation of scale-invariance in the absence of external tuning implies that the superionic conduction is self-tuned to criticality by intrinsic dynamics.The connection between ionic diffusion and self-organized criticality provides a novel platform for understanding,analyzing,and manipulating SIT towards better SICs. 展开更多
关键词 superionic conductor superionic transition allsolid-state battery DISORDER dynamics AVALANCHE self-organized criticality FLUORITE
原文传递
Advancing NASICON-type materials through high-entropy strategy:Synthesis and applications
16
作者 Youmei Li Ming Zhang +3 位作者 Jintian Wu Zixuan Fang Ziqiang Xu Mengqiang Wu 《Journal of Advanced Ceramics》 2025年第5期1-33,共33页
High-entropy materials(HEMs)have emerged as promising frontiers in electrochemical energy storage systems because of their unique compositional versatility and tunable physicochemical properties.By incorporating multi... High-entropy materials(HEMs)have emerged as promising frontiers in electrochemical energy storage systems because of their unique compositional versatility and tunable physicochemical properties.By incorporating multiple principal elements with distinct chemical functionalities,HEMs exhibit tailored electronic/ionic configurations,enabling unprecedented structural adaptability and application potential.This review systematically analyzes the fundamental principles underpinning the entropy-driven optimization of the electrochemical performance of battery materials,with a focus on the interplay between compositional disorder and functional enhancements.For the first time,we comprehensively review recent advances in Na superionic conductor(NASICON)-type HEMs spanning cathodes,solid-state electrolytes,and anodes.Through investigations,the profound impacts of high-entropy strategies on critical material parameters,including lattice strain modulation,interfacial stability reinforcement,charge-transfer kinetics optimization,and ion transport pathway regulation,were elucidated.Furthermore,we evaluate the current challenges in high-entropy NASICON-type battery design and propose actionable strategies for advancing next-generation high-entropy battery systems,emphasizing rational compositional screening,entropy-stabilized interface design,and machine learning-assisted property prediction. 展开更多
关键词 Na superionic conductor(NASICON)materials high-entropy battery design electrochemical property INTERFACE
原文传递
First-principles insight into the entanglements between superionic diffusion and Li/Al antisite in Al-doped Li1+xAlxGe2–x(PO4)3(LAGP) 被引量:1
17
作者 JIANG ChangKun LU Xia CAO DaPeng 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2020年第9期1787-1794,共8页
As an ion conductor, the Al-doped Li1+xAlxGe2-x(PO4)3(LAGP) demonstrates the superionic Li diffusion behavior, however,without the convinced verifications. In this context, the density functional theory(DFT) calculati... As an ion conductor, the Al-doped Li1+xAlxGe2-x(PO4)3(LAGP) demonstrates the superionic Li diffusion behavior, however,without the convinced verifications. In this context, the density functional theory(DFT) calculations are employed to clarify the structural origin of the fast Li ion migration kinetics in LAGP solid electrolytes. The calculated results show that doping of Al leads to an emerging high-energy 36 f Li site, which plays an important role in promoting the Li diffusion and can largely lower the Li ion diffusion energy barrier. Moreover, the Li/Al antisite defect is investigated firstly, with which the Li ions are excited to occupy a relatively high energy site in LAGP. The obvious local structural distortion by Li/Al antisite results in the coordination change upon Li diffusion(lattice field distortion), which facilitates the Li diffusion significantly and is probably the main reason to account for the superionic diffusion phenomenon. Therefore, the occupation of Li at high-energy sites should be an effective method to establish the fast Li diffusion, which implies a rewarding avenue to build better Li-ion batteries. 展开更多
关键词 Li1+xAlxGe2–x(PO4)3(LAGP) Li/Al antisite superionic conductor first-principles calculations Li ion batteries
原文传递
Tuning crystal structure and redox potential of NASICON-type cathodes for sodium-ion batteries 被引量:7
18
作者 Xuemei Ma Xinxin Cao +7 位作者 Yifan Zhou Shan Guo Xiaodong Shi Guozhao Fang Anqiang Pan Bingan Lu Jiang Zhou Shuquan Liang 《Nano Research》 SCIE EI CAS CSCD 2020年第12期3330-3337,共8页
