Although supercritical carbon dioxide(SC-CO_(2))fracturing shows tremendous potential for maximizing injection efficiency and enhancing storage volumes,few investigations have been reported on the SC-CO_(2) fracturing...Although supercritical carbon dioxide(SC-CO_(2))fracturing shows tremendous potential for maximizing injection efficiency and enhancing storage volumes,few investigations have been reported on the SC-CO_(2) fracturing characteristics of tight basalts and the reactions between fractured basalt and SC-CO_(2).In this study,hydraulic fracturing experiments were conducted on cylindrical basalt specimens using water and SC-CO_(2) as fracturing fluids.Geometric parameters were proposed to characterize the fracture morphologies based on the three-dimensional(3D)reconstructions of fracture networks.The rock slices with induced fractures after SC-CO_(2) fracturing were then processed for fluid(deionized water/SC-CO_(2))-basalt reaction tests.The experimental results demonstrate that SC-CO_(2) fracturing can induce complex and tortuous fractures with spatially dispersed morphologies.Other fracturing behaviors accompanying the acoustic emission(AE)signals and pump pressure changes show that the AE activity responds almost simultaneously to variation in the pump pressure.The fractured basalt blocks exposed to both SC-CO_(2) and water exhibit rough and uneven surfaces,along with decreased intensities in the element peaks,indicating that solubility trapping predominantly occurs during the early injection stage.The above findings provide a laboratory research basis for understanding the fracturing and sequestration issues related to effective CO_(2) utilization.展开更多
Flexible polymer-based foam sensors have significant potential for application in wearable electronics and motion monitoring.However,these prospects are hindered by the complex and unenvironmentally friendly manufactu...Flexible polymer-based foam sensors have significant potential for application in wearable electronics and motion monitoring.However,these prospects are hindered by the complex and unenvironmentally friendly manufacturing processes.In this study,we employed melt blending and supercritical carbon dioxide foaming to fabricate an ethylene-vinyl acetate copolymer(EVA)/low-density polyethylene(LDPE)/carbon nanotube(CNT)piezoresistive foam sensor.The cross-linking agent bis(tert-butyldioxyisopropyl)benzene and the conductive filler CNT were incorporated into the EVA/LDPE composite,successfully achieving a chemically cross-linked and physically entangled composite structure that significantly enhanced the storage modulus and complex viscosity.Additionally,the compressive strength of EVA/LDPE/CNT foam with 10 parts per hundred rubber(phr)CNT reached 1.37 MPa at 50%compression,marking a 340%increase compared to the 0.31 MPa of the CNT-free sample.Furthermore,the EVA/LDPE/CNT composite foams,which incorporated 10 phr CNT,were prepared under specific foaming conditions,resulting in an ultra-low density of 0.11 g/cm^(3) and a higher sensitivity,with a gauge factor of–2.3.The piezoresistive foam sensors developed in this work could accurately detect human motion,thereby expanding their applications in the field of piezoresistive foam sensors and providing an effective strategy for the advancement of high-performance piezoresistive foam sensors.展开更多
Power consumption increases annually,wherefore the air emissions during its production occasionally increase.One of the most promising trends of environmentally safe generation of electricity is the transition to oxyg...Power consumption increases annually,wherefore the air emissions during its production occasionally increase.One of the most promising trends of environmentally safe generation of electricity is the transition to oxygen-fuel power complexes operating on a carbon dioxide working medium,with a share of its capture up to 99%.It is worth noting that the breadth of application of power technologies is determined not only on the basis of criteria of thermal efficiency and environmental safety.The most important criterion is the indicator of economic accessibility,the failure of which does not yet allow for a large-scale transition to the use of electric power technologies with the capture and disposal of greenhouse gases.In this study,a set of multifactorial models for estimating the cost of the main generating equipment operating on supercritical carbon dioxide has been developed.it is found that an increase in the initial temperature and pressure will increase the cost of the main generating equipment operating on supercritical carbon dioxide.展开更多
The corrosion behavior of 304LN austenitic stainless steel in supercritical CO_(2) at 650℃ was investigated.The results show that 304LN follows Wagner’s law kinetics,forming a protective oxide flm consisting of SiO_...The corrosion behavior of 304LN austenitic stainless steel in supercritical CO_(2) at 650℃ was investigated.The results show that 304LN follows Wagner’s law kinetics,forming a protective oxide flm consisting of SiO_(2),(Cr,Mn)3O_(4),and Cr2O_(3) from the inner to outer layers.A shallow carburization depth of approximately 130 nm indicates excellent resistance to carburization.The roles of key elements in 18/8 austenitic stainless steel represented by 304LN,such as Cr,Ni,and Si,were analyzed,highlighting their contributions to anti-carburization performance and corrosion resistance under harsh conditions.展开更多
A series of gluscose derivatives were designed, synthesized, and their structures were confirmed by IR, NMR and elementary analysis. All new compounds are highly soluble in liquid or supercritical carbon dioxide. The ...A series of gluscose derivatives were designed, synthesized, and their structures were confirmed by IR, NMR and elementary analysis. All new compounds are highly soluble in liquid or supercritical carbon dioxide. The compound with electron-withdrawing substituent on benzene ring had even better solubility than the compounds with electron-donating substituent.展开更多
