Equations(2)and(6)and the corresponding discussion in the paper[Chin.Phys.Lett.42,056301(2025)]have been corrected.These modiffcations do not affect the results derived in the paper.
The icing characteristics of supercooled large droplet(SLD)impacting carbon fiber-reinforced composites(CFRCs)remain poorly understood,hindering the enhancement of ice protection capabilities and the certification of ...The icing characteristics of supercooled large droplet(SLD)impacting carbon fiber-reinforced composites(CFRCs)remain poorly understood,hindering the enhancement of ice protection capabilities and the certification of ice-accreted composite aircraft.The paper systematically investigates the effects of the supercooling degree,the surface temperature,and the impact velocity on the ice accretion behavior of SLDs impacting carbon fiber-reinforced epoxy composite surfaces.To address the ice-prone nature of CFRCs,nanoparticle-modified anti-icing coatings are developed,and the icing characteristics of SLD-impacted modified carbon fiber-reinforced epoxy composite surfaces are analyzed.Results demonstrate that surface-modified carbon fiber-reinforced epoxy composite exhibits significantly delayed ice formation.Under conditions of droplet temperature(−15℃)and surface temperature(−18℃),the icing time of hydrophobic-modified CFRCs was delayed by over 1100 ms,representing a 5.4-fold improvement compared to the unmodified carbon fiber-reinforced epoxy composite.展开更多
This numerical simulation investigates the two⁃phase flow under the condition of supercooled large droplets impinging on the aircraft surface.Based on Eulerian framework,a method for calculating supercooled water drop...This numerical simulation investigates the two⁃phase flow under the condition of supercooled large droplets impinging on the aircraft surface.Based on Eulerian framework,a method for calculating supercooled water droplet impingement characteristics is established.Then,considering the deformation and breaking effects during the movement,this method is extended to calculate the impingement characteristics of supercooled large droplets,as well as the bouncing and splashing effects during impingement.The impingement characteristics of supercooled large droplets is then investigated by this method.The results demonstrate that the deformation and breaking effects of supercooled large droplets have negligible influence on the impingement characteristics under the experimental conditions of this paper.In addition,the results of the impingement range and collection efficiency decrease when considering the bouncing and splashing effects.The bouncing effect mainly affects the mass loss near the impingement limits,while the splashing effect influences the result around the stagnation point.This investigation is beneficial for the analysis of aircraft icing and the design of anti⁃icing system with supercooled large droplet conditions.展开更多
Accurate simulation of ice accretion of supercooled large droplet(SLD)is pivotal for the international airworthiness certification of large aircraft.Its complex dynamics behavior and broad particle size distributions ...Accurate simulation of ice accretion of supercooled large droplet(SLD)is pivotal for the international airworthiness certification of large aircraft.Its complex dynamics behavior and broad particle size distributions pose significant challenges to reliable CFD predictions.A numerical model of multi-particle SLD coupling breaking,bouncing and splashing behaviors is established to explore the relationship between dynamics behavior and particle size.The results show that the peak value of droplet collection efficiencyβdecreases due to splashing.The bounce phenomenon will make the impact limit S_(m)of the water drops decrease.With the increase of the SLD particle size,the water drop bounce point gradually moves toward the trailing edge of the wing.The critical breaking diameter of SLD at an airflow velocity of 50 m/s is approximately 100μm.When the SLD particle size increases,the height of the water droplet shelter zone on the upper edge of the wing gradually decreases,and the velocity in the Y direction decreases first and then increases in the opposite direction,increasing the probability of SLD hitting the wing again.Large particle droplets have a higher effect on the impact limit S_(m)than smaller droplets.Therefore,in the numerical simulation of the SLD operating conditions,it is very important to ensure the proportion of large particle size water droplets.展开更多
By extending the concept of diffusion to the potential energy landscapes(PELs), we introduce the meansquared energy difference(MSED) as a novel quantity to investigate the intrinsic properties of supercooled liquids. ...By extending the concept of diffusion to the potential energy landscapes(PELs), we introduce the meansquared energy difference(MSED) as a novel quantity to investigate the intrinsic properties of supercooled liquids. MSED can provide a clear description of the “energy relaxation” process on a PEL. Through MSED analysis, we have obtained a characteristic time similar to that derived from structure analysis, namely τ_(α)^(*).Further, we establish a connection between MSED and the feature of PELs, providing a concise and quantitative description of PELs. The relaxation behavior of energy has been found to follow a stretched exponential form.As the temperature decreases, the roughness of the accessible PEL changes significantly around a characteristic temperature T_(x), which is 20% higher than the glass transition temperature T_(g) and is comparable to the critical temperature of the mode-coupling theory. More importantly, one of the PEL parameters is closely related to the Adam–Gibbs configurational entropy. The present research, which directly links the PEL to the relaxation process, provides avenues for further research of glasses.展开更多
