Lithium halide solid-state electrolytes,with the general formula of Li_(3±m)M_(n)X_(6),are regarded as the promising families of electrolyte material for all solid-state lithium-ion batteries because of the relat...Lithium halide solid-state electrolytes,with the general formula of Li_(3±m)M_(n)X_(6),are regarded as the promising families of electrolyte material for all solid-state lithium-ion batteries because of the relatively good ionic conductivity,high oxidative stability against high-voltage oxide cathodes,and broad electrochemical stability window[1].Here,M stands for one or multiple metal elements and X for one or multiple halogen elements.展开更多
Na_(5+x) YAl_x Si_(4-x) O_(12) polycrystalline solid electrolytes are prepared by solid reactions. By the analyses of X-ray, TG and DTA, infrared spectu re, and SEM, the variasion of their density with the composition...Na_(5+x) YAl_x Si_(4-x) O_(12) polycrystalline solid electrolytes are prepared by solid reactions. By the analyses of X-ray, TG and DTA, infrared spectu re, and SEM, the variasion of their density with the composition X are discussed Their electric conductivity in the temperature range of R. T. to 300℃ are determined with electric brigde, and their variasions with the compositions X and temperature are studied. Their activations in the tem- perature range 140℃ to 300℃ are calculated, and their variation with the compositons X are discussed.展开更多
Sodium-ion batteries(SIBs)have developed rapidly owing to the high natural abundance,wide distribution,and low cost of sodium.Among the various materials used in SIBs,sodium superion conductor(NASICON)-based electrode...Sodium-ion batteries(SIBs)have developed rapidly owing to the high natural abundance,wide distribution,and low cost of sodium.Among the various materials used in SIBs,sodium superion conductor(NASICON)-based electrode materials with remarkable structural stability and high ionic conductivity are one of the most promising candidates for sodium storage electrodes.Nevertheless,the relatively low electronic conductivity of these materials makes them display poor electrochemical performance,significantly limiting their practical application.In recent years,the strategies of enhancing the inherent conductivity of NASICON-based cathode materials have been extensively studied through coating the active material with a conductive carbon layer,reducing the size of the cathode material,combining the cathode material with various carbon materials,and doping elements in the bulk phase.In this paper,we review the recent progress in the development of NASICON-based cathode materials for SIBs in terms of their synthesis,characterization,functional mechanisms,and performance validation/optimization.The advantages and disadvantages of such SIB cathode materials are analyzed,and the relationship between electrode structures and electrochemical performance as well as the strategies for enhancing their electrical conductivity and structural stability is highlighted.Some technical challenges of NASICON-based cathode materials with respect to SIB performance are analyzed,and several future research directions are also proposed for overcoming the challenges toward practical applications.展开更多
As a novel class of porous crystalline solids,covalent organic frameworks(COFs)based electrolyte can combine the advantages of both inorganic and polymer electrolytes,leading to such as higher structural stability to ...As a novel class of porous crystalline solids,covalent organic frameworks(COFs)based electrolyte can combine the advantages of both inorganic and polymer electrolytes,leading to such as higher structural stability to inhibit lithium dendrites and better processing facility for improving interfacial contact.However,the ionic components of Li salt tend to be closely associated in the form of ion pairs or even ionic aggregates in the channel of COFs due to strong coulombic interactions,thus resulting in slow ionic diffusion dynamics and low ionic conductivity.Herein,we successfully designed and synthesized a novel single-ion conducting nitrogen hybrid conjugated skeleton(NCS)as all solid electrolyte,whose backbone is consisted with triazine and piperazine rings.A loose bonding between the triazine rings and cations would lower the energy barrier during ions transfer,and electrostatic forces with piperazine rings could“anchor”anions to increase the selectivity during ions transfer.Thus,the NCSelectrolyte exhibits excellent room temperature lithium-ion conductivity up to 1.49 mS·cm−1 and high transference number of 0.84 without employing any solvent,which to the best of our knowledge is one of the highest COF-based electrolytes so far.Moreover,the fabricated all-solid-state lithium metal batteries demonstrate highly attractive properties with quite stable cycling performance over 100 cycles with 82%capacity reservation at 0.5 C.展开更多
Rare-earth(RE)halide solid electrolytes(HSEs)have been an emerging research area due to their good electrochemical and mechanical properties for all-solid-state lithium batteries(ASSBs).However,only very limited types...Rare-earth(RE)halide solid electrolytes(HSEs)have been an emerging research area due to their good electrochemical and mechanical properties for all-solid-state lithium batteries(ASSBs).However,only very limited types of HSEs have been reported with high performance.In this work,tens of grams of RE-HSE Li_(3)TbBr_(6)(LTbB)was synthesized by a vacuum evaporationassisted method.The as-prepared LTbB displays a high ionic conductivity of 1.7 mS·cm^(-1),a wide electrochemical window,and good formability.Accordingly,the assembled solid lithium-tellurium(Li-Te)battery based on the LTbB HSE exhibits excellent cycling stability up to 600 cycles,which is superior to most previous reports.The processes and the chemicals during the discharge/charge of Li-Te batteries have been studied by various in situ and ex situ characterizations.Theoretical calculations have demonstrated the dominant conductivity contributions of the direct[octahedral]-[octahedral]([Oct]-[Oct])pathway for Li ion migrations in the electrolyte.The Tb sites guarantee efficient electron transfer while the Li 2s orbitals are not affected during migration,leading to a low activation barrier.Therefore,this successful fabrication and application of LTbB have offered a highly competitive solution for solid electrolytes in ASSBs,indicating the great potential of RE-based HSEs in energy devices.展开更多
Composition regulation of semiconductors can engineer their bandgaps and hence tune their properties. Herein, we report the first synthesis of ternary ZnxCd1-xS semiconductor nanorods by superionic conductor (AgRS)-...Composition regulation of semiconductors can engineer their bandgaps and hence tune their properties. Herein, we report the first synthesis of ternary ZnxCd1-xS semiconductor nanorods by superionic conductor (AgRS)-mediated growth with [(C4H9)2NCS2]2M (M = Zn, ca) as single-source precursors. The compositions of the ZnKCd1-xS nanorods are conveniently tuned over a wide range by adjusting the molar ratio of the corresponding precursors, leading to tunable bandgaps and hence the progressive evolution of the light absorption and photoluminescence spectra. The nanorods present well-distributed size and length, which are controlled by the uniform Ag2S nanoparticles and the fixed amount of the precursors. The results suggest the great potential of superionic conductor-mediated growth in composition regulation and bandgap engineering of chalcogenide nanowires/nanorods.展开更多