Understanding the mechanical and transport behavior of thin(i.e.small aperture)cracks slipping under supercritical carbon dioxide(sc-CO_(2))conditions is essential to evaluate the integrity of sealing formations with ...Understanding the mechanical and transport behavior of thin(i.e.small aperture)cracks slipping under supercritical carbon dioxide(sc-CO_(2))conditions is essential to evaluate the integrity of sealing formations with buoyant sc-CO_(2)below and the success of waterless fracturing.The two major items of interest in this work are frictional strength and permeability change of the crack.We used a triaxial cell that permits in situ visualization to conduct and monitor slippage along the faces of narrow cracks subjected to triaxial stresses.Such cracks are analogs to small geological faults.We tested carbonate-rich,1-inch diameter Wolfcamp shale samples that are saw cut 30to vertical to create a thin crack.Friction coefficients ranged from about 0.6 to 0.8 consistent with expectations for brittle rocks.The sc-CO_(2)generally did not alter friction coefficient over the time scale of experiments.From a transport perspective,saturating cracks with sc-CO_(2)substantially decreased permeability of the crack by 26%e52%,while slip resulted in a variety of permeability responses.Overall,the combined impact of sc-CO_(2)saturation and slip reduced fault permeability for all tests.Our observations support the notion that the sealing capacity of some caprocks improves when saturated with sc-CO_(2)and that some slip of small fractures is not necessarily detrimental to caprock integrity.展开更多
Osteoarthritis(OA)of the knee is a common degenerative articular disorder and is one of the main causes of pain and functional disability.Cartilage damage is frequently linked to elevated osteoarthritis incidence.Supe...Osteoarthritis(OA)of the knee is a common degenerative articular disorder and is one of the main causes of pain and functional disability.Cartilage damage is frequently linked to elevated osteoarthritis incidence.Supercritical carbon dioxide(scCO_(2))decellularized cartilage graft produced from the porcine cartilage is an ideal candidate for cartilage tissue engineering.In the present study,we derived collagen type II(Col II)solution from the scCO_(2) decellularized porcine cartilage graft(dPCG)and compared its efficacy with hyaluronic acid(HA)in the surgical medial meniscectomy(MNX)induced post-traumatic osteoarthritis(PTOA)model.Dose-dependent attenuation of the OA(12.3±0.8)progression was observed in the intra-articular administration of Col II solution(7.3±1.2)which significantly decreased the MNX-induced OA symptoms similar to HA.The pain of the OA group(37.4±2.7)was attenuated dose-dependently by Col II solution(45.9±4.1)similar to HA(43.1±3.5)as evaluated by a capacitance meter.Micro-CT depicted a dose-dependent attenuation of articular cartilage damage by the Col II solution similar to HA treatment.A significant(p<0.001)dose-dependent elevation in the bone volume was also observed in Col II solution-treated OA animals.The protective competence of Col II solution on articular cartilage damage is due to its significant(p<0.001)increase in the expression of type II collagen,aggrecan and SOX-9 similar to HA.To conclude,intra-articular adminis-tration of type II collagen solution and HA reestablished the injured cartilage and decreased osteoarthritis progression in the experimental PTOA model.展开更多
The efficient pyrolysis and conversion of organic matter in organic-rich shale,as well as the effective recovery of pyrolysis shale oil and gas,play a vital role in alleviating energy pressure.The state of carbon diox...The efficient pyrolysis and conversion of organic matter in organic-rich shale,as well as the effective recovery of pyrolysis shale oil and gas,play a vital role in alleviating energy pressure.The state of carbon dioxide(CO_(2))in the pyrolysis environment of shale reservoirs is the supercritical state.Its unique supercritical fluid properties not only effectively heat organic matter,displace pyrolysis products and change shale pore structure,but also achieve carbon storage to a certain extent.Shale samples were made into powder and three sizes of cores,and nitrogen(N_(2))and supercritical carbon dioxide(ScCO_(2))pyrolysis experiments were performed at different final pyrolysis temperatures.The properties and mineral characteristics of the pyrolysis products were studied based on gas chromatography analysis,Xray diffraction tests,and mass spectrometry analysis.Besides,the pore structure characteristics at different regions of cores before and after pyrolysis were analyzed using N_(2) adsorption tests to clarify the impact of fracturing degree on the pyrolysis effect.The results indicate that the optimal pyrolysis temperature of Longkou shale is about 430℃.Compared with N_(2),the oil yield of ScCO_(2) pyrolysis is higher.The pyrolysis oil obtained by ScCO_(2) extraction has more intermediate fractions and higher relative molecular weight.The ScCO_(2) can effectively improve the pore diameter of shale and its effect is better than that of N_(2).The micropores are produced in shale after pyrolysis,and the macropores only are generated in ScCO_(2) pyrolysis environments with temperatures greater than 430℃.The pore structure has different development characteristics at different pyrolysis temperatures,which are mainly affected by the pressure holding of volatile matter and products blocking.Compared to the surface of the core,the pore development effect inside the core is better.With the decrease in core size,the pore diameter,specific surface area,and pore volume of cores all increase after pyrolysis.展开更多
As a common precursor for supercritical CO_(2)(scCO_(2))deposition techniques,solubility data of organometallic complexes in scCO_(2)is crucial for the preparation of nanocomposites.Recently,metal acetylacetonates hav...As a common precursor for supercritical CO_(2)(scCO_(2))deposition techniques,solubility data of organometallic complexes in scCO_(2)is crucial for the preparation of nanocomposites.Recently,metal acetylacetonates have shown great potential for the preparation of single-atom catalytic materials.In this study,the solubilities of iron(Ⅲ)acetylacetonate(Fe(acac)3)and nickel(Ⅱ)acetylacetonate(Ni(acac)2)were measured at the temperature from 313.15 to 333.15 K and in the pressure range of 9.5–25.2 MPa to accumulate new solubility data.Solubility was measured using a static weight loss method.The semi-empirical models proposed by Chrastil and Sung et al.were used to correlate the solubility data of Fe(acac)3 and Ni(acac)2.The equations obtained can be used to predict the solubility of the same system in the experimental range.展开更多