This paper studied a snow event over North China on 21 February 2017,using aircraft in-situ data,a Lagrangian analysis tool,and WRF simulations with different microphysical schemes to investigate the supercooled layer...This paper studied a snow event over North China on 21 February 2017,using aircraft in-situ data,a Lagrangian analysis tool,and WRF simulations with different microphysical schemes to investigate the supercooled layer of warm conveyor belts(WCBs).Based on the aircraft data,we found a fine vertical structure within clouds in the WCB and highlighted a 1-2 km thin supercooled liquid water layer with a maximum Liquid Water Content(LWC) exceeding0.5 g kg^(-1) during the vertical aircraft observation.Although the main features of thermodynamic profiles were essentially captured by both modeling schemes,the microphysical quantities exhibited large diversity with different microphysics schemes.The conventional Morrison two-moment scheme showed remarkable agreement with in-situ observations,both in terms of the thermodynamic structure and the supercooled liquid water layer.However,the microphysical structure of the WCB clouds,in terms of LWC and IWC,was not apparent in HUJI fast bin scheme.To reduce such uncertainty,future work may focus on improving the representation of microphysics in bin schemes with in-situ data and using similar assumptions for all schemes to isolate the impact of physics.展开更多
It has recently been shown that incident particles, neutrons, can initiate the freezing in a supercooled water volume. This new finding may have ramifications for the interpretation of both experimental data on the nu...It has recently been shown that incident particles, neutrons, can initiate the freezing in a supercooled water volume. This new finding may have ramifications for the interpretation of both experimental data on the nucleation of laboratory samples of supercooled water and perhaps more importantly on the interpretation of ice nucleation involved in cloud physics. For example, if some fraction of the cloud nucleation previously attributed to dust, soot, or aerosols has been caused by cosmogenic neutrons, fresh consideration is required in the context of climate models. Moreover, as cosmogenic neutrons, most being muon-induced, have much greater flux at high latitudes, estimates of ice nucleates in these regions may be larger than required to accurately model cloud and condensation properties. This discrepancy has been pointed out in IPCC reports. Our paper discusses the connection between the new concept of neutrons nucleating supercooled water and the need for a new source of nucleation in high latitude clouds, ideally causing others to review current data, or to analyse future data with this idea in mind. .展开更多
The formation and evolution characteristics of bcc phase during the isothermal relaxation processes for supercooled-liquid and amorphous Pb were investigated by molecular dynamics simulation and cluster-type index met...The formation and evolution characteristics of bcc phase during the isothermal relaxation processes for supercooled-liquid and amorphous Pb were investigated by molecular dynamics simulation and cluster-type index method (CTIM). It is found that during the relaxation process, the formation and evolution of bcc phase are closely dependent on the initial temperature and structure. During the simulation time scale, when the initial temperature is in the range of supercooled liquid region, the bcc phase can be formed and kept a long time; while it is in the range of glassy region, the bcc phase can be formed at first and then partially transformed into hcp phase; when it decreases to the lower one, the hcp and fcc phases can be directly transformed from the glassy structure without undergoing the metastable bcc phase. The Ostwald's "step rule" is impactful during the isothermal relaxation process of the supercooled and glassy Pb, and the metastable bcc phase plays an important role in the precursor of crystallization.展开更多
Supercooled water with temperatures below freezing point, was identified from hydrographic data obtained by Chinese and Australian expeditions to Prydz Bay, Antarctica, during the austral summer. The study shows that ...Supercooled water with temperatures below freezing point, was identified from hydrographic data obtained by Chinese and Australian expeditions to Prydz Bay, Antarctica, during the austral summer. The study shows that most supercooled waters occurred at depths of 63-271 m in the region north of the Amery Ice Shelf (AIS) front. The maximum supercooling was 0.16℃ below the in-situ freezing point. In temperature and salinity ranges of-2.14 - -1.96℃ and 34.39-34.46, respectively, the water was colder and fresher than peripheral shelf water. The supercooled water had less variability in the vertical profiles compared to shelf water. Based on analysis of their thermohaline features and spatial distribution, as well as the circulation pattern in Prydz Bay, we conclude that these supercooled waters originated from a cavity beneath the AIS and resulted from upwelling just outside of the AIS front. Water emerging from the ice shelf cools to an extremely low temperature (about -2.0℃) by additional cooling from the ice shelf, and becomes buoyant with the addition of melt water from the ice shelf base. When this water flows out of the ice shelf front, its upper boundary is removed, and thus it rises abruptly. Once the temperature of this water reaches below the freezing point, supercooling takes place. In summer, the seasonal pycnocline at -100 m water depth acts as a barrier to upwelling and supercooling. The upwelling of ice shelf outflow water illuminates a unique mid-depth convection of the polar ocean.展开更多
A fog monitor, hotplate total precipitation sensor, weather identifier and visibility sensor, ultrasonic wind speed meter,an icing gradient observation frame, and an automated weather station were involved in the obse...A fog monitor, hotplate total precipitation sensor, weather identifier and visibility sensor, ultrasonic wind speed meter,an icing gradient observation frame, and an automated weather station were involved in the observations at the Lushan Meteorological Bureau of Jiangxi Province, China. In this study, for the icing process under a cold surge from 20–25 January2016, the duration, frequency, and spectrum distribution of agglomerate fog were analyzed. The effects of rain, snow, and supercooled fog on icing growth were studied and the icing and meteorological conditions at two heights(10 m and 1.5 m)were compared. There were 218 agglomerate fogs in this icing process, of which agglomerate fogs with durations less than and greater than 10 min accounted for 91.3% and 8.7%, respectively. The average time interval was 10.3 min. The fog droplet number concentration for sizes 2–15 μm and 30–50 μm increased during rainfall, and that for 2–27 μm decreased during snowfall. Icing grew rapidly(1.3 mm h-1) in the freezing rain phase but slowly(0.1 mm h-1) during the dry snow phase. Intensive supercooled fog, lower temperatures and increased wind speed all favored icing growth during dry snow(0.5 mm h-1). There were significant differences in the thickness, duration, density, and growth mechanism of icing at the heights of 10 m and 1.5 m. Differences in temperature and wind speed between the two heights were the main reasons for the differences in icing conditions, which indicated that icing was strongly affected by height.展开更多