Superionic conductors(SCs)exhibiting low ion migration activation energy(Ea)are critical to the performance of electrochemical energy storage devices such as solid-state batteries and fuel cells.However,it is challeng...Superionic conductors(SCs)exhibiting low ion migration activation energy(Ea)are critical to the performance of electrochemical energy storage devices such as solid-state batteries and fuel cells.However,it is challenging to obtain Ea experimentally and theoretically,and the artificial intelligence(AI)method is expected to bring a breakthrough in predicting Ea.Here,we proposed an AI platform(named AI-IMAE)to predict the Ea of cation and anion conductors,including Li^(+),Na^(+),Ag^(+),Al^(3+),Mg^(2+),Zn^(2+),Cu^((2)+),F^(−),and O^(2−),which is~105 times faster than traditional methods.The proposed AI-IMAE is based on crystal graph neural network models and achieves a holistic average absolute error of 0.19 eV,a median absolute error of 0.09 eV,and a Pearson coefficient of 0.92.Using AI-IMAE,we rapidly discovered 316 promising SCs as solid-state electrolytes and 129 SCs as cathode materials from 144,595 inorganic compounds.AI-IMAE is expected to completely solve the challenge of time-consuming Ea prediction and blaze a new trail for large-scale studies of SCs with excellent performance.As more experimental and high-precision theoretical data become available,AI-IMAE can train custom models and transfer the existing models to new models through transfer learning to constantly meet more demands.展开更多
Li-argyrodites are promising solid electrolytes(SEs)for solid-state Li-ion batteries(SSLBs),but their large-scale industrial application remains a challenge.Conventional synthesis methods for SEs suffer from long reac...Li-argyrodites are promising solid electrolytes(SEs)for solid-state Li-ion batteries(SSLBs),but their large-scale industrial application remains a challenge.Conventional synthesis methods for SEs suffer from long reaction times and high energy consumption.In this study,we present a wet process for the synthesis of halogen-rich argyrodite Li_(6-a)PS_(5-a)Cl_(1+a)precursors(LPSCl_(1+a)-P,a=0–0.7)via an energysaving microwave-assisted process.Utilizing vibrational heating,we accelerate the formation of Liargyrodite precursor,even at excessive Cl-ion concentration,which significantly shortens the reaction time compared to traditional methods.After crystallization,we successfully synthesize the Liargyrodite,Li_(5.5)PS_(4.5)Cl_(1.5),which exhibits the superior ionic conductivity(7.8 mS cm^(-1))and low activation energy(0.23 eV)along with extremely low electric conductivity.The Li_(5.5)PS_(4.5)Cl_(1.5)exhibits superior Li compatibility owing to its high reversible striping/plating ability(over 5000 h)and high current density acceptability(1.3 mA cm^(-2)).It also exhibits excellent cycle reversibility and rate capability with NCM622 cathode(148.3 mA h g^(-1)at 1 C for 100 cycles with capacity retention of 85.6%).This finding suggests a potentially simpler and more scalable synthetic route to produce high-performance SEs.展开更多
Consideringα-RbCu_(4)Cl_(3)I_(2)is isostructural withα-RbAg4I5,in this work,we built a molecular dynamics simulation system of the former superionic conductor with an empirical pairwise potential model,which was ver...Consideringα-RbCu_(4)Cl_(3)I_(2)is isostructural withα-RbAg4I5,in this work,we built a molecular dynamics simulation system of the former superionic conductor with an empirical pairwise potential model,which was verified on the latter crystal,including long-ranging Coulomb,short-ranging Born-Mayer,charge-dipole,and dipole-quadrupole interactions.The corresponding parameters were collected from the crystal structure and several reports of interionic potentials in alkali halides.The coordination number of fixed ions was examined,and the dynamic distribution of dissociative Cu+was described by the radial distribution function.The diffusion behavior of the ions was evaluated with mean square displacements and velocity auto-correlation functions.The diffusion coefficient of copper ions obtained is(47.9±6.1)×10-7cm^(2)/s,which is approximately 37 times that of the simulation result(1.3±0.1)×10^(-7)cm^(2)/s of silver inα-RbAg4I5at room temperature.In this work,the diffusion coefficient of Cu+was first discussed by molecule simulation,while there are few experimental reports.展开更多
Based on the excellent sodium ion mobility of sodium superionic conductor structures,Na_(3)V_(2)(PO_(4))_(3)materials have become promising cathode materials in sodium-ion batteries(SIBs).However,inadequate electronic...Based on the excellent sodium ion mobility of sodium superionic conductor structures,Na_(3)V_(2)(PO_(4))_(3)materials have become promising cathode materials in sodium-ion batteries(SIBs).However,inadequate electronic transport of Na_(3)V_(2)(PO_(4))_(3)limits the cycling stability and rate performances in SIBs.In this work,high-performance conductive carbon-coated Na_(3)V_(2)(PO_(4))_(3)materials are obtained via a simple and facile ball-milling assisted solid-state method by utilizing citric acid as carbon sources.The carbon-coated composite electrodes display a high initial specific capacity of 111.6 mAh·g^(-1),and the specific capacity could retention reach 92.83%after 100 cycles at 1C with the high coulombic efficiency(99.95%).More importantly,the capacity of conductive carbon-coated nano-sized Na_(3)V_(2)(PO_(4))_(3)can remain 48.5 mAh·g^(-1) at 10℃after 3000 cycles(initial capacity of 101.2 mAh·g^(-1)).At the same time,high coulombic efficiency(near 100%)has little decay even at a high rate of 20℃during 1000 cycles,demonstrating the excellent cycling stability and remarkable rate performances,and showing potential in largescale productions and applications.展开更多
Copper sulfide Cu2S is a p-type semiconducting compound that has attracted great attentions in the thermoelectric (TE) community most recently. Considering the intrinsic ultralow lattice thermal conductivity, the en...Copper sulfide Cu2S is a p-type semiconducting compound that has attracted great attentions in the thermoelectric (TE) community most recently. Considering the intrinsic ultralow lattice thermal conductivity, the enhancement of TE performance in CuzS should be achieved through improving its electrical transport properties. To achieve this goal, lithium element was doped into CuzS in this study. A series of Cu2_xLixS samples with different Li contents (x = 0, 0.005, 0.010, 0.050, and 0.100) was synthesized by the melting-annealing method. When x 〈 0.05, the Cuz_xLixS samples are stable and pure phases, having the same monoclinic structure with the pristine Cu2S at room temperature. The electrical conductivities in the Cu2_xLixS samples are greatly improved with the Li-doping content increasing due to the enhanced carrier concentrations. Meanwhile, doping Li into CuzS increases the ionic activation energy and lessens the influence of mobile Cu ions on the heat-carrying phonons. Thus, the thermal conductivities of the Li-doped Cu2S samples increase. A maximal figure of merit (zT) of 0.84 at 900 K is obtained in Cul.99Lio.018, about 133% improvement as compared with that in Cu2S matrix.展开更多