1 Introduction Nowadays, green chemistry has received increased attention. The use of water and scCO2 as a solvent or reagent is an important field for organic reactions and green chemistry both in laboratory and indu...1 Introduction Nowadays, green chemistry has received increased attention. The use of water and scCO2 as a solvent or reagent is an important field for organic reactions and green chemistry both in laboratory and industry.展开更多
In recent years, there has been global interest in meeting targets relating to energy affordability and security while taking into account greenhouse gas emissions. This has heightened major interest in potential inve...In recent years, there has been global interest in meeting targets relating to energy affordability and security while taking into account greenhouse gas emissions. This has heightened major interest in potential investigations into the use of supercritical carbon dioxide (sCO2) power cycles. Climate change mitigation is the ultimate driver for this increased interest;other relevant issues include the potential for high cycle efficiency and a circular economy. In this study, a 25 MWe recompression closed Brayton cycle (RCBC) has been assessed, and sCO2 has been proposed as the working fluid for the power plant. The methodology used in this research work comprises thermodynamic and techno-economic analysis for the prospective commercialization of this sCO2 power cycle. An evaluated estimation of capital expenditure, operational expenditure, and cost of electricity has been considered in this study. The ASPEN Plus simulation results have been compared with theoretical and mathematical calculations to assess the performance of the compressors, turbine, and heat exchangers. The results thus reveal that the cycle efficiency for this prospective sCO2 recompression closed Brayton cycle increases (39% - 53.6%) as the temperature progressively increases from 550˚C to 900˚C. Data from the Aspen simulation model was used to aid the cost function calculations to estimate the total capital investment cost of the plant. Also, the techno-economic results have shown less cost for purchasing equipment due to fewer components being required for the cycle configuration as compared to the conventional steam power plant.展开更多
The process based on supercritical fluid extraction for reprocessing of the spent nuclear fuel has some remarkable advantages over the plutonium-uranium extraction(PUREX) process.Especially,it can minimize the generat...The process based on supercritical fluid extraction for reprocessing of the spent nuclear fuel has some remarkable advantages over the plutonium-uranium extraction(PUREX) process.Especially,it can minimize the generation of secondary waste.Dynamic reactive extraction of neodymium oxide(Nd2O3) in supercritical carbon dioxide(SC-CO2) containing tri-n-butyl phosphate-nitric acid(TBP-HNO3) complex was investigated.Temperature showed a positive effect on the extraction efficiency,while pressure showed a negative effect when the unsaturated TBP-HNO3 complex was employed for the dynamic reactive extraction of Nd2O3 in SC-CO2.Both temperature and pressure effects indicated that the kinetic process of the reactive extraction was controlled by the chemical reaction.A kinetic model was proposed to describe the extraction process.展开更多
In Brayton cycle energy storage systems powered by supercritical carbon dioxide(sCO_(2)),compressors are among themost critical components.Understanding their internal flowloss characteristics is,therefore,essential f...In Brayton cycle energy storage systems powered by supercritical carbon dioxide(sCO_(2)),compressors are among themost critical components.Understanding their internal flowloss characteristics is,therefore,essential for enhancing the performance of such systems.This study examines the main sCO_(2) compressor from Sandia Laboratory,utilizing entropy production theory to elucidate the sources and distribution of energy losses both across the entire machine and within its key flow components.The findings reveal that turbulent viscous dissipation is the predominant contributor to total entropy production.Interestingly,while the relative importance of the entropy produced by various sources as the mass flow rate rises remains essentially unchanged,the total entropy production exhibits a nonmonotonic trend,first decreasing and then increasing with the mass flow rate.High entropy production in the impeller is primarily concentrated in the clearance region and along the rear cover of the impeller tip.In the diffuser,it is most pronounced on the front and rear plates and within the central flow path.Meanwhile,in the volute,the highest entropy production occurs around the diffuser outlet and along the outer region of the volute’s centerline.展开更多
[Objective] Ginger essential oil (GEO) is widely used in food production and medical field in recent years due to its prominent biological functions, and this study was conducted to obtain high-quality and high-puri...[Objective] Ginger essential oil (GEO) is widely used in food production and medical field in recent years due to its prominent biological functions, and this study was conducted to obtain high-quality and high-purity ginger essential oil from the fresh ginger. [Method] GEO was extracted from ginger roots by supercritical fluid extraction (SFE) method. The effects of flow rate of CO2, mesh size of ginger powder and volume of entrainer were investigated by single-factor experiments and response surface method. The content and extraction rate of 6-gingerol represented the extraction index of GEO. [Result] The conditions were optimized as follows: flow rate of CO2 at 25 L/h, mesh size of ginger power of 80 mesh, and volume of anhydrous ethanol as entrainer of 92.46 ml. The optimal extraction rate of 6-gingerol was 3.21%, which was predicted by RSM. [Conclusion] The optimal process of supercritical carbon dioxide extraction of ginger essential oil was identified by singlefactor experiments and response surface method. The present study provides a satisfactory method for purifying GEO from ginger for industrial purpose.展开更多