Understanding the behaviours of ice nucleation in non-isothermal conditions is of great importance for the preparation and retention of supercooled water. Here ice nucleation in supercooled water under temperature gra...Understanding the behaviours of ice nucleation in non-isothermal conditions is of great importance for the preparation and retention of supercooled water. Here ice nucleation in supercooled water under temperature gradients is analyzed thermodynamically based on classical nucleation theory(CNT). Given that the free energy barrier for nucleation is dependent on temperature, different from a uniform temperature usually used in CNT, an assumption of linear temperature distribution in the ice nucleus was made and taken into consideration in analysis. The critical radius of the ice nucleus for nucleation and the corresponding nucleation model in the presence of a temperature gradient were obtained. It is observed that the critical radius is determined not only by the degree of supercooling, the only dependence in CNT, but also by the temperature gradient and even the Young's contact angle. Effects of temperature gradient on the change in free energy, critical radius,nucleation barrier and nucleation rate with different contact angles and degrees of supercooling are illustrated successively.The results show that a temperature gradient will increase the nucleation barrier and decrease the nucleation rate, particularly in the cases of large contact angle and low degree of supercooling. In addition, there is a critical temperature gradient for a given degree of supercooling and contact angle, at the higher of which the nucleation can be suppressed completely.展开更多
Research results on the viscous flow deformation behavior of bulk amorphous alloy in different systems are reviewed. The material exhibits an ideal Newtonian fluid at a high temperature. Analytical solution of lamella...Research results on the viscous flow deformation behavior of bulk amorphous alloy in different systems are reviewed. The material exhibits an ideal Newtonian fluid at a high temperature. Analytical solution of lamellar fluid flow behavior is used to discuss the viscous flow behavior of the bulk amorphous alloy in the supercooled liquid state. A material model, which describes such deformation behavior of Mg6oCusoYlo amorphous alloy, is introduced into the finite element method of microformin8 process. Surface feature size was investigated and found not sensitive to the micro formability. Bulk amorphous alloy may possibly be applied to microelectro-mechanical-systems (MEMS) fabrication.展开更多
Thermal behavior of bulk amorphous sulfur is investigated by in situ temperature measurements at high pressures of 0.9, 1.4 and 2.1 GPa, and under different heating rates of 8, 10 and 12K/min at 0.9 GPa. The results s...Thermal behavior of bulk amorphous sulfur is investigated by in situ temperature measurements at high pressures of 0.9, 1.4 and 2.1 GPa, and under different heating rates of 8, 10 and 12K/min at 0.9 GPa. The results show that the onset temperature of the transition from the supercooled Hquid to the liquid state for sulfur increases with the pressure and the heating rate. It is deduced that the transition does not follow the Clapeyron equation, indicating considerable coupling of the molecular structure change in the transition. Along with the data at ambient pressure and high pressure, we present a dynamic diagram to demonstrate the relationship between the amorphous solid, supercooled liquid, liquid, and crystal phases of sulfur, and suggest an experimental approach to establish pressure-temperature-time transition diagrams for supercooled liquid and liquid.展开更多
The dynamic properties of polymer melts are investigated in the range of normal liquid regime to the supercooled liquid regime. The polymer is modeled as a coarse-grained bead-spring model with chain length ranging fr...The dynamic properties of polymer melts are investigated in the range of normal liquid regime to the supercooled liquid regime. The polymer is modeled as a coarse-grained bead-spring model with chain length ranging from 5 to 160. The mean squared displacement and non-Gaussian parameter are used to describe the self diffusion of polymer beads. We find slow dynamics with decreasing temperature and increasing chain length. The time evolution of non-Gaussian parameters shows two peaks (or one peak one shoulder) in the a-relaxation time, τa, regime and sub-diffusion time regime, respectively, where the first primary peak indicates the dynamic heterogeneity stemmed from the motion of beads, and the secondary peak is the result of correlated motion along a polymer chain. Moreover, the relaxation of polymer beads shows clear two-step decay in supercooled melts and the dynamics shows growing heterogeneity with decreasing temperature. As chain length is increased, a peak of the dynamic susceptibility occurs, and the peak height, x*4, increases and then reaches a plateau. The curves of the height of the first peak of a2, a2*, versus τa and the curves of x*4 versus τa follow two master curves for different chain lengths. Our results indicate the similarity of dynamic heterogeneity dominated by the motion of single bead even the chain length is different. It is interesting to find that the Stokes-Einstein (SE) relation between ra and diffusion coefficient D, D-rq 1, is highly length-scale dependent. The SE relation breaks down in both normal melts regime and supercooled regime at large magnitude of wave vectors, attributed to the non-Brownian motion arising from the chain connectivity and growing heterogeneity due to supercooling. However, the SE relation is reconstructed when the probing length scale is large (at small magnitude of wave vectors). Our results show a hierarchical physical picture of the supercooled polymeric dynamics.展开更多