Rechargeable batteries based on solid-state electrolytes are of great interest and importance for the next-generation energy storage due to their high energy output and improved safety.For building the solid-state bat...Rechargeable batteries based on solid-state electrolytes are of great interest and importance for the next-generation energy storage due to their high energy output and improved safety.For building the solid-state batteries,Na_(3)Zr_(2)Si_(2)PO_(12)(NZSP)represents a promising candidate as it features high chemical stability against air exposure and a high Na^(+)conductivity.NZSP pellets were usually calcined at a high temperature,and the high volatility of Na and P elements easily led to the formation of impurity phase.In this work,the effects of calcination temperature and stoichiometry on the phase purity and ionic conductivity of the NZSP electrolyte were studied.At an elevated sintering temperature,the NZSP electrolyte showed a high ionic conductivity owing to decreased porosity,and the highest ionic conductivity at 30℃was observed to be 2.75×10^(-5)S·cm^(-1)with an activation energy of 0.41 eV.For the stoichiometry,the introduction of 5 mol%excessive P results in formation of more Na_(3)PO_(4) and glass-like phase at the grain boundary,which caused the blurred grain boundary and reduced grain barrier,and effectively suppressed Na dendrite growth,then accounted for improved cycling performance of a Na‖Na symmetric cell.Our work provided insights on reasonable design and preparation of NZSP electrolyte towards practical realization of solid-state Na-metal batteries.展开更多
Cu-and Ag-based superionic conductors are promising thermoelectric materials due to their good electrical properties and intrinsically low thermal conductivity. However, the poor electrical and thermal stability restr...Cu-and Ag-based superionic conductors are promising thermoelectric materials due to their good electrical properties and intrinsically low thermal conductivity. However, the poor electrical and thermal stability restrict their application. In this work, n-type pure phase Ag_(2) Te compound is synthesized by simply grinding elemental powders at room temperature and compacted by spark plasma sintering. It is found that, because of the migration of Ag+after the phase transition around 425 K, submicron pores are formed inside the samples during the electrical performance measurement, resulting in poor electrical stability and repeatability of Ag_(2) Te samples. However, Pb-doped Ag_(2-x)Pb_(x)Te(x = 0–0.05) specimens exhibit improved electrical stability by the precipitation of the secondary phase Pb Te in the Ag_(2) Te matrix, which is confirmed via cyclic electrical property measurement and microstructure characterization.A maximum z T = 0.72 is obtained at 570 K for x = 0.03 mainly due to the increased power factor.展开更多
Na superionic conductor(NASICON) nanoparticles were synthesized by a modified sol-gel method and sintered at a temperature range of 800--1000℃. The performance of the samples was characterized by the analysis metho...Na superionic conductor(NASICON) nanoparticles were synthesized by a modified sol-gel method and sintered at a temperature range of 800--1000℃. The performance of the samples was characterized by the analysis methods of X-ray diffraction(XRD), Fourier transform infrared spectroscopy(FTIR), and transmission electron microscopy(TEM) as well as conductivity measurement. Compared with those sintered at other temperatures, the NASICON material sintered at 900 ℃ had the best crystalline structure and higher conductivity.展开更多
Superionic transition(SIT)is an extraordinary phenomenon where a compound attains high ionic conductivity through anomalous disordering of mobile-ion sublattice.Comprehending SIT offers notable prospects for the advan...Superionic transition(SIT)is an extraordinary phenomenon where a compound attains high ionic conductivity through anomalous disordering of mobile-ion sublattice.Comprehending SIT offers notable prospects for the advancement of superionic conductors(SICs)for diverse applications.However,the investigation of SIT is impeded by its intricate and stochastic characteristics,coupled with the absence of adequate methods for characterizing,quantifying,and analyzing its microscopic properties.Here we show that the SIT can be discerned through the dynamic signatures of disordering events underlying the increase in ionic conductivity.The adoption of a dynamic perspective as opposed to the conventional treatment of equilibrium properties brings significant advantage to scrutinize the microscopic characteristics of SIT.Our results show the SIT in the prototypical family of fluorite compounds is characterized by the scaleinvariant disordering dynamics independent of temperature or extent of disorder.The observation of scale-invariance in the absence of external tuning implies that the superionic conduction is self-tuned to criticality by intrinsic dynamics.The connection between ionic diffusion and self-organized criticality provides a novel platform for understanding,analyzing,and manipulating SIT towards better SICs.展开更多
High-entropy materials(HEMs)have emerged as promising frontiers in electrochemical energy storage systems because of their unique compositional versatility and tunable physicochemical properties.By incorporating multi...High-entropy materials(HEMs)have emerged as promising frontiers in electrochemical energy storage systems because of their unique compositional versatility and tunable physicochemical properties.By incorporating multiple principal elements with distinct chemical functionalities,HEMs exhibit tailored electronic/ionic configurations,enabling unprecedented structural adaptability and application potential.This review systematically analyzes the fundamental principles underpinning the entropy-driven optimization of the electrochemical performance of battery materials,with a focus on the interplay between compositional disorder and functional enhancements.For the first time,we comprehensively review recent advances in Na superionic conductor(NASICON)-type HEMs spanning cathodes,solid-state electrolytes,and anodes.Through investigations,the profound impacts of high-entropy strategies on critical material parameters,including lattice strain modulation,interfacial stability reinforcement,charge-transfer kinetics optimization,and ion transport pathway regulation,were elucidated.Furthermore,we evaluate the current challenges in high-entropy NASICON-type battery design and propose actionable strategies for advancing next-generation high-entropy battery systems,emphasizing rational compositional screening,entropy-stabilized interface design,and machine learning-assisted property prediction.展开更多