4-Methylene-1,3-oxazolidin-2-ones can be synthesized from propargylic alcohols, primary amines and carbon dioxide under supercritical condition in the absence of any additional catalyst and solvent. Various propargyli...4-Methylene-1,3-oxazolidin-2-ones can be synthesized from propargylic alcohols, primary amines and carbon dioxide under supercritical condition in the absence of any additional catalyst and solvent. Various propargylic alcohols and primary amines were examined.展开更多
An efficient method for the synthesis of 5-vinyl-2-norbornene from cyclopentadiene and 1,3-butadiene was developed.The Diels-Alder reaction of cyclopentadiene with 1,3-butadiene proceeded smoothly in supercritical car...An efficient method for the synthesis of 5-vinyl-2-norbornene from cyclopentadiene and 1,3-butadiene was developed.The Diels-Alder reaction of cyclopentadiene with 1,3-butadiene proceeded smoothly in supercritical carbon dioxide in the absence of any polymerization inhibitor to produce the corresponding5-vinyl-2-norbornene in satisfactory yield with high selectivity.展开更多
[Objective] This study was aimed to determine the optimal parameters for the extraction of perilla seed oil to obtain high-quality perilla seed oil and analyze its compositions. [Method] In this study, perilla seed oi...[Objective] This study was aimed to determine the optimal parameters for the extraction of perilla seed oil to obtain high-quality perilla seed oil and analyze its compositions. [Method] In this study, perilla seed oil was extracted using supercritical CO2 (SC-CO2). The effects of extraction time, temperature and pressure were investigated by single-factor experiments and orthogonal array testing (ORT). The chemical compositions of extracted perilla seed oil were investigated by GC-MS. [Result] The optimal conditions for the extraction of perilla seed oil using SC-CO2 were extraction time of 4 h, extraction temperature at 40 ℃, and extraction pressure at 23 MPa. Under these conditions, the extraction yield of perilla seed oil was maximized to 12.43%. GC-MS analysis revealed that perilla seed oil was a complex mixture containing 76.183% α-linolenic acid. [Conclusion] Supercritical CO2 extraction was proven to be an effective technology to extract oil from perilla seed, and GCMS was also a satisfactory method for analyzing the compositions of perilla seed oil.展开更多
Supercritical carbon dioxide (scCO2) microemulsion was formed by supercritical CO2, H20, sodium bis(2-ethylhexyl) sulfosuccinate (AOT, surfactant) and C2HsOH (co-surfactant) under pressures higher than 8 MPa a...Supercritical carbon dioxide (scCO2) microemulsion was formed by supercritical CO2, H20, sodium bis(2-ethylhexyl) sulfosuccinate (AOT, surfactant) and C2HsOH (co-surfactant) under pressures higher than 8 MPa at 45 ℃. The fundamental characteristics of the scCO2 microemulsion and the minimum miscibility pressure (MMP) with Daqing oil were investigated with a high-pressure falling sphere viscometer, a high-pressure interfacial tension meter, a PVT cell and a slim tube test. The mechanism of the scCO2 microemulsion for enhancing oil recovery is discussed. The results showed that the viscosity and density of the scCO2 microemulsion were higher than those of the scCO2 fluid at the same pressure and temperature. The results of interfacial tension and slim tube tests indicated that the MMP of the scCO2 microemulsion and crude oil was lower than that of the scCO2 and crude oil at 45 ℃. It is the combined action of viscosity, density and MMP which made the oil recovery efficiency of the scCO2 microemulsion higher than that of the scCO2 fluid.展开更多
Piperine is a member of the lipids family commonly found in peppercorn, ginger and other natural sources and is grouped as an alkaloid. The solubility of piperine has been determined in carbon dioxide at near critical...Piperine is a member of the lipids family commonly found in peppercorn, ginger and other natural sources and is grouped as an alkaloid. The solubility of piperine has been determined in carbon dioxide at near critical and supercritical conditions in a dynamic extraction apparatus. The conditions studied were at pressures ranging from 10 to 20 MPa and temperatures at 293, 300, 313, 323 and 333 K. The results showed that piperine solubility increased with increasing pressure at all temperatures studied. The solubility of plperme in near critical conditions was slightly higher than that at supercritical conditions only at the low-pressure range. Two semi-empirical density dependent correlations, namely the Chrastil model and the Dilute Solution model, were also used to estimate the solubility data. Although both models showed good correlation with the solubility data, the Dilute Solution model performed better prediction than the Chrastil model.展开更多
A new method for the preparation of SBA-15-supported palladium catalyst for Heck reaction in supercritical carbon dioxide was presented.The newly formed SBA-15-supported palladium catalyst(Ph-SBA-15-PPh_3-Pd) exhibi...A new method for the preparation of SBA-15-supported palladium catalyst for Heck reaction in supercritical carbon dioxide was presented.The newly formed SBA-15-supported palladium catalyst(Ph-SBA-15-PPh_3-Pd) exhibited high catalytic activity for the Heck reaction of 4-nitrobromobenzene with methyl acrylate.The catalyst can be reused several times without a loss of activity.展开更多
基金supported by the National Key Research and Development Project(Grant No.2023YFE0110900)the National Natural Science Foundation of China(Grant No.42320104003)the Shanghai Pujiang Programme(Grant No.23PJD105).
