In this paper, a strategy for the reactive power compensation and harmonic suppression of the power supply system in HT-7U superconductive Tokamak is proposed. The optimized approach is given in the parameters design...In this paper, a strategy for the reactive power compensation and harmonic suppression of the power supply system in HT-7U superconductive Tokamak is proposed. The optimized approach is given in the parameters design for passive filter. Also a controlling method with fast response time and good accuracy is put forward for the compensator, which is more suitable for the dynamic load.展开更多
By laser heated pedestal growth method, Bi_2Sr_2CaCu_2O_(8+δ) as-grown fibers with different morphologies were solidified in non-equilibrium condition at the rates of 0.1~14mm/min.At low rates,a(Sr_(1-x)Ca_x)CuO_2 p...By laser heated pedestal growth method, Bi_2Sr_2CaCu_2O_(8+δ) as-grown fibers with different morphologies were solidified in non-equilibrium condition at the rates of 0.1~14mm/min.At low rates,a(Sr_(1-x)Ca_x)CuO_2 phase with long and straight strips in shape and a white Cu-rich phase having a morphology of globular shape were found. With the increase of solidification rates,the phase (Sr_(1-x)Ca_x)CuO_2 becomes thinner and the Cu-rich phase becomes smaller and dispersive.When the solidification rates were last.another unstable phase(Sr_(1-x)Ca_x)Cu_2O_3 occurred.In fact,the tran- sition of the semiconductive as-grown fiber to the superconductor is a peritectoid reaction influenced by the annealing temperature and time.展开更多
Large area YBCO superconductive films prepared by d.c. magnetron sputtering have reached: T c>89 K, J c>3.5×10 6 A/cm 2 (77 K, 0 T), R s=0.25 mΩ, at 77.5 K, 9894 MHz. The microstructure an...Large area YBCO superconductive films prepared by d.c. magnetron sputtering have reached: T c>89 K, J c>3.5×10 6 A/cm 2 (77 K, 0 T), R s=0.25 mΩ, at 77.5 K, 9894 MHz. The microstructure analysis of the film showed it has fine monocrystalline structure and the crystalline perfectness is satisfactory. The oscillator, filter and antenna made from these films are good in performance. Therefore, YBCO superconductive films have great prospect in application.展开更多
As one of the main materials in the practical application.of superconductor,lead(Pb)has been used to manufacture superconducting AC power cable,and some weak current fields.With the development of manufacturing,techno...As one of the main materials in the practical application.of superconductor,lead(Pb)has been used to manufacture superconducting AC power cable,and some weak current fields.With the development of manufacturing,technology,more and more researchers focus on exploring the physical and chemical properties of cryogenic superconducting materials,instead of blindly pursuing the improvement of the superconducting transition temperature(T_(c)).In this paper,the structural properties and superconducting transition temperature under high pressure of Pb have been studied by first-principles calculations.It has shown that Pb can withstand the compressive strain up to 10%while the lattice structure remains stable,indicated by the calculations of phonon band structures.From 0%to 10%compressive strain,there is neither a band-gap nor changing of the band structure.The.changing of electronic DOS.at the Fermi level leads to a decreasing of T_(c).Our calculations show that Pb is a stable elemental metallic superconductor even under high pressure,which explains the reason why it has been used in practical productions.展开更多
We investigate the controllable group velocity of a microwave probe field in a superconductive quantum circuit(SQC) pumped by microwave fields,and the use of such a SQC function as an artificial Λ-type three-level ...We investigate the controllable group velocity of a microwave probe field in a superconductive quantum circuit(SQC) pumped by microwave fields,and the use of such a SQC function as an artificial Λ-type three-level atom.The exchange between the subluminal and the superluminal states of the probe field can be realized simply by sweeping the pumping intensity,and the superluminal state is usually realized with a lower absorption.This work is one of the efforts to extend the study of electromagnetically induced transparency and its related properties from the lightwave band to the microwave band.展开更多
On the basis of the published literature and the interviews with some participants,this paper introduces the early history of the studies of superconductive materials and superconducting magnet during 1962~ 1966 in C...On the basis of the published literature and the interviews with some participants,this paper introduces the early history of the studies of superconductive materials and superconducting magnet during 1962~ 1966 in China,narrates the achievements of other relevant experimental and theoretical studies of superconductivity in that period briefly,and tries to give the authors' comments on that history.展开更多