As an ion conductor, the Al-doped Li1+xAlxGe2-x(PO4)3(LAGP) demonstrates the superionic Li diffusion behavior, however,without the convinced verifications. In this context, the density functional theory(DFT) calculati...As an ion conductor, the Al-doped Li1+xAlxGe2-x(PO4)3(LAGP) demonstrates the superionic Li diffusion behavior, however,without the convinced verifications. In this context, the density functional theory(DFT) calculations are employed to clarify the structural origin of the fast Li ion migration kinetics in LAGP solid electrolytes. The calculated results show that doping of Al leads to an emerging high-energy 36 f Li site, which plays an important role in promoting the Li diffusion and can largely lower the Li ion diffusion energy barrier. Moreover, the Li/Al antisite defect is investigated firstly, with which the Li ions are excited to occupy a relatively high energy site in LAGP. The obvious local structural distortion by Li/Al antisite results in the coordination change upon Li diffusion(lattice field distortion), which facilitates the Li diffusion significantly and is probably the main reason to account for the superionic diffusion phenomenon. Therefore, the occupation of Li at high-energy sites should be an effective method to establish the fast Li diffusion, which implies a rewarding avenue to build better Li-ion batteries.展开更多
Sodium superionic conductor(NASICON)-type compounds have been regarded as promising cathodes for sodium-ion batteries(SIBs)due to their favorable ionic conductivity and robust structural stability.However,their high c...Sodium superionic conductor(NASICON)-type compounds have been regarded as promising cathodes for sodium-ion batteries(SIBs)due to their favorable ionic conductivity and robust structural stability.However,their high cost and relatively low energy density restrict their further practical application,which can be tailored by widening the operating voltages with earth-abundant elements such as Mn.Here,we propose a rational strategy of infusing Mn element in NASICON frameworks with sufficiently mobile sodium ions that enhances the redox voltage and ionic migration activity.The optimized structure of Na3.5Mn0.5V1.5(PO4)3/C is achieved and investigated systematically to be a durable cathode(76.6%capacity retention over 5,000 cycles at 20 C)for SIBs,which exhibits high reversible capacity(113.1 mAh·g^−1 at 0.5 C)with relatively low volume change(7.6%).Importantly,its high-areal-loading and temperature-resistant sodium ion storage properties are evaluated,and the full-cell configuration is demonstrated.This work indicates that this Na3.5Mn0.5V1.5(PO4)3/C composite could be a promising cathode candidate for SIBs.展开更多
Sulfides have been widely acknowledged as one of the most promising solid electrolytes(SEs)for all-solid-state batteries(ASSBs)due to their superior ionic conductivity and favourable mechanical properties.However,the ...Sulfides have been widely acknowledged as one of the most promising solid electrolytes(SEs)for all-solid-state batteries(ASSBs)due to their superior ionic conductivity and favourable mechanical properties.However,the extremely poor air stability of sulfide SEs leads to destroyed structure/performance and release of toxic H_(2)S gas,which greatly limits mass-production/practical application of sulfide SEs and ASSBs.This review is designed to serve as an all-inclusive handbook for studying this critical issue.First,the research history and milestone breakthroughs of this field are reviewed,and this is followed by an in-depth elaboration of the theoretical paradigms that have been developed thus far,including the random network theory of glasses,hard and soft acids and bases(HSAB)theory,thermodynamic analysis and kinetics of interfacial reactions.Moreover,the characterization of air stability is reviewed from the perspectives of H2S generation,morphology evolution,mass change,component/structure variations and electrochemical performance.Furthermore,effective strategies for improving the air stabilities of sulfide SEs are highlighted,including H_(2)S absorbents,elemental substitution,design of new materials,surface engineering and sulfide-polymer composite electrolytes.Finally,future research directions are proposed for benign development of air stability for sulfide SEs and ASSBs.展开更多
The recent report of near-ambient superconductivity in the nitrogen-doped lutetium hydride has attracted considerable attention.Subsequent follow-up studies confirmed the pressure-induced color changes in both N-free ...The recent report of near-ambient superconductivity in the nitrogen-doped lutetium hydride has attracted considerable attention.Subsequent follow-up studies confirmed the pressure-induced color changes in both N-free and N-doped LuH_(2) but failed to reproduce superconductivity. It remains a puzzle why the samples in the original report exhibited pronounced resistance anomaly reminiscent of the superconducting transition. Here, we show that percolation of metallic grains with high conductivity through the insulating surfaces in cold-pressed LuH_(2) samples can occasionally produce sharp resistance drops, which even display magnetic field and/or current dependences but stay far from zero resistance. The insulating surface of LuH2grain should be attributed to the modification of hydrogen stoichiometry or the contamination by oxygen/nitrogen, resulting in an increase of resistance by over six orders of magnitude. Such an effect is more significant than that discovered recently in LaH_(3±x), which may indicate that LuH_(2) can be a potential superionic conductor. Our results call for caution in asserting the resistivity drops as superconductivity and invalidate the background subtraction in analyzing the corresponding resistance data.展开更多
文摘Lithium halide solid-state electrolytes,with the general formula of Li_(3±m)M_(n)X_(6),are regarded as the promising families of electrolyte material for all solid-state lithium-ion batteries because of the relatively good ionic conductivity,high oxidative stability against high-voltage oxide cathodes,and broad electrochemical stability window[1].Here,M stands for one or multiple metal elements and X for one or multiple halogen elements.
文摘Na_(5+x) YAl_x Si_(4-x) O_(12) polycrystalline solid electrolytes are prepared by solid reactions. By the analyses of X-ray, TG and DTA, infrared spectu re, and SEM, the variasion of their density with the composition X are discussed Their electric conductivity in the temperature range of R. T. to 300℃ are determined with electric brigde, and their variasions with the compositions X and temperature are studied. Their activations in the tem- perature range 140℃ to 300℃ are calculated, and their variation with the compositons X are discussed.