文摘Although supercritical carbon dioxide(SC-CO_(2))fracturing shows tremendous potential for maximizing injection efficiency and enhancing storage volumes,few investigations have been reported on the SC-CO_(2) fracturing characteristics of tight basalts and the reactions between fractured basalt and SC-CO_(2).In this study,hydraulic fracturing experiments were conducted on cylindrical basalt specimens using water and SC-CO_(2) as fracturing fluids.Geometric parameters were proposed to characterize the fracture morphologies based on the three-dimensional(3D)reconstructions of fracture networks.The rock slices with induced fractures after SC-CO_(2) fracturing were then processed for fluid(deionized water/SC-CO_(2))-basalt reaction tests.The experimental results demonstrate that SC-CO_(2) fracturing can induce complex and tortuous fractures with spatially dispersed morphologies.Other fracturing behaviors accompanying the acoustic emission(AE)signals and pump pressure changes show that the AE activity responds almost simultaneously to variation in the pump pressure.The fractured basalt blocks exposed to both SC-CO_(2) and water exhibit rough and uneven surfaces,along with decreased intensities in the element peaks,indicating that solubility trapping predominantly occurs during the early injection stage.The above findings provide a laboratory research basis for understanding the fracturing and sequestration issues related to effective CO_(2) utilization.
基金supported by the National Natural Science Foundation of China(No.52473026)。
文摘Flexible polymer-based foam sensors have significant potential for application in wearable electronics and motion monitoring.However,these prospects are hindered by the complex and unenvironmentally friendly manufacturing processes.In this study,we employed melt blending and supercritical carbon dioxide foaming to fabricate an ethylene-vinyl acetate copolymer(EVA)/low-density polyethylene(LDPE)/carbon nanotube(CNT)piezoresistive foam sensor.The cross-linking agent bis(tert-butyldioxyisopropyl)benzene and the conductive filler CNT were incorporated into the EVA/LDPE composite,successfully achieving a chemically cross-linked and physically entangled composite structure that significantly enhanced the storage modulus and complex viscosity.Additionally,the compressive strength of EVA/LDPE/CNT foam with 10 parts per hundred rubber(phr)CNT reached 1.37 MPa at 50%compression,marking a 340%increase compared to the 0.31 MPa of the CNT-free sample.Furthermore,the EVA/LDPE/CNT composite foams,which incorporated 10 phr CNT,were prepared under specific foaming conditions,resulting in an ultra-low density of 0.11 g/cm^(3) and a higher sensitivity,with a gauge factor of–2.3.The piezoresistive foam sensors developed in this work could accurately detect human motion,thereby expanding their applications in the field of piezoresistive foam sensors and providing an effective strategy for the advancement of high-performance piezoresistive foam sensors.
基金This study conducted by Moscow Power Engineering Institute was financially supported by the Ministry of Science and Higher Education of the Russian Federation(project No.FSWF-2023-0014,contract No.075-03-2023-383,2023/18/01).
文摘Power consumption increases annually,wherefore the air emissions during its production occasionally increase.One of the most promising trends of environmentally safe generation of electricity is the transition to oxygen-fuel power complexes operating on a carbon dioxide working medium,with a share of its capture up to 99%.It is worth noting that the breadth of application of power technologies is determined not only on the basis of criteria of thermal efficiency and environmental safety.The most important criterion is the indicator of economic accessibility,the failure of which does not yet allow for a large-scale transition to the use of electric power technologies with the capture and disposal of greenhouse gases.In this study,a set of multifactorial models for estimating the cost of the main generating equipment operating on supercritical carbon dioxide has been developed.it is found that an increase in the initial temperature and pressure will increase the cost of the main generating equipment operating on supercritical carbon dioxide.
基金supported by the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDA0410000)the CAS Project for Young Scientists in Basic Research(No.YSBR-043)+1 种基金the CNNC Science Fund for Talented Young Scholars,the National Funding Program for Postdoctoral Researchers(GZC20232747)the Youth Innovation Promotion Association CAS(2022187).
文摘The corrosion behavior of 304LN austenitic stainless steel in supercritical CO_(2) at 650℃ was investigated.The results show that 304LN follows Wagner’s law kinetics,forming a protective oxide flm consisting of SiO_(2),(Cr,Mn)3O_(4),and Cr2O_(3) from the inner to outer layers.A shallow carburization depth of approximately 130 nm indicates excellent resistance to carburization.The roles of key elements in 18/8 austenitic stainless steel represented by 304LN,such as Cr,Ni,and Si,were analyzed,highlighting their contributions to anti-carburization performance and corrosion resistance under harsh conditions.
文摘A series of gluscose derivatives were designed, synthesized, and their structures were confirmed by IR, NMR and elementary analysis. All new compounds are highly soluble in liquid or supercritical carbon dioxide. The compound with electron-withdrawing substituent on benzene ring had even better solubility than the compounds with electron-donating substituent.