Sodium superionic conductor(NASICON)-type compounds have been regarded as promising cathodes for sodium-ion batteries(SIBs)due to their favorable ionic conductivity and robust structural stability.However,their high c... Sodium superionic conductor(NASICON)-type compounds have been regarded as promising cathodes for sodium-ion batteries(SIBs)due to their favorable ionic conductivity and robust structural stability.However,their high cost and relatively low energy density restrict their further practical application,which can be tailored by widening the operating voltages with earth-abundant elements such as Mn.Here,we propose a rational strategy of infusing Mn element in NASICON frameworks with sufficiently mobile sodium ions that enhances the redox voltage and ionic migration activity.The optimized structure of Na3.5Mn0.5V1.5(PO4)3/C is achieved and investigated systematically to be a durable cathode(76.6%capacity retention over 5,000 cycles at 20 C)for SIBs,which exhibits high reversible capacity(113.1 mAh·g^−1 at 0.5 C)with relatively low volume change(7.6%).Importantly,its high-areal-loading and temperature-resistant sodium ion storage properties are evaluated,and the full-cell configuration is demonstrated.This work indicates that this Na3.5Mn0.5V1.5(PO4)3/C composite could be a promising cathode candidate for SIBs. 展开更多
关键词 sodium superionic conductor(NASICON)-type crystal structure cathode material full cell sodium ion battery
原文传递
Air Stability of Solid‑State Sulfide Batteries and Electrolytes 被引量:10
19
作者 Pushun Lu Dengxu Wu +2 位作者 Liquan Chen Hong Li Fan Wu 《Electrochemical Energy Reviews》 SCIE EI 2022年第3期213-258,共46页
Sulfides have been widely acknowledged as one of the most promising solid electrolytes(SEs)for all-solid-state batteries(ASSBs)due to their superior ionic conductivity and favourable mechanical properties.However,the ... Sulfides have been widely acknowledged as one of the most promising solid electrolytes(SEs)for all-solid-state batteries(ASSBs)due to their superior ionic conductivity and favourable mechanical properties.However,the extremely poor air stability of sulfide SEs leads to destroyed structure/performance and release of toxic H_(2)S gas,which greatly limits mass-production/practical application of sulfide SEs and ASSBs.This review is designed to serve as an all-inclusive handbook for studying this critical issue.First,the research history and milestone breakthroughs of this field are reviewed,and this is followed by an in-depth elaboration of the theoretical paradigms that have been developed thus far,including the random network theory of glasses,hard and soft acids and bases(HSAB)theory,thermodynamic analysis and kinetics of interfacial reactions.Moreover,the characterization of air stability is reviewed from the perspectives of H2S generation,morphology evolution,mass change,component/structure variations and electrochemical performance.Furthermore,effective strategies for improving the air stabilities of sulfide SEs are highlighted,including H_(2)S absorbents,elemental substitution,design of new materials,surface engineering and sulfide-polymer composite electrolytes.Finally,future research directions are proposed for benign development of air stability for sulfide SEs and ASSBs. 展开更多
关键词 Sulfide solid electrolytes Air stability superionic conductors All-solid-state batteries
在线阅读 下载PDF
Percolation-induced resistivity drop in lutetium dihydride with controllable electrical conductivity over six orders of magnitude 被引量:2
20
作者 Ningning Wang Jun Hou +14 位作者 Ziyi Liu Tenglong Lu Pengfei Shan Congcong Chai Shifeng Jin Liang Ma Lifen Shi Xiao Wang Youwen Long Yue Liu Hua Zhang Xiaoli Dong Sheng Meng Miao Liu Jinguang Cheng 《Science China(Physics,Mechanics & Astronomy)》 SCIE EI CAS CSCD 2023年第9期102-108,共7页
The recent report of near-ambient superconductivity in the nitrogen-doped lutetium hydride has attracted considerable attention.Subsequent follow-up studies confirmed the pressure-induced color changes in both N-free ... The recent report of near-ambient superconductivity in the nitrogen-doped lutetium hydride has attracted considerable attention.Subsequent follow-up studies confirmed the pressure-induced color changes in both N-free and N-doped LuH_(2) but failed to reproduce superconductivity. It remains a puzzle why the samples in the original report exhibited pronounced resistance anomaly reminiscent of the superconducting transition. Here, we show that percolation of metallic grains with high conductivity through the insulating surfaces in cold-pressed LuH_(2) samples can occasionally produce sharp resistance drops, which even display magnetic field and/or current dependences but stay far from zero resistance. The insulating surface of LuH2grain should be attributed to the modification of hydrogen stoichiometry or the contamination by oxygen/nitrogen, resulting in an increase of resistance by over six orders of magnitude. Such an effect is more significant than that discovered recently in LaH_(3±x), which may indicate that LuH_(2) can be a potential superionic conductor. Our results call for caution in asserting the resistivity drops as superconductivity and invalidate the background subtraction in analyzing the corresponding resistance data. 展开更多
关键词 LuH_(2) PERCOLATION resistance drop SUPERCONDUCTIVITY superionic conductor
原文传递
上一页 1 2 下一页 到第
使用帮助 返回顶部