The discovery of an extraordinarily superconductive large energy gap in SrTiO3 supported single-layer FeSe films has recently initiated a great deal of research interests in surface-enhanced superconductivity and supe...The discovery of an extraordinarily superconductive large energy gap in SrTiO3 supported single-layer FeSe films has recently initiated a great deal of research interests in surface-enhanced superconductivity and superconductive ultrathin films fabricated on crystal surfaces. On account of the instability of ultra-thin films in air, it is desirable to perform elec- trical transport measurement in ultra-high vaccum (UHV). Here we review the experimental techniques of in situ electrical transport measurement and their applications on superconductive ultrathin films.展开更多
Laser heated pedestal growth technique (LHPG) has been used to fabricate BSCCO (BiSrCaCuO) superconductive wires.The critical current density of the wires has surpassed 5000A/cm^2 (78K, OT;cross area=1.04 mm^2).The fi...Laser heated pedestal growth technique (LHPG) has been used to fabricate BSCCO (BiSrCaCuO) superconductive wires.The critical current density of the wires has surpassed 5000A/cm^2 (78K, OT;cross area=1.04 mm^2).The fiber rods obtained directly from LHPG method are semiconductive and after heat treatment at temperature range from 780 to 870℃,they transformed into superconductive wires.Triple junctions and sharp grain boundary exist in the sample.HREM studies showed the intergrowth of (010) and (110),the occasional missing of CaCuO_2 layer in the 2212 phase.展开更多
High quality YBa2Cu3O6+x (YBCO) superconductive thin films have been fabricated on the SrTiO3(100) substrate using laser molecular beam epitaxy (laser-MBE).The active oxygen source was used,which made the necessary am...High quality YBa2Cu3O6+x (YBCO) superconductive thin films have been fabricated on the SrTiO3(100) substrate using laser molecular beam epitaxy (laser-MBE).The active oxygen source was used,which made the necessary ambient oxygen pressure be 2-3 orders lower than that in pulsed laser deposition (PLD).Tc0 is 85-87 K,and Jc~1.0×106 A/cm2.Atomic force microscopy (AFM) measurements show that no obvious particulates can be observed and the root mean square roughness is 7.8 nm.High stability DC superconducting quantum interference devices (DC-SQUID) was fabricated using this YBCO thin film.展开更多
Research on the mechanical–electrical properties is crucial for designing and preparing high-temperature superconducting(HTS)cables.Various winding core structures can influence the mechanical–electrical behavior of...Research on the mechanical–electrical properties is crucial for designing and preparing high-temperature superconducting(HTS)cables.Various winding core structures can influence the mechanical–electrical behavior of cables,but the impact of alterations in the winding core structure on the mechanical–electrical behavior of superconducting cables remains unclear.This paper presents a 3D finite element model to predict the performance of three cables with different core structures when subjected to transverse compression and axial tension.The three cables analyzed are CORC(conductor-on-round-core),CORT(conductor-on-round-tube),and HFRC(conductor-on-spiral-tube).A parametric analysis is carried out by varying the core diameter and inner-to-outer diameter ratio.Results indicate that the CORT cable demonstrates better performance in transverse compression compared to the CORC cable,aligning with experimental data.Among the three cables,the HFRC cables exhibit the weakest resistance to transverse deformation.However,the HFRC cable demonstrates superior tensile deformation resistance compared to the CORT cable,provided that the transverse compression properties are maintained.Finite element results also show that the optimum inner-to-outer diameter ratios for achieving the best transverse compression performance are approximately 0.8 for CORT cables and 0.6 for HFRC cables.Meanwhile,the study explores the effect of structural changes in HTS cable winding cores on their electromagnetic properties.It recommends utilizing small tape gaps,lower frequencies,and spiral core construction to minimize eddy losses.The findings presented in this paper offer valuable insights for the commercialization and practical manufacturing of HTS cables.展开更多