基金the National Natural Science Foundation of China(Nos.51602193,21601122,21905169)the Belt and Road Initiatives International Cooperation Project(No.20640770300)+5 种基金the Shanghai“Chen Guang”Project(16CG63)the Shanghai Local Universities Capacity Building Project of Science and Technology Innovation Action Program(21010501700)the Shanghai Sailing Program(No.18YF1408600)the Fundamental Research Funds for the Central Universities(WD1817002)the EPSRC(EP/R023581/1,EP/P009050/1,EP/V027433/1)the Royal Society(RGS/R1/211080).
文摘Sodium-ion batteries(SIBs)have developed rapidly owing to the high natural abundance,wide distribution,and low cost of sodium.Among the various materials used in SIBs,sodium superion conductor(NASICON)-based electrode materials with remarkable structural stability and high ionic conductivity are one of the most promising candidates for sodium storage electrodes.Nevertheless,the relatively low electronic conductivity of these materials makes them display poor electrochemical performance,significantly limiting their practical application.In recent years,the strategies of enhancing the inherent conductivity of NASICON-based cathode materials have been extensively studied through coating the active material with a conductive carbon layer,reducing the size of the cathode material,combining the cathode material with various carbon materials,and doping elements in the bulk phase.In this paper,we review the recent progress in the development of NASICON-based cathode materials for SIBs in terms of their synthesis,characterization,functional mechanisms,and performance validation/optimization.The advantages and disadvantages of such SIB cathode materials are analyzed,and the relationship between electrode structures and electrochemical performance as well as the strategies for enhancing their electrical conductivity and structural stability is highlighted.Some technical challenges of NASICON-based cathode materials with respect to SIB performance are analyzed,and several future research directions are also proposed for overcoming the challenges toward practical applications.
基金We thank the financial support from the Natural Science Foundation of Shandong(Nos.ZR2020JQ21 and ZR2021ZD24)National Natural Science Foundation of China(Nos.51873231 and 22138013)+1 种基金Taishan Scholar Project(No.tsqn201909062)the Technology Foundation of Shandong Energy Group Co.,LTD.(YKZB2020-176,YKKJ2019AJ08JG-R63)。
文摘As a novel class of porous crystalline solids,covalent organic frameworks(COFs)based electrolyte can combine the advantages of both inorganic and polymer electrolytes,leading to such as higher structural stability to inhibit lithium dendrites and better processing facility for improving interfacial contact.However,the ionic components of Li salt tend to be closely associated in the form of ion pairs or even ionic aggregates in the channel of COFs due to strong coulombic interactions,thus resulting in slow ionic diffusion dynamics and low ionic conductivity.Herein,we successfully designed and synthesized a novel single-ion conducting nitrogen hybrid conjugated skeleton(NCS)as all solid electrolyte,whose backbone is consisted with triazine and piperazine rings.A loose bonding between the triazine rings and cations would lower the energy barrier during ions transfer,and electrostatic forces with piperazine rings could“anchor”anions to increase the selectivity during ions transfer.Thus,the NCSelectrolyte exhibits excellent room temperature lithium-ion conductivity up to 1.49 mS·cm−1 and high transference number of 0.84 without employing any solvent,which to the best of our knowledge is one of the highest COF-based electrolytes so far.Moreover,the fabricated all-solid-state lithium metal batteries demonstrate highly attractive properties with quite stable cycling performance over 100 cycles with 82%capacity reservation at 0.5 C.
基金This work was supported by the National Key R&D Program of China(No.2021YFA1501101)the Natural Science Foundation of China(No.21971117)+11 种基金Functional Research Funds for the Central Universities,Nankai University(No.63186005)Tianjin Key Lab for Rare Earth Materials and Applications(No.ZB19500202)the National Natural Science Foundation of China/Research Grant Council Joint Research Scheme(No.N_PolyU502/21)111 Project(No.B18030)from ChinaOutstanding Youth Project of Tianjin Natural Science Foundation(No.20JCJQJC00130)Key Project of Tianjin Natural Science Foundation(No.20JCZDJC00650)the Projects of Strategic Importance of The Hong Kong Polytechnic University(No.1-ZE2V)Shenzhen Fundamental Research Scheme-General Program(No.JCYJ20220531090807017)National Postdoctoral Program for Innovative Talents(No.BX20220157)Open Foundation of State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures(No.2022GXYSOF07)Haihe Laboratory of Sustainable Chemical Transformations.B.L.H.also thanks the support from Research Centre for Carbon-Strategic Catalysis(RCCSC),Research Institute for Smart Energy(RISE)Research Institute for Intelligent Wearable Systems(RI-IWEAR)of the Hong Kong Polytechnic University.
文摘Rare-earth(RE)halide solid electrolytes(HSEs)have been an emerging research area due to their good electrochemical and mechanical properties for all-solid-state lithium batteries(ASSBs).However,only very limited types of HSEs have been reported with high performance.In this work,tens of grams of RE-HSE Li_(3)TbBr_(6)(LTbB)was synthesized by a vacuum evaporationassisted method.The as-prepared LTbB displays a high ionic conductivity of 1.7 mS·cm^(-1),a wide electrochemical window,and good formability.Accordingly,the assembled solid lithium-tellurium(Li-Te)battery based on the LTbB HSE exhibits excellent cycling stability up to 600 cycles,which is superior to most previous reports.The processes and the chemicals during the discharge/charge of Li-Te batteries have been studied by various in situ and ex situ characterizations.Theoretical calculations have demonstrated the dominant conductivity contributions of the direct[octahedral]-[octahedral]([Oct]-[Oct])pathway for Li ion migrations in the electrolyte.The Tb sites guarantee efficient electron transfer while the Li 2s orbitals are not affected during migration,leading to a low activation barrier.Therefore,this successful fabrication and application of LTbB have offered a highly competitive solution for solid electrolytes in ASSBs,indicating the great potential of RE-based HSEs in energy devices.