The Stokes–Einstein relation D^T/η and its two variants D~τ-1 and D^T/τ follow a fractional form in supercooled liquids, where D is the diffusion constant, T the temperature,η the shear viscosity, and τ the stru...The Stokes–Einstein relation D^T/η and its two variants D~τ-1 and D^T/τ follow a fractional form in supercooled liquids, where D is the diffusion constant, T the temperature,η the shear viscosity, and τ the structural relaxation time.The fractional Stokes–Einstein relation is proposed to result from the dynamic heterogeneity of supercooled liquids.In this work, by performing molecular dynamics simulations, we show that the analogous fractional form also exists in sodium chloride(NaCl) solutions above room temperature.D~τ-1 takes a fractional form within 300–800 K;a crossover is observed in both D^T/τ and D^T/η.Both D^T/τ and D^T/η are valid below the crossover temperature Tx,but take a fractional form for T > Tx.Our results indicate that the fractional Stokes–Einstein relation not only exists in supercooled liquids but also exists in NaCl solutions at high enough temperatures far away from the glass transition point.We propose that D^T/η and its two variants should be critically evaluated to test the validity of the Stokes–Einstein relation.展开更多
The surface dynamics of supercooled liquid-glycerol is studied by scanning the thickness of the glycerol film with single photon detection. Measurements are performed at room temperature well above the glyeerol's gla...The surface dynamics of supercooled liquid-glycerol is studied by scanning the thickness of the glycerol film with single photon detection. Measurements are performed at room temperature well above the glyeerol's glass transition temperature. It is shown that the surface dynamics of the glycerol film is very sensitive to the temperature. The linear relationship between the thickness of the film and the viscosity predicted by the Vogel Pulcher-Tammann Hesse (VFTH) law is also presented experimentally.展开更多
By means of Gibbs-Bogoliubov (GB) thermodynamic variational calculation,the thermodynamic properties of the supercooled liquid metals,such as the 3rd family elements Al,Ga and Tl and transition metal Ti were calculate...By means of Gibbs-Bogoliubov (GB) thermodynamic variational calculation,the thermodynamic properties of the supercooled liquid metals,such as the 3rd family elements Al,Ga and Tl and transition metal Ti were calculated using the hard-sphere (HS) system as reference.The values of mean atomic volume,Helmholtz free energy,internal energy and entropy as well as specific heat at constant volume,isothermal bulk modulus,thermal expan- sion coefficient and specfic heat under constant pressure were evaluated.The glass transition temperature,T_g,is easily obtained from the C_p-T plot.The glass forming ability for metal can be predicted from T_g/T_m,which is in agreement with the experimental results.展开更多
In marginally jammed solids confined by walls,we calculate the particle and ensemble averaged value of an order parameter,Ψ(r),as a function of the distance to the wall,r.Being a microscopic indicator of structural d...In marginally jammed solids confined by walls,we calculate the particle and ensemble averaged value of an order parameter,Ψ(r),as a function of the distance to the wall,r.Being a microscopic indicator of structural disorder and particle mobility in solids,Ψis by definition the response of the mean square particle displacement to the increase of temperature in the harmonic approximation and can be directly calculated from the normal modes of vibration of the zerotemperature solids.We find that,in confined jammed solids,Ψ(r)curves at different pressures can collapse onto the same master curve following a scaling function,indicating the criticality of the jamming transition.The scaling collapse suggests a diverging length scale and marginal instability at the jamming transition,which should be accessible to sophisticatedly designed experiments.Moreover,Ψ(r)is found to be significantly suppressed when approaching the wall and anisotropic in directions perpendicular and parallel to the wall.This finding can be applied to understand the r-dependence and anisotropy of the structural relaxation in confined supercooled liquids,providing another example of understanding or predicting behaviors of supercooled liquids from the perspective of the zero-temperature amorphous solids.展开更多
Surface morphologies of Zr52.5 Al10 Ni10 Cu15 Be12.5 bulk metallic glass after being rolled at both a temperature around T9 and near ( Tx - 50) K were investigated with a scanning electron microscopy. Macroscopic an...Surface morphologies of Zr52.5 Al10 Ni10 Cu15 Be12.5 bulk metallic glass after being rolled at both a temperature around T9 and near ( Tx - 50) K were investigated with a scanning electron microscopy. Macroscopic and microscopic observation results show that squamae, cracks, steps and wedges exist on the surface when the samples were rolled at temperatures around Ty. However, a smooth and fiat surface appears when the samples were rolled at temperatures near ( Tx - 50) K. These results indicate that the mode of deformation in the supercooled liquid region is a partially homogeneous flow at a temperature around T9, and a fully homogeneous one at temperatures near ( Tx - 50) K. According to the results, it is more feasible to roll the amorphous alloys at temperatures near ( Tx - 50) K to obtain parts with smooth and fiat surface.展开更多
Local arrangement of atoms in supercooled liquid Ni_(80)P_(20) alloy has been investigated by using NPT-MD simulation techniques based on the effective pair Potentials derived for Ni-P system. Bond-orientational order...Local arrangement of atoms in supercooled liquid Ni_(80)P_(20) alloy has been investigated by using NPT-MD simulation techniques based on the effective pair Potentials derived for Ni-P system. Bond-orientational order, the long-range correlation function and symmetrical parameters by pair-analysis approach have been calculated for supercooled liquid Ni_(80)P_(20) alloy. Results show. that in case of Ni_(80) .P_(20) alloy, the local structure is all random-like whether the centre of cluster is located at atoms Ni or P. It indicates that the icosahedral symmetry is not the unique model to describe the microstructure in supercooled liquid metals.展开更多
文摘Equations(2)and(6)and the corresponding discussion in the paper[Chin.Phys.Lett.42,056301(2025)]have been corrected.These modiffcations do not affect the results derived in the paper.
