The symmetric and the asymmetric double-chain Bose-Hubbard Models( BHMs) are studied by the mean-field theory. By using Landau's quantum phase transition theory,phase diagrams for systems with different hopping en...The symmetric and the asymmetric double-chain Bose-Hubbard Models( BHMs) are studied by the mean-field theory. By using Landau's quantum phase transition theory,phase diagrams for systems with different hopping energies and repulsive interactions are obtained. Thereby,Mott-insulator-superfluid( MISF)phase transition boundaries are determined. Our results show that tunneling effects between two chains provide additional channels for particles hopping between corresponding optical lattice sites of different chains,which makes easier for systems to transit from MI to SF phase. The two-site parity function is also utilized to investigate the properties of the system near the quantum phase transit point.We found that the increase of inter-chain hopping will reinforce the tunneling effects between two chains,and reduce the intrachain tunneling effects within the same chain.展开更多
We investigate the strongly interacting lattice Bose gases on a lattice with two-body interaction of nearest neighbors characterized by pair tunneling. The excitation spectrum and the depletion of the condensate of la...We investigate the strongly interacting lattice Bose gases on a lattice with two-body interaction of nearest neighbors characterized by pair tunneling. The excitation spectrum and the depletion of the condensate of lattice Bose gases are investigated using the Bogoliubov transformation method and the results show that there is a pair condensate as well as a single particle condensate. The various possible quantum phases, such as the Mott-insulator phase (MI), the superfluid phase (SF) of an individual atom, the charge density wave phase (CDW), the supersolid phase (SS), the pair-superfluid (PSF) phase, and the pair-supersolid phase (PSS) are discussed in different parametric regions within our extended Bose-Hubbard model using perturbation theory.展开更多
基金Sponsored by the National Natural Science Foundation China(Grant No.11504106)the Special Foundation for Theoretical Physics Research Program of China(Grant No.11447167)
文摘The symmetric and the asymmetric double-chain Bose-Hubbard Models( BHMs) are studied by the mean-field theory. By using Landau's quantum phase transition theory,phase diagrams for systems with different hopping energies and repulsive interactions are obtained. Thereby,Mott-insulator-superfluid( MISF)phase transition boundaries are determined. Our results show that tunneling effects between two chains provide additional channels for particles hopping between corresponding optical lattice sites of different chains,which makes easier for systems to transit from MI to SF phase. The two-site parity function is also utilized to investigate the properties of the system near the quantum phase transit point.We found that the increase of inter-chain hopping will reinforce the tunneling effects between two chains,and reduce the intrachain tunneling effects within the same chain.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 11075099,10974124,and 11105087)
文摘We investigate the strongly interacting lattice Bose gases on a lattice with two-body interaction of nearest neighbors characterized by pair tunneling. The excitation spectrum and the depletion of the condensate of lattice Bose gases are investigated using the Bogoliubov transformation method and the results show that there is a pair condensate as well as a single particle condensate. The various possible quantum phases, such as the Mott-insulator phase (MI), the superfluid phase (SF) of an individual atom, the charge density wave phase (CDW), the supersolid phase (SS), the pair-superfluid (PSF) phase, and the pair-supersolid phase (PSS) are discussed in different parametric regions within our extended Bose-Hubbard model using perturbation theory.