文摘Composition regulation of semiconductors can engineer their bandgaps and hence tune their properties. Herein, we report the first synthesis of ternary ZnxCd1-xS semiconductor nanorods by superionic conductor (AgRS)-mediated growth with [(C4H9)2NCS2]2M (M = Zn, ca) as single-source precursors. The compositions of the ZnKCd1-xS nanorods are conveniently tuned over a wide range by adjusting the molar ratio of the corresponding precursors, leading to tunable bandgaps and hence the progressive evolution of the light absorption and photoluminescence spectra. The nanorods present well-distributed size and length, which are controlled by the uniform Ag2S nanoparticles and the fixed amount of the precursors. The results suggest the great potential of superionic conductor-mediated growth in composition regulation and bandgap engineering of chalcogenide nanowires/nanorods.
基金J.L.thanks financial supports from the National Key R&D Program of China(No.2021YFC2100100)the National Natural Science Foundation of China(No.21901157)+1 种基金the SJTU Global Strategic Partnership Fund(No.2020 SJTU-HUJI)the National Key Laboratory of Science and Technology on Micro/Nano Fabrication,China.
文摘Superionic conductors(SCs)exhibiting low ion migration activation energy(Ea)are critical to the performance of electrochemical energy storage devices such as solid-state batteries and fuel cells.However,it is challenging to obtain Ea experimentally and theoretically,and the artificial intelligence(AI)method is expected to bring a breakthrough in predicting Ea.Here,we proposed an AI platform(named AI-IMAE)to predict the Ea of cation and anion conductors,including Li^(+),Na^(+),Ag^(+),Al^(3+),Mg^(2+),Zn^(2+),Cu^((2)+),F^(−),and O^(2−),which is~105 times faster than traditional methods.The proposed AI-IMAE is based on crystal graph neural network models and achieves a holistic average absolute error of 0.19 eV,a median absolute error of 0.09 eV,and a Pearson coefficient of 0.92.Using AI-IMAE,we rapidly discovered 316 promising SCs as solid-state electrolytes and 129 SCs as cathode materials from 144,595 inorganic compounds.AI-IMAE is expected to completely solve the challenge of time-consuming Ea prediction and blaze a new trail for large-scale studies of SCs with excellent performance.As more experimental and high-precision theoretical data become available,AI-IMAE can train custom models and transfer the existing models to new models through transfer learning to constantly meet more demands.
基金supported by the Basic Science Research Program through National Research Foundation of Korea(NRF)grant funded by the Ministry of Science and ICT(RS-2022-NR070534)supported by the National Research Council of Science&Technology(NST)grant by the Korea government(MSIT)(2710024139)。
文摘Li-argyrodites are promising solid electrolytes(SEs)for solid-state Li-ion batteries(SSLBs),but their large-scale industrial application remains a challenge.Conventional synthesis methods for SEs suffer from long reaction times and high energy consumption.In this study,we present a wet process for the synthesis of halogen-rich argyrodite Li_(6-a)PS_(5-a)Cl_(1+a)precursors(LPSCl_(1+a)-P,a=0–0.7)via an energysaving microwave-assisted process.Utilizing vibrational heating,we accelerate the formation of Liargyrodite precursor,even at excessive Cl-ion concentration,which significantly shortens the reaction time compared to traditional methods.After crystallization,we successfully synthesize the Liargyrodite,Li_(5.5)PS_(4.5)Cl_(1.5),which exhibits the superior ionic conductivity(7.8 mS cm^(-1))and low activation energy(0.23 eV)along with extremely low electric conductivity.The Li_(5.5)PS_(4.5)Cl_(1.5)exhibits superior Li compatibility owing to its high reversible striping/plating ability(over 5000 h)and high current density acceptability(1.3 mA cm^(-2)).It also exhibits excellent cycle reversibility and rate capability with NCM622 cathode(148.3 mA h g^(-1)at 1 C for 100 cycles with capacity retention of 85.6%).This finding suggests a potentially simpler and more scalable synthetic route to produce high-performance SEs.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.12375285 and U2430205)the China Postdoctoral Science Foundation(Grant No.2022M722439)。
文摘Consideringα-RbCu_(4)Cl_(3)I_(2)is isostructural withα-RbAg4I5,in this work,we built a molecular dynamics simulation system of the former superionic conductor with an empirical pairwise potential model,which was verified on the latter crystal,including long-ranging Coulomb,short-ranging Born-Mayer,charge-dipole,and dipole-quadrupole interactions.The corresponding parameters were collected from the crystal structure and several reports of interionic potentials in alkali halides.The coordination number of fixed ions was examined,and the dynamic distribution of dissociative Cu+was described by the radial distribution function.The diffusion behavior of the ions was evaluated with mean square displacements and velocity auto-correlation functions.The diffusion coefficient of copper ions obtained is(47.9±6.1)×10-7cm^(2)/s,which is approximately 37 times that of the simulation result(1.3±0.1)×10^(-7)cm^(2)/s of silver inα-RbAg4I5at room temperature.In this work,the diffusion coefficient of Cu+was first discussed by molecule simulation,while there are few experimental reports.
基金This work was financially supported by the National Key Research and Development Program of China(No.2017YFB0102000)Major Program of the National Natural Science Foundation of China(No.51890865)the State Key Program of National Natural Science of China(No.61835014).
文摘Based on the excellent sodium ion mobility of sodium superionic conductor structures,Na_(3)V_(2)(PO_(4))_(3)materials have become promising cathode materials in sodium-ion batteries(SIBs).However,inadequate electronic transport of Na_(3)V_(2)(PO_(4))_(3)limits the cycling stability and rate performances in SIBs.In this work,high-performance conductive carbon-coated Na_(3)V_(2)(PO_(4))_(3)materials are obtained via a simple and facile ball-milling assisted solid-state method by utilizing citric acid as carbon sources.The carbon-coated composite electrodes display a high initial specific capacity of 111.6 mAh·g^(-1),and the specific capacity could retention reach 92.83%after 100 cycles at 1C with the high coulombic efficiency(99.95%).More importantly,the capacity of conductive carbon-coated nano-sized Na_(3)V_(2)(PO_(4))_(3)can remain 48.5 mAh·g^(-1) at 10℃after 3000 cycles(initial capacity of 101.2 mAh·g^(-1)).At the same time,high coulombic efficiency(near 100%)has little decay even at a high rate of 20℃during 1000 cycles,demonstrating the excellent cycling stability and remarkable rate performances,and showing potential in largescale productions and applications.