基金supported as part of the Center for Mechanistic Control of Unconventional Formations(CMC-UF),an Energy Frontier Research Center funded by the U.S.Department of Energy,Of-fice of Science under DOE(BES)Award DE-SC0019165Stanford Nano Shared Facilities(SNSF)with support from NSF under award CMMI-1532224SNSF is additionally supported by the NSF as part of the National Nanotechnology Coordinated Infrastructure under award ECCS-1542152.
文摘Understanding the mechanical and transport behavior of thin(i.e.small aperture)cracks slipping under supercritical carbon dioxide(sc-CO_(2))conditions is essential to evaluate the integrity of sealing formations with buoyant sc-CO_(2)below and the success of waterless fracturing.The two major items of interest in this work are frictional strength and permeability change of the crack.We used a triaxial cell that permits in situ visualization to conduct and monitor slippage along the faces of narrow cracks subjected to triaxial stresses.Such cracks are analogs to small geological faults.We tested carbonate-rich,1-inch diameter Wolfcamp shale samples that are saw cut 30to vertical to create a thin crack.Friction coefficients ranged from about 0.6 to 0.8 consistent with expectations for brittle rocks.The sc-CO_(2)generally did not alter friction coefficient over the time scale of experiments.From a transport perspective,saturating cracks with sc-CO_(2)substantially decreased permeability of the crack by 26%e52%,while slip resulted in a variety of permeability responses.Overall,the combined impact of sc-CO_(2)saturation and slip reduced fault permeability for all tests.Our observations support the notion that the sealing capacity of some caprocks improves when saturated with sc-CO_(2)and that some slip of small fractures is not necessarily detrimental to caprock integrity.
文摘Osteoarthritis(OA)of the knee is a common degenerative articular disorder and is one of the main causes of pain and functional disability.Cartilage damage is frequently linked to elevated osteoarthritis incidence.Supercritical carbon dioxide(scCO_(2))decellularized cartilage graft produced from the porcine cartilage is an ideal candidate for cartilage tissue engineering.In the present study,we derived collagen type II(Col II)solution from the scCO_(2) decellularized porcine cartilage graft(dPCG)and compared its efficacy with hyaluronic acid(HA)in the surgical medial meniscectomy(MNX)induced post-traumatic osteoarthritis(PTOA)model.Dose-dependent attenuation of the OA(12.3±0.8)progression was observed in the intra-articular administration of Col II solution(7.3±1.2)which significantly decreased the MNX-induced OA symptoms similar to HA.The pain of the OA group(37.4±2.7)was attenuated dose-dependently by Col II solution(45.9±4.1)similar to HA(43.1±3.5)as evaluated by a capacitance meter.Micro-CT depicted a dose-dependent attenuation of articular cartilage damage by the Col II solution similar to HA treatment.A significant(p<0.001)dose-dependent elevation in the bone volume was also observed in Col II solution-treated OA animals.The protective competence of Col II solution on articular cartilage damage is due to its significant(p<0.001)increase in the expression of type II collagen,aggrecan and SOX-9 similar to HA.To conclude,intra-articular adminis-tration of type II collagen solution and HA reestablished the injured cartilage and decreased osteoarthritis progression in the experimental PTOA model.
基金supported by the National Natural Science Foundation of China (Nos.U22B6004,51974341)State Key Laboratory of Deep Oil and Gas (No.SKLDOG2024-ZYTS-14)the Fundamental Research Funds for the Central Universities (No.20CX06070A)。
文摘The efficient pyrolysis and conversion of organic matter in organic-rich shale,as well as the effective recovery of pyrolysis shale oil and gas,play a vital role in alleviating energy pressure.The state of carbon dioxide(CO_(2))in the pyrolysis environment of shale reservoirs is the supercritical state.Its unique supercritical fluid properties not only effectively heat organic matter,displace pyrolysis products and change shale pore structure,but also achieve carbon storage to a certain extent.Shale samples were made into powder and three sizes of cores,and nitrogen(N_(2))and supercritical carbon dioxide(ScCO_(2))pyrolysis experiments were performed at different final pyrolysis temperatures.The properties and mineral characteristics of the pyrolysis products were studied based on gas chromatography analysis,Xray diffraction tests,and mass spectrometry analysis.Besides,the pore structure characteristics at different regions of cores before and after pyrolysis were analyzed using N_(2) adsorption tests to clarify the impact of fracturing degree on the pyrolysis effect.The results indicate that the optimal pyrolysis temperature of Longkou shale is about 430℃.Compared with N_(2),the oil yield of ScCO_(2) pyrolysis is higher.The pyrolysis oil obtained by ScCO_(2) extraction has more intermediate fractions and higher relative molecular weight.The ScCO_(2) can effectively improve the pore diameter of shale and its effect is better than that of N_(2).The micropores are produced in shale after pyrolysis,and the macropores only are generated in ScCO_(2) pyrolysis environments with temperatures greater than 430℃.The pore structure has different development characteristics at different pyrolysis temperatures,which are mainly affected by the pressure holding of volatile matter and products blocking.Compared to the surface of the core,the pore development effect inside the core is better.With the decrease in core size,the pore diameter,specific surface area,and pore volume of cores all increase after pyrolysis.