Superconducting radio-frequency(SRF)cavities are the core components of SRF linear accelerators,making their stable operation considerably important.However,the operational experience from different accelerator labora...Superconducting radio-frequency(SRF)cavities are the core components of SRF linear accelerators,making their stable operation considerably important.However,the operational experience from different accelerator laboratories has revealed that SRF faults are the leading cause of short machine downtime trips.When a cavity fault occurs,system experts analyze the time-series data recorded by low-level RF systems and identify the fault type.However,this requires expertise and intuition,posing a major challenge for control-room operators.Here,we propose an expert feature-based machine learning model for automating SRF cavity fault recognition.The main challenge in converting the"expert reasoning"process for SRF faults into a"model inference"process lies in feature extraction,which is attributed to the associated multidimensional and complex time-series waveforms.Existing autoregression-based feature-extraction methods require the signal to be stable and autocorrelated,resulting in difficulty in capturing the abrupt features that exist in several SRF failure patterns.To address these issues,we introduce expertise into the classification model through reasonable feature engineering.We demonstrate the feasibility of this method using the SRF cavity of the China accelerator facility for superheavy elements(CAFE2).Although specific faults in SRF cavities may vary across different accelerators,similarities exist in the RF signals.Therefore,this study provides valuable guidance for fault analysis of the entire SRF community.展开更多
The technology of electric propulsion aircraft(EPA)represents an important direction and an advanced stage in the development of aviation electrification.It is a key pathway for green development in aviation industry ...The technology of electric propulsion aircraft(EPA)represents an important direction and an advanced stage in the development of aviation electrification.It is a key pathway for green development in aviation industry and can significantly enhance the energy efficiency of aircraft propulsion system.Electric motor is the most critical electromechanical energy conversion component in an aircraft electric propulsion system(EPS).High-performance electric motors,power electronic converters and EPS control form the foundation of the EPA.This paper provides an overview of the characteristics of electric motors for EPA,analyzes the inverter topologies of EPSs,and reviews ongoing EPA projects.The article highlights the latest advancements in three types of motors:superconducting motors(SCMs),permanent magnet synchronous motors(PMSMs),and induction motors(IMs).It summarizes the control system architectures of current EPA initiatives and,building on this foundation,proposes future research directions for EPSs.These include cutting-edge areas such as high-performance motors and advanced manufacturing technologies,Ga N-or Si C-based inverter integration and innovation,electric propulsion control systems,and optimization of wiring systems.展开更多
Theoretically,copper–niobium(Cu-Nb)composite superconducting cavities have excellent potential for high thermal and mechanical stability.They can appropriately exploit the high-gradient surface processing recipes dev...Theoretically,copper–niobium(Cu-Nb)composite superconducting cavities have excellent potential for high thermal and mechanical stability.They can appropriately exploit the high-gradient surface processing recipes developed for the bulk niobium(Nb)cavity and the thick copper(Cu)layer’s high thermal conductivity and rigidity,thereby enhancing the operational stability of the bulk Nb cavities.This study conducted a global review of the technical approaches employed for fabricating Cu-Nb composite superconducting cavities.We explored Cu-Nb composite superconducting cavities based on two technologies at the Institute of Modern Physics,Chinese Academy of Sciences(IMP,CAS),including their manufacturing processes,radio-frequency(RF)characteristics,and mechanical performance.These cavities exhibit robust mechanical stability.First,the investigation of several 1.3 GHz single-cell elliptical cavities using the Cu-Nb composite sheets indicated that the wavy structure at the Cu-Nb interface influenced the reliable welding of the Cu-Nb composite parts.We observed the generation and trapping of magnetic flux density during the T_c crossing of Nb in cooldown process.The cooling rates during the T_c crossing of Nb exerted a substantial impact on the performance of the cavities.Furthermore,we measured and analyzed the surface resistance R_(s)attributed to the trapped magnetic flux induced by the Seebeck effect after quenching events.Second,for the first time,a low-beta bulk Nb cavity was plated with Cu on its outer surface using electroplating technology.We achieved a high peak electric field E_(pk)of~88.8 MV/m at 2 K and the unloaded quality factor Q_(0)at the E_(pk)of 88.8 MV/m exceeded 1×10^(10).This demonstrated that the electroplating Cu on the bulk Nb cavity is a practical method of developing the Cu-Nb composite superconducting cavity with superior thermal stability.The results presented here provide valuable insights for applying Cu-Nb composite superconducting cavities in superconducting accelerators with stringent operational stability requirements.展开更多