基金financially supported by the National Natural Science Foundation of China (Nos. 51472262 and 51625205)the Key Research Program of Chinese Academy of Sciences (No.KFZD-SW-421)the Shanghai Government (No. 15JC1400301)
文摘Copper sulfide Cu2S is a p-type semiconducting compound that has attracted great attentions in the thermoelectric (TE) community most recently. Considering the intrinsic ultralow lattice thermal conductivity, the enhancement of TE performance in CuzS should be achieved through improving its electrical transport properties. To achieve this goal, lithium element was doped into CuzS in this study. A series of Cu2_xLixS samples with different Li contents (x = 0, 0.005, 0.010, 0.050, and 0.100) was synthesized by the melting-annealing method. When x 〈 0.05, the Cuz_xLixS samples are stable and pure phases, having the same monoclinic structure with the pristine Cu2S at room temperature. The electrical conductivities in the Cu2_xLixS samples are greatly improved with the Li-doping content increasing due to the enhanced carrier concentrations. Meanwhile, doping Li into CuzS increases the ionic activation energy and lessens the influence of mobile Cu ions on the heat-carrying phonons. Thus, the thermal conductivities of the Li-doped Cu2S samples increase. A maximal figure of merit (zT) of 0.84 at 900 K is obtained in Cul.99Lio.018, about 133% improvement as compared with that in Cu2S matrix.
基金financially supported by the National Natural Science Foundation of China(Nos.51902238 and 52172234)the Fundamental Research Funds for the Central Universities(Nos.2020IVA069,2020IVB043 and 2021IVA020B)
文摘Rechargeable batteries based on solid-state electrolytes are of great interest and importance for the next-generation energy storage due to their high energy output and improved safety.For building the solid-state batteries,Na_(3)Zr_(2)Si_(2)PO_(12)(NZSP)represents a promising candidate as it features high chemical stability against air exposure and a high Na^(+)conductivity.NZSP pellets were usually calcined at a high temperature,and the high volatility of Na and P elements easily led to the formation of impurity phase.In this work,the effects of calcination temperature and stoichiometry on the phase purity and ionic conductivity of the NZSP electrolyte were studied.At an elevated sintering temperature,the NZSP electrolyte showed a high ionic conductivity owing to decreased porosity,and the highest ionic conductivity at 30℃was observed to be 2.75×10^(-5)S·cm^(-1)with an activation energy of 0.41 eV.For the stoichiometry,the introduction of 5 mol%excessive P results in formation of more Na_(3)PO_(4) and glass-like phase at the grain boundary,which caused the blurred grain boundary and reduced grain barrier,and effectively suppressed Na dendrite growth,then accounted for improved cycling performance of a Na‖Na symmetric cell.Our work provided insights on reasonable design and preparation of NZSP electrolyte towards practical realization of solid-state Na-metal batteries.
基金financially supported by the National Science Fund for Distinguished Young Scholars (No. 51725102)the Natural Science Foundation of China (Nos. 51871199, 51861145305)。
文摘Cu-and Ag-based superionic conductors are promising thermoelectric materials due to their good electrical properties and intrinsically low thermal conductivity. However, the poor electrical and thermal stability restrict their application. In this work, n-type pure phase Ag_(2) Te compound is synthesized by simply grinding elemental powders at room temperature and compacted by spark plasma sintering. It is found that, because of the migration of Ag+after the phase transition around 425 K, submicron pores are formed inside the samples during the electrical performance measurement, resulting in poor electrical stability and repeatability of Ag_(2) Te samples. However, Pb-doped Ag_(2-x)Pb_(x)Te(x = 0–0.05) specimens exhibit improved electrical stability by the precipitation of the secondary phase Pb Te in the Ag_(2) Te matrix, which is confirmed via cyclic electrical property measurement and microstructure characterization.A maximum z T = 0.72 is obtained at 570 K for x = 0.03 mainly due to the increased power factor.
基金Supported by the Major International Collaborative Project of the National Natural Science Foundation of China(No. 60574096)the Distinguished Young Scholars(No.60625301).
文摘Na superionic conductor(NASICON) nanoparticles were synthesized by a modified sol-gel method and sintered at a temperature range of 800--1000℃. The performance of the samples was characterized by the analysis methods of X-ray diffraction(XRD), Fourier transform infrared spectroscopy(FTIR), and transmission electron microscopy(TEM) as well as conductivity measurement. Compared with those sintered at other temperatures, the NASICON material sintered at 900 ℃ had the best crystalline structure and higher conductivity.
文摘Superionic transition(SIT)is an extraordinary phenomenon where a compound attains high ionic conductivity through anomalous disordering of mobile-ion sublattice.Comprehending SIT offers notable prospects for the advancement of superionic conductors(SICs)for diverse applications.However,the investigation of SIT is impeded by its intricate and stochastic characteristics,coupled with the absence of adequate methods for characterizing,quantifying,and analyzing its microscopic properties.Here we show that the SIT can be discerned through the dynamic signatures of disordering events underlying the increase in ionic conductivity.The adoption of a dynamic perspective as opposed to the conventional treatment of equilibrium properties brings significant advantage to scrutinize the microscopic characteristics of SIT.Our results show the SIT in the prototypical family of fluorite compounds is characterized by the scaleinvariant disordering dynamics independent of temperature or extent of disorder.The observation of scale-invariance in the absence of external tuning implies that the superionic conduction is self-tuned to criticality by intrinsic dynamics.The connection between ionic diffusion and self-organized criticality provides a novel platform for understanding,analyzing,and manipulating SIT towards better SICs.
基金financial support from the Sichuan Science and Technology Department Program(Nos.2025ZNSFSC0100,2023YFG0082,and 2023ZHJY0019)the Chengdu Science and Technology Project(Nos.2024-YF08-00031-GX and YF0800062-GX).
文摘High-entropy materials(HEMs)have emerged as promising frontiers in electrochemical energy storage systems because of their unique compositional versatility and tunable physicochemical properties.By incorporating multiple principal elements with distinct chemical functionalities,HEMs exhibit tailored electronic/ionic configurations,enabling unprecedented structural adaptability and application potential.This review systematically analyzes the fundamental principles underpinning the entropy-driven optimization of the electrochemical performance of battery materials,with a focus on the interplay between compositional disorder and functional enhancements.For the first time,we comprehensively review recent advances in Na superionic conductor(NASICON)-type HEMs spanning cathodes,solid-state electrolytes,and anodes.Through investigations,the profound impacts of high-entropy strategies on critical material parameters,including lattice strain modulation,interfacial stability reinforcement,charge-transfer kinetics optimization,and ion transport pathway regulation,were elucidated.Furthermore,we evaluate the current challenges in high-entropy NASICON-type battery design and propose actionable strategies for advancing next-generation high-entropy battery systems,emphasizing rational compositional screening,entropy-stabilized interface design,and machine learning-assisted property prediction.