基金supported by the National Key Laboratory of Advanced Composite Materials(No.KZ42191814)。
文摘The icing characteristics of supercooled large droplet(SLD)impacting carbon fiber-reinforced composites(CFRCs)remain poorly understood,hindering the enhancement of ice protection capabilities and the certification of ice-accreted composite aircraft.The paper systematically investigates the effects of the supercooling degree,the surface temperature,and the impact velocity on the ice accretion behavior of SLDs impacting carbon fiber-reinforced epoxy composite surfaces.To address the ice-prone nature of CFRCs,nanoparticle-modified anti-icing coatings are developed,and the icing characteristics of SLD-impacted modified carbon fiber-reinforced epoxy composite surfaces are analyzed.Results demonstrate that surface-modified carbon fiber-reinforced epoxy composite exhibits significantly delayed ice formation.Under conditions of droplet temperature(−15℃)and surface temperature(−18℃),the icing time of hydrophobic-modified CFRCs was delayed by over 1100 ms,representing a 5.4-fold improvement compared to the unmodified carbon fiber-reinforced epoxy composite.
基金supported in part by the National Natural Science Foundation of China(No.51806008)the Open Fund of Key Laboratory of Rotor Aerodynamics Key Laboratory(No.RAL202104-2)。
文摘This numerical simulation investigates the two⁃phase flow under the condition of supercooled large droplets impinging on the aircraft surface.Based on Eulerian framework,a method for calculating supercooled water droplet impingement characteristics is established.Then,considering the deformation and breaking effects during the movement,this method is extended to calculate the impingement characteristics of supercooled large droplets,as well as the bouncing and splashing effects during impingement.The impingement characteristics of supercooled large droplets is then investigated by this method.The results demonstrate that the deformation and breaking effects of supercooled large droplets have negligible influence on the impingement characteristics under the experimental conditions of this paper.In addition,the results of the impingement range and collection efficiency decrease when considering the bouncing and splashing effects.The bouncing effect mainly affects the mass loss near the impingement limits,while the splashing effect influences the result around the stagnation point.This investigation is beneficial for the analysis of aircraft icing and the design of anti⁃icing system with supercooled large droplet conditions.
基金supported in part by the National Natural Science Foundation of China(No.52276009)。
文摘Accurate simulation of ice accretion of supercooled large droplet(SLD)is pivotal for the international airworthiness certification of large aircraft.Its complex dynamics behavior and broad particle size distributions pose significant challenges to reliable CFD predictions.A numerical model of multi-particle SLD coupling breaking,bouncing and splashing behaviors is established to explore the relationship between dynamics behavior and particle size.The results show that the peak value of droplet collection efficiencyβdecreases due to splashing.The bounce phenomenon will make the impact limit S_(m)of the water drops decrease.With the increase of the SLD particle size,the water drop bounce point gradually moves toward the trailing edge of the wing.The critical breaking diameter of SLD at an airflow velocity of 50 m/s is approximately 100μm.When the SLD particle size increases,the height of the water droplet shelter zone on the upper edge of the wing gradually decreases,and the velocity in the Y direction decreases first and then increases in the opposite direction,increasing the probability of SLD hitting the wing again.Large particle droplets have a higher effect on the impact limit S_(m)than smaller droplets.Therefore,in the numerical simulation of the SLD operating conditions,it is very important to ensure the proportion of large particle size water droplets.
基金supported by the National Key Research and Development Program of China (Grant No. 2022YFA1404603)by the National Natural Science Foundation of China (Grant Nos. 12274127 and 12188101)。
文摘By extending the concept of diffusion to the potential energy landscapes(PELs), we introduce the meansquared energy difference(MSED) as a novel quantity to investigate the intrinsic properties of supercooled liquids. MSED can provide a clear description of the “energy relaxation” process on a PEL. Through MSED analysis, we have obtained a characteristic time similar to that derived from structure analysis, namely τ_(α)^(*).Further, we establish a connection between MSED and the feature of PELs, providing a concise and quantitative description of PELs. The relaxation behavior of energy has been found to follow a stretched exponential form.As the temperature decreases, the roughness of the accessible PEL changes significantly around a characteristic temperature T_(x), which is 20% higher than the glass transition temperature T_(g) and is comparable to the critical temperature of the mode-coupling theory. More importantly, one of the PEL parameters is closely related to the Adam–Gibbs configurational entropy. The present research, which directly links the PEL to the relaxation process, provides avenues for further research of glasses.