Background In superconductive linear accelerator,the performance and stability can be impacted by gas adsorbed on cryogenic surfaces adversely.The cryogenic devices usually work at 4.2 K or 1.9 K and are refrigerated ...Background In superconductive linear accelerator,the performance and stability can be impacted by gas adsorbed on cryogenic surfaces adversely.The cryogenic devices usually work at 4.2 K or 1.9 K and are refrigerated by normal or super fluid liquid helium,respectively.Purpose The purpose of this paper is to study the character of gas migration in cryogenic tubes.Method Adsorption coefficient for hydrogen at 4.2 K is measured by experimental study.Then,a gas migration model is established based on the experimental results to depict the hydrogen migration process in cryogenic tubes.Results The experimental results and model analysis indicated that at cryogenic temperature(4.2 K),adsorption coefficient for hydrogen is very close to 1,which is several orders higher than the adsorption coefficient at room temperature,resulting in a unique pressure distribution pattern in cryogenic tubes when compared with the pressure distribution in room temperature tubes.Conclusions At 4.2 K or 1.9 K,the gas migration process is obviously different from the process at room temperature and is significantly affected by the gas adsorption on the cryogenic surfaces.The model established in this article can be applied not only to hydrogen migration in cryogenic tubes but also to other gas migration in tubes with high adsorption coefficient.展开更多
A team of researchers from the University of Science and Technology of China(USTC)of the Chinese Academy of Sciences(CAS)and its partners have made significant advancements in random quantum circuit sampling with Zuch...A team of researchers from the University of Science and Technology of China(USTC)of the Chinese Academy of Sciences(CAS)and its partners have made significant advancements in random quantum circuit sampling with Zuchongzhi-3,a superconducting quantum computing prototype featuring 105 qubits and 182 couplers.展开更多
Ytterbium polyhydrides were synthesized through in-situ high pressure laser heating techniques utilizing a diamond anvil cell.The temperature dependence of resistance measurement at high pressure demonstrates that the...Ytterbium polyhydrides were synthesized through in-situ high pressure laser heating techniques utilizing a diamond anvil cell.The temperature dependence of resistance measurement at high pressure demonstrates that the sample undergoes a superconducting transition at 11.5 K at 180 GPa.展开更多
The discovery of high-temperature superconductivity in bilayer nickelate La_(3)Ni_(2)O_(7)under high-pressure conditions has spurred extensive efforts to stabilize superconductivity at ambient pressure.Recently,the re...The discovery of high-temperature superconductivity in bilayer nickelate La_(3)Ni_(2)O_(7)under high-pressure conditions has spurred extensive efforts to stabilize superconductivity at ambient pressure.Recently,the realization of superconductivity in compressively strained La_(3)Ni_(2)O_(7)thin films grown on the SrLaAlO_(4)substrates,with a T_(c)exceeding 40 K,represents a significant step toward this goal.Here,we investigate the influence of film thickness and carrier doping on the electronic structure of La_(3)Ni_(2)O_(7)thin films,ranging from 0.5 to 3 unit cells,using first-principles calculations.For a 2 unit-cell film with an optimal doping concentration of 0.3 hole per formula unit(0.15 hole/Ni),the Ni-d_(z^(2))interlayer bonding state crosses the Fermi level,resulting in the formation ofγpockets at the Fermi surface.These findings align with angle-resolved photoemission spectroscopy experimental data.Our results provide theoretical validation for the recent experimental discovery of ambient-pressure superconductivity in La_(3)Ni_(2)O_(7)thin films and underscore the significant impact of film thickness and carrier doping on electronic property modulation.展开更多
The discovery of pressure-induced superconducting electrides has sparked a intense wave of interest in novel superconductors.However,opinions vary regarding the relationship between non-nuclear attractors(NNAs)and sup...The discovery of pressure-induced superconducting electrides has sparked a intense wave of interest in novel superconductors.However,opinions vary regarding the relationship between non-nuclear attractors(NNAs)and superconductivity,with two opposing views currently represented by the materials Li_(6)P and Li_(6)C.Here,we choose the ternary Li–C–P as a model system and reveal the underlying mechanism by which NNAs contribute to superconductivity.The loosely bound NNAs in the superlithide Li_(14)CP covalently bond with Li and form unique satellite interstitial electrons(SIEs)around