基金supported by the National Key Research and Development Program of China (Grant No. 2019YFA0705700)National Natural Science Foundation of China (Grant No. 11704019)+1 种基金the Hundreds of Talents Program of Sun Yat-sen Universitythe Fundamental Research Funds for the Central Universities。
文摘As an ion conductor, the Al-doped Li1+xAlxGe2-x(PO4)3(LAGP) demonstrates the superionic Li diffusion behavior, however,without the convinced verifications. In this context, the density functional theory(DFT) calculations are employed to clarify the structural origin of the fast Li ion migration kinetics in LAGP solid electrolytes. The calculated results show that doping of Al leads to an emerging high-energy 36 f Li site, which plays an important role in promoting the Li diffusion and can largely lower the Li ion diffusion energy barrier. Moreover, the Li/Al antisite defect is investigated firstly, with which the Li ions are excited to occupy a relatively high energy site in LAGP. The obvious local structural distortion by Li/Al antisite results in the coordination change upon Li diffusion(lattice field distortion), which facilitates the Li diffusion significantly and is probably the main reason to account for the superionic diffusion phenomenon. Therefore, the occupation of Li at high-energy sites should be an effective method to establish the fast Li diffusion, which implies a rewarding avenue to build better Li-ion batteries.
基金This work was supported by the National Natural Science Foundation of China(Nos.51872334 and 51932011)the Innovation-Driven Project of Central South University(No.2020CX024).
文摘Sodium superionic conductor(NASICON)-type compounds have been regarded as promising cathodes for sodium-ion batteries(SIBs)due to their favorable ionic conductivity and robust structural stability.However,their high cost and relatively low energy density restrict their further practical application,which can be tailored by widening the operating voltages with earth-abundant elements such as Mn.Here,we propose a rational strategy of infusing Mn element in NASICON frameworks with sufficiently mobile sodium ions that enhances the redox voltage and ionic migration activity.The optimized structure of Na3.5Mn0.5V1.5(PO4)3/C is achieved and investigated systematically to be a durable cathode(76.6%capacity retention over 5,000 cycles at 20 C)for SIBs,which exhibits high reversible capacity(113.1 mAh·g^−1 at 0.5 C)with relatively low volume change(7.6%).Importantly,its high-areal-loading and temperature-resistant sodium ion storage properties are evaluated,and the full-cell configuration is demonstrated.This work indicates that this Na3.5Mn0.5V1.5(PO4)3/C composite could be a promising cathode candidate for SIBs.
基金supported by the Key Program-Automobile Joint Fund of the National Natural Science Foundation of China(Grant No.U1964205)the Key R&D Project funded by the Department of Science and Technology of Jiangsu Province(Grant No.BE2020003)+4 种基金the General Program of the National Natural Science Foundation of China(Grant No.51972334)the General Program of the National Natural Science Foundation of Beijing(Grant No.2202058)the Cultivation Project of Leading Innovative Experts in Changzhou City(CQ20210003)the National Overseas High-Level Expert Recruitment Program(Grant No.E1JF021E11)the Talent Program of the Chinese Academy of Sciences,“Scientist Studio Program Funding”from the Yangtze River Delta Physics Research Center and the Tianmu Lake Institute of Advanced Energy Storage Technologies(Grant No.TIES-SS0001).
文摘Sulfides have been widely acknowledged as one of the most promising solid electrolytes(SEs)for all-solid-state batteries(ASSBs)due to their superior ionic conductivity and favourable mechanical properties.However,the extremely poor air stability of sulfide SEs leads to destroyed structure/performance and release of toxic H_(2)S gas,which greatly limits mass-production/practical application of sulfide SEs and ASSBs.This review is designed to serve as an all-inclusive handbook for studying this critical issue.First,the research history and milestone breakthroughs of this field are reviewed,and this is followed by an in-depth elaboration of the theoretical paradigms that have been developed thus far,including the random network theory of glasses,hard and soft acids and bases(HSAB)theory,thermodynamic analysis and kinetics of interfacial reactions.Moreover,the characterization of air stability is reviewed from the perspectives of H2S generation,morphology evolution,mass change,component/structure variations and electrochemical performance.Furthermore,effective strategies for improving the air stabilities of sulfide SEs are highlighted,including H_(2)S absorbents,elemental substitution,design of new materials,surface engineering and sulfide-polymer composite electrolytes.Finally,future research directions are proposed for benign development of air stability for sulfide SEs and ASSBs.
基金supported by the National Natural Science Foundation of China (Grant Nos. 12025408, 11921004, 11834016, and 11888101)the Beijing Natural Science Foundation (Grant No. Z190008)+1 种基金the National Key R&D Program of China (Grant Nos. 2021YFA1400200, and 2021YFA1400300)the Strategic Priority Research Program of CAS (Grant No. XDB33000000)。
文摘The recent report of near-ambient superconductivity in the nitrogen-doped lutetium hydride has attracted considerable attention.Subsequent follow-up studies confirmed the pressure-induced color changes in both N-free and N-doped LuH_(2) but failed to reproduce superconductivity. It remains a puzzle why the samples in the original report exhibited pronounced resistance anomaly reminiscent of the superconducting transition. Here, we show that percolation of metallic grains with high conductivity through the insulating surfaces in cold-pressed LuH_(2) samples can occasionally produce sharp resistance drops, which even display magnetic field and/or current dependences but stay far from zero resistance. The insulating surface of LuH2grain should be attributed to the modification of hydrogen stoichiometry or the contamination by oxygen/nitrogen, resulting in an increase of resistance by over six orders of magnitude. Such an effect is more significant than that discovered recently in LaH_(3±x), which may indicate that LuH_(2) can be a potential superionic conductor. Our results call for caution in asserting the resistivity drops as superconductivity and invalidate the background subtraction in analyzing the corresponding resistance data.