基金jointly supported by the China National Science Foundation under Grant Nos.41875172 and 42075192。
文摘This paper studied a snow event over North China on 21 February 2017,using aircraft in-situ data,a Lagrangian analysis tool,and WRF simulations with different microphysical schemes to investigate the supercooled layer of warm conveyor belts(WCBs).Based on the aircraft data,we found a fine vertical structure within clouds in the WCB and highlighted a 1-2 km thin supercooled liquid water layer with a maximum Liquid Water Content(LWC) exceeding0.5 g kg^(-1) during the vertical aircraft observation.Although the main features of thermodynamic profiles were essentially captured by both modeling schemes,the microphysical quantities exhibited large diversity with different microphysics schemes.The conventional Morrison two-moment scheme showed remarkable agreement with in-situ observations,both in terms of the thermodynamic structure and the supercooled liquid water layer.However,the microphysical structure of the WCB clouds,in terms of LWC and IWC,was not apparent in HUJI fast bin scheme.To reduce such uncertainty,future work may focus on improving the representation of microphysics in bin schemes with in-situ data and using similar assumptions for all schemes to isolate the impact of physics.
文摘It has recently been shown that incident particles, neutrons, can initiate the freezing in a supercooled water volume. This new finding may have ramifications for the interpretation of both experimental data on the nucleation of laboratory samples of supercooled water and perhaps more importantly on the interpretation of ice nucleation involved in cloud physics. For example, if some fraction of the cloud nucleation previously attributed to dust, soot, or aerosols has been caused by cosmogenic neutrons, fresh consideration is required in the context of climate models. Moreover, as cosmogenic neutrons, most being muon-induced, have much greater flux at high latitudes, estimates of ice nucleates in these regions may be larger than required to accurately model cloud and condensation properties. This discrepancy has been pointed out in IPCC reports. Our paper discusses the connection between the new concept of neutrons nucleating supercooled water and the need for a new source of nucleation in high latitude clouds, ideally causing others to review current data, or to analyse future data with this idea in mind. .
基金Projects (50831003, 50571037) supported by the National Natural Science Foundation of China
文摘The formation and evolution characteristics of bcc phase during the isothermal relaxation processes for supercooled-liquid and amorphous Pb were investigated by molecular dynamics simulation and cluster-type index method (CTIM). It is found that during the relaxation process, the formation and evolution of bcc phase are closely dependent on the initial temperature and structure. During the simulation time scale, when the initial temperature is in the range of supercooled liquid region, the bcc phase can be formed and kept a long time; while it is in the range of glassy region, the bcc phase can be formed at first and then partially transformed into hcp phase; when it decreases to the lower one, the hcp and fcc phases can be directly transformed from the glassy structure without undergoing the metastable bcc phase. The Ostwald's "step rule" is impactful during the isothermal relaxation process of the supercooled and glassy Pb, and the metastable bcc phase plays an important role in the precursor of crystallization.
基金Supported by the National Natural Science Foundation of China (No. 40676011)the Key Technologies Research and Development Program of China (No. 2006BAB18B02)China’s Program for New Century Excellent Talents in University (No. NCET-10-0720)
文摘Supercooled water with temperatures below freezing point, was identified from hydrographic data obtained by Chinese and Australian expeditions to Prydz Bay, Antarctica, during the austral summer. The study shows that most supercooled waters occurred at depths of 63-271 m in the region north of the Amery Ice Shelf (AIS) front. The maximum supercooling was 0.16℃ below the in-situ freezing point. In temperature and salinity ranges of-2.14 - -1.96℃ and 34.39-34.46, respectively, the water was colder and fresher than peripheral shelf water. The supercooled water had less variability in the vertical profiles compared to shelf water. Based on analysis of their thermohaline features and spatial distribution, as well as the circulation pattern in Prydz Bay, we conclude that these supercooled waters originated from a cavity beneath the AIS and resulted from upwelling just outside of the AIS front. Water emerging from the ice shelf cools to an extremely low temperature (about -2.0℃) by additional cooling from the ice shelf, and becomes buoyant with the addition of melt water from the ice shelf base. When this water flows out of the ice shelf front, its upper boundary is removed, and thus it rises abruptly. Once the temperature of this water reaches below the freezing point, supercooling takes place. In summer, the seasonal pycnocline at -100 m water depth acts as a barrier to upwelling and supercooling. The upwelling of ice shelf outflow water illuminates a unique mid-depth convection of the polar ocean.