基金financial support from the National Key Research and Development Program of China(2020YFA0710202)the National Natural Science Foundation of China(21978043,U1662130)+1 种基金Inner Mongolia University of Technology Scientific Research Initial Funding(DC2300001240)Talent Introduction Support Project of Inner Mongolia(DC2300001426).
文摘As a common precursor for supercritical CO_(2)(scCO_(2))deposition techniques,solubility data of organometallic complexes in scCO_(2)is crucial for the preparation of nanocomposites.Recently,metal acetylacetonates have shown great potential for the preparation of single-atom catalytic materials.In this study,the solubilities of iron(Ⅲ)acetylacetonate(Fe(acac)3)and nickel(Ⅱ)acetylacetonate(Ni(acac)2)were measured at the temperature from 313.15 to 333.15 K and in the pressure range of 9.5–25.2 MPa to accumulate new solubility data.Solubility was measured using a static weight loss method.The semi-empirical models proposed by Chrastil and Sung et al.were used to correlate the solubility data of Fe(acac)3 and Ni(acac)2.The equations obtained can be used to predict the solubility of the same system in the experimental range.
基金the National Natural Science Foundation of China(Nos.20332030,20572027,20625205 and 20772034)Natural Science Foundation of Guangdong Province,China(No.07118070).
文摘1 Introduction Nowadays, green chemistry has received increased attention. The use of water and scCO2 as a solvent or reagent is an important field for organic reactions and green chemistry both in laboratory and industry.
文摘In recent years, there has been global interest in meeting targets relating to energy affordability and security while taking into account greenhouse gas emissions. This has heightened major interest in potential investigations into the use of supercritical carbon dioxide (sCO2) power cycles. Climate change mitigation is the ultimate driver for this increased interest;other relevant issues include the potential for high cycle efficiency and a circular economy. In this study, a 25 MWe recompression closed Brayton cycle (RCBC) has been assessed, and sCO2 has been proposed as the working fluid for the power plant. The methodology used in this research work comprises thermodynamic and techno-economic analysis for the prospective commercialization of this sCO2 power cycle. An evaluated estimation of capital expenditure, operational expenditure, and cost of electricity has been considered in this study. The ASPEN Plus simulation results have been compared with theoretical and mathematical calculations to assess the performance of the compressors, turbine, and heat exchangers. The results thus reveal that the cycle efficiency for this prospective sCO2 recompression closed Brayton cycle increases (39% - 53.6%) as the temperature progressively increases from 550˚C to 900˚C. Data from the Aspen simulation model was used to aid the cost function calculations to estimate the total capital investment cost of the plant. Also, the techno-economic results have shown less cost for purchasing equipment due to fewer components being required for the cycle configuration as compared to the conventional steam power plant.
基金Supported by the National Natural Science Foundation of China (20506014).
文摘The process based on supercritical fluid extraction for reprocessing of the spent nuclear fuel has some remarkable advantages over the plutonium-uranium extraction(PUREX) process.Especially,it can minimize the generation of secondary waste.Dynamic reactive extraction of neodymium oxide(Nd2O3) in supercritical carbon dioxide(SC-CO2) containing tri-n-butyl phosphate-nitric acid(TBP-HNO3) complex was investigated.Temperature showed a positive effect on the extraction efficiency,while pressure showed a negative effect when the unsaturated TBP-HNO3 complex was employed for the dynamic reactive extraction of Nd2O3 in SC-CO2.Both temperature and pressure effects indicated that the kinetic process of the reactive extraction was controlled by the chemical reaction.A kinetic model was proposed to describe the extraction process.
基金supported by theDouble First-Class Key ProgramofGansu ProvincialDepartment of Education(grant number GCJ2022-38)Science and Technology Program of Gansu Province(grant number 22ZD6GA038)Key Research and Development Program of Gansu Province—Industrial Project(grant number 25YFGA021).
文摘In Brayton cycle energy storage systems powered by supercritical carbon dioxide(sCO_(2)),compressors are among themost critical components.Understanding their internal flowloss characteristics is,therefore,essential for enhancing the performance of such systems.This study examines the main sCO_(2) compressor from Sandia Laboratory,utilizing entropy production theory to elucidate the sources and distribution of energy losses both across the entire machine and within its key flow components.The findings reveal that turbulent viscous dissipation is the predominant contributor to total entropy production.Interestingly,while the relative importance of the entropy produced by various sources as the mass flow rate rises remains essentially unchanged,the total entropy production exhibits a nonmonotonic trend,first decreasing and then increasing with the mass flow rate.High entropy production in the impeller is primarily concentrated in the clearance region and along the rear cover of the impeller tip.In the diffuser,it is most pronounced on the front and rear plates and within the central flow path.Meanwhile,in the volute,the highest entropy production occurs around the diffuser outlet and along the outer region of the volute’s centerline.