基金supported by the National Natural Science Foundation of China (Grant Nos.41775134,41375138,41505121,41675132 and 41675136)Graduate Student Innovation Plan for the Universities of Jiangsu Province (KYCX18 1010)
文摘A fog monitor, hotplate total precipitation sensor, weather identifier and visibility sensor, ultrasonic wind speed meter,an icing gradient observation frame, and an automated weather station were involved in the observations at the Lushan Meteorological Bureau of Jiangxi Province, China. In this study, for the icing process under a cold surge from 20–25 January2016, the duration, frequency, and spectrum distribution of agglomerate fog were analyzed. The effects of rain, snow, and supercooled fog on icing growth were studied and the icing and meteorological conditions at two heights(10 m and 1.5 m)were compared. There were 218 agglomerate fogs in this icing process, of which agglomerate fogs with durations less than and greater than 10 min accounted for 91.3% and 8.7%, respectively. The average time interval was 10.3 min. The fog droplet number concentration for sizes 2–15 μm and 30–50 μm increased during rainfall, and that for 2–27 μm decreased during snowfall. Icing grew rapidly(1.3 mm h-1) in the freezing rain phase but slowly(0.1 mm h-1) during the dry snow phase. Intensive supercooled fog, lower temperatures and increased wind speed all favored icing growth during dry snow(0.5 mm h-1). There were significant differences in the thickness, duration, density, and growth mechanism of icing at the heights of 10 m and 1.5 m. Differences in temperature and wind speed between the two heights were the main reasons for the differences in icing conditions, which indicated that icing was strongly affected by height.
文摘Understanding the behaviours of ice nucleation in non-isothermal conditions is of great importance for the preparation and retention of supercooled water. Here ice nucleation in supercooled water under temperature gradients is analyzed thermodynamically based on classical nucleation theory(CNT). Given that the free energy barrier for nucleation is dependent on temperature, different from a uniform temperature usually used in CNT, an assumption of linear temperature distribution in the ice nucleus was made and taken into consideration in analysis. The critical radius of the ice nucleus for nucleation and the corresponding nucleation model in the presence of a temperature gradient were obtained. It is observed that the critical radius is determined not only by the degree of supercooling, the only dependence in CNT, but also by the temperature gradient and even the Young's contact angle. Effects of temperature gradient on the change in free energy, critical radius,nucleation barrier and nucleation rate with different contact angles and degrees of supercooling are illustrated successively.The results show that a temperature gradient will increase the nucleation barrier and decrease the nucleation rate, particularly in the cases of large contact angle and low degree of supercooling. In addition, there is a critical temperature gradient for a given degree of supercooling and contact angle, at the higher of which the nucleation can be suppressed completely.
基金supported by the National Natural Sci-ence Foundation of China under grant No. 50705092.
文摘Research results on the viscous flow deformation behavior of bulk amorphous alloy in different systems are reviewed. The material exhibits an ideal Newtonian fluid at a high temperature. Analytical solution of lamellar fluid flow behavior is used to discuss the viscous flow behavior of the bulk amorphous alloy in the supercooled liquid state. A material model, which describes such deformation behavior of Mg6oCusoYlo amorphous alloy, is introduced into the finite element method of microformin8 process. Surface feature size was investigated and found not sensitive to the micro formability. Bulk amorphous alloy may possibly be applied to microelectro-mechanical-systems (MEMS) fabrication.
基金Supported by the National Natural Science Foundation of China under Grant No 11004163the Fundamental Research Funds for the Central Universities under Grant No 2682014ZT31
文摘Thermal behavior of bulk amorphous sulfur is investigated by in situ temperature measurements at high pressures of 0.9, 1.4 and 2.1 GPa, and under different heating rates of 8, 10 and 12K/min at 0.9 GPa. The results show that the onset temperature of the transition from the supercooled Hquid to the liquid state for sulfur increases with the pressure and the heating rate. It is deduced that the transition does not follow the Clapeyron equation, indicating considerable coupling of the molecular structure change in the transition. Along with the data at ambient pressure and high pressure, we present a dynamic diagram to demonstrate the relationship between the amorphous solid, supercooled liquid, liquid, and crystal phases of sulfur, and suggest an experimental approach to establish pressure-temperature-time transition diagrams for supercooled liquid and liquid.
基金financially supported by the National Natural Science Foundation of China(Nos.21474111 and 21790340)the Key Research Program of Frontier Sciences,CAS(No.QYZDY-SSW-SLH027)
文摘The dynamic properties of polymer melts are investigated in the range of normal liquid regime to the supercooled liquid regime. The polymer is modeled as a coarse-grained bead-spring model with chain length ranging from 5 to 160. The mean squared displacement and non-Gaussian parameter are used to describe the self diffusion of polymer beads. We find slow dynamics with decreasing temperature and increasing chain length. The time evolution of non-Gaussian parameters shows two peaks (or one peak one shoulder) in the a-relaxation time, τa, regime and sub-diffusion time regime, respectively, where the first primary peak indicates the dynamic heterogeneity stemmed from the motion of beads, and the secondary peak is the result of correlated motion along a polymer chain. Moreover, the relaxation of polymer beads shows clear two-step decay in supercooled melts and the dynamics shows growing heterogeneity with decreasing temperature. As chain length is increased, a peak of the dynamic susceptibility occurs, and the peak height, x*4, increases and then reaches a plateau. The curves of the height of the first peak of a2, a2*, versus τa and the curves of x*4 versus τa follow two master curves for different chain lengths. Our results indicate the similarity of dynamic heterogeneity dominated by the motion of single bead even the chain length is different. It is interesting to find that the Stokes-Einstein (SE) relation between ra and diffusion coefficient D, D-rq 1, is highly length-scale dependent. The SE relation breaks down in both normal melts regime and supercooled regime at large magnitude of wave vectors, attributed to the non-Brownian motion arising from the chain connectivity and growing heterogeneity due to supercooling. However, the SE relation is reconstructed when the probing length scale is large (at small magnitude of wave vectors). Our results show a hierarchical physical picture of the supercooled polymeric dynamics.
基金Project supported by the Foundation of Civil Aviation Flight University of China(Grant Nos.J2019-059 and JG2019-19)
文摘The Stokes–Einstein relation D^T/η and its two variants D~τ-1 and D^T/τ follow a fractional form in supercooled liquids, where D is the diffusion constant, T the temperature,η the shear viscosity, and τ the structural relaxation time.The fractional Stokes–Einstein relation is proposed to result from the dynamic heterogeneity of supercooled liquids.In this work, by performing molecular dynamics simulations, we show that the analogous fractional form also exists in sodium chloride(NaCl) solutions above room temperature.D~τ-1 takes a fractional form within 300–800 K;a crossover is observed in both D^T/τ and D^T/η.Both D^T/τ and D^T/η are valid below the crossover temperature Tx,but take a fractional form for T > Tx.Our results indicate that the fractional Stokes–Einstein relation not only exists in supercooled liquids but also exists in NaCl solutions at high enough temperatures far away from the glass transition point.We propose that D^T/η and its two variants should be critically evaluated to test the validity of the Stokes–Einstein relation.
基金supported by the Natural Science Foundation of China (Grant No 10674086)973 Program of China (Grant Nos 2006CB921603,2006CB921102 and 2008CB317103)+4 种基金863 Program of China (Grant No 2009AA01Z319)NCET-06-0259the Shanxi Provincial Foundation for Leaders of Disciplines in Sciencethe Natural Science Foundation of Shanxi province,China (Grant No 2007011006)Shanxi Province Foundation for Returned scholars of China
文摘The surface dynamics of supercooled liquid-glycerol is studied by scanning the thickness of the glycerol film with single photon detection. Measurements are performed at room temperature well above the glyeerol's glass transition temperature. It is shown that the surface dynamics of the glycerol film is very sensitive to the temperature. The linear relationship between the thickness of the film and the viscosity predicted by the Vogel Pulcher-Tammann Hesse (VFTH) law is also presented experimentally.
文摘By means of Gibbs-Bogoliubov (GB) thermodynamic variational calculation,the thermodynamic properties of the supercooled liquid metals,such as the 3rd family elements Al,Ga and Tl and transition metal Ti were calculated using the hard-sphere (HS) system as reference.The values of mean atomic volume,Helmholtz free energy,internal energy and entropy as well as specific heat at constant volume,isothermal bulk modulus,thermal expan- sion coefficient and specfic heat under constant pressure were evaluated.The glass transition temperature,T_g,is easily obtained from the C_p-T plot.The glass forming ability for metal can be predicted from T_g/T_m,which is in agreement with the experimental results.
基金Project supported by the National Natural Science Foundation of China(Grant No.11734014)。
文摘In marginally jammed solids confined by walls,we calculate the particle and ensemble averaged value of an order parameter,Ψ(r),as a function of the distance to the wall,r.Being a microscopic indicator of structural disorder and particle mobility in solids,Ψis by definition the response of the mean square particle displacement to the increase of temperature in the harmonic approximation and can be directly calculated from the normal modes of vibration of the zerotemperature solids.We find that,in confined jammed solids,Ψ(r)curves at different pressures can collapse onto the same master curve following a scaling function,indicating the criticality of the jamming transition.The scaling collapse suggests a diverging length scale and marginal instability at the jamming transition,which should be accessible to sophisticatedly designed experiments.Moreover,Ψ(r)is found to be significantly suppressed when approaching the wall and anisotropic in directions perpendicular and parallel to the wall.This finding can be applied to understand the r-dependence and anisotropy of the structural relaxation in confined supercooled liquids,providing another example of understanding or predicting behaviors of supercooled liquids from the perspective of the zero-temperature amorphous solids.
基金Project supported by National Natural Science Foundation of Chi-na (Grant Nos .50201009 ,50031010)
文摘Surface morphologies of Zr52.5 Al10 Ni10 Cu15 Be12.5 bulk metallic glass after being rolled at both a temperature around T9 and near ( Tx - 50) K were investigated with a scanning electron microscopy. Macroscopic and microscopic observation results show that squamae, cracks, steps and wedges exist on the surface when the samples were rolled at temperatures around Ty. However, a smooth and fiat surface appears when the samples were rolled at temperatures near ( Tx - 50) K. These results indicate that the mode of deformation in the supercooled liquid region is a partially homogeneous flow at a temperature around T9, and a fully homogeneous one at temperatures near ( Tx - 50) K. According to the results, it is more feasible to roll the amorphous alloys at temperatures near ( Tx - 50) K to obtain parts with smooth and fiat surface.
文摘Local arrangement of atoms in supercooled liquid Ni_(80)P_(20) alloy has been investigated by using NPT-MD simulation techniques based on the effective pair Potentials derived for Ni-P system. Bond-orientational order, the long-range correlation function and symmetrical parameters by pair-analysis approach have been calculated for supercooled liquid Ni_(80)P_(20) alloy. Results show. that in case of Ni_(80) .P_(20) alloy, the local structure is all random-like whether the centre of cluster is located at atoms Ni or P. It indicates that the icosahedral symmetry is not the unique model to describe the microstructure in supercooled liquid metals.