基金Supported by the Natural Science Foundation of Higher Education Institutions of Jiangsu Province(16KJA550001)~~
文摘[Objective] Ginger essential oil (GEO) is widely used in food production and medical field in recent years due to its prominent biological functions, and this study was conducted to obtain high-quality and high-purity ginger essential oil from the fresh ginger. [Method] GEO was extracted from ginger roots by supercritical fluid extraction (SFE) method. The effects of flow rate of CO2, mesh size of ginger powder and volume of entrainer were investigated by single-factor experiments and response surface method. The content and extraction rate of 6-gingerol represented the extraction index of GEO. [Result] The conditions were optimized as follows: flow rate of CO2 at 25 L/h, mesh size of ginger power of 80 mesh, and volume of anhydrous ethanol as entrainer of 92.46 ml. The optimal extraction rate of 6-gingerol was 3.21%, which was predicted by RSM. [Conclusion] The optimal process of supercritical carbon dioxide extraction of ginger essential oil was identified by singlefactor experiments and response surface method. The present study provides a satisfactory method for purifying GEO from ginger for industrial purpose.
基金supported financially by Youth Foundation of Guangdong Medical College(No.XQ1029)Science and Technology Planning Project of Zhanjiang city(No.2009c3103024)
文摘4-Methylene-1,3-oxazolidin-2-ones can be synthesized from propargylic alcohols, primary amines and carbon dioxide under supercritical condition in the absence of any additional catalyst and solvent. Various propargylic alcohols and primary amines were examined.
基金the National Natural Science Foundation of China(Nos.21373041,21372035 and NSFC-IUPAC program,No.21361140375)for their financial support
文摘An efficient method for the synthesis of 5-vinyl-2-norbornene from cyclopentadiene and 1,3-butadiene was developed.The Diels-Alder reaction of cyclopentadiene with 1,3-butadiene proceeded smoothly in supercritical carbon dioxide in the absence of any polymerization inhibitor to produce the corresponding5-vinyl-2-norbornene in satisfactory yield with high selectivity.
基金Supported by Undergraduate Innovation Training Program of Jiangsu Province(201610327010Z)~~
文摘[Objective] This study was aimed to determine the optimal parameters for the extraction of perilla seed oil to obtain high-quality perilla seed oil and analyze its compositions. [Method] In this study, perilla seed oil was extracted using supercritical CO2 (SC-CO2). The effects of extraction time, temperature and pressure were investigated by single-factor experiments and orthogonal array testing (ORT). The chemical compositions of extracted perilla seed oil were investigated by GC-MS. [Result] The optimal conditions for the extraction of perilla seed oil using SC-CO2 were extraction time of 4 h, extraction temperature at 40 ℃, and extraction pressure at 23 MPa. Under these conditions, the extraction yield of perilla seed oil was maximized to 12.43%. GC-MS analysis revealed that perilla seed oil was a complex mixture containing 76.183% α-linolenic acid. [Conclusion] Supercritical CO2 extraction was proven to be an effective technology to extract oil from perilla seed, and GCMS was also a satisfactory method for analyzing the compositions of perilla seed oil.
基金support from the National Natural Science Fund (50904073)the CNPC Science and Technology Innovation Fund (2008D-5006-02-06)
文摘Supercritical carbon dioxide (scCO2) microemulsion was formed by supercritical CO2, H20, sodium bis(2-ethylhexyl) sulfosuccinate (AOT, surfactant) and C2HsOH (co-surfactant) under pressures higher than 8 MPa at 45 ℃. The fundamental characteristics of the scCO2 microemulsion and the minimum miscibility pressure (MMP) with Daqing oil were investigated with a high-pressure falling sphere viscometer, a high-pressure interfacial tension meter, a PVT cell and a slim tube test. The mechanism of the scCO2 microemulsion for enhancing oil recovery is discussed. The results showed that the viscosity and density of the scCO2 microemulsion were higher than those of the scCO2 fluid at the same pressure and temperature. The results of interfacial tension and slim tube tests indicated that the MMP of the scCO2 microemulsion and crude oil was lower than that of the scCO2 and crude oil at 45 ℃. It is the combined action of viscosity, density and MMP which made the oil recovery efficiency of the scCO2 microemulsion higher than that of the scCO2 fluid.
基金Supported by the IRPA Project of the Ministry of Science,Technology and Innovation,Malaysia (09-02-03-0101-EA0001)Fundamental Research Grant 2009 Directorate General of Higher Education,Ministry of National Education,the Republic of Indonesia
文摘Piperine is a member of the lipids family commonly found in peppercorn, ginger and other natural sources and is grouped as an alkaloid. The solubility of piperine has been determined in carbon dioxide at near critical and supercritical conditions in a dynamic extraction apparatus. The conditions studied were at pressures ranging from 10 to 20 MPa and temperatures at 293, 300, 313, 323 and 333 K. The results showed that piperine solubility increased with increasing pressure at all temperatures studied. The solubility of plperme in near critical conditions was slightly higher than that at supercritical conditions only at the low-pressure range. Two semi-empirical density dependent correlations, namely the Chrastil model and the Dilute Solution model, were also used to estimate the solubility data. Although both models showed good correlation with the solubility data, the Dilute Solution model performed better prediction than the Chrastil model.
基金National Natural Science Foundation of China(No.20603005)the Specialized Research Fund for the Doctoral Program of Higher Education(No.20090041110012) for their financial support
文摘A new method for the preparation of SBA-15-supported palladium catalyst for Heck reaction in supercritical carbon dioxide was presented.The newly formed SBA-15-supported palladium catalyst(Ph-SBA-15-PPh_3-Pd) exhibited high catalytic activity for the Heck reaction of 4-nitrobromobenzene with methyl acrylate.The catalyst can be reused several times without a loss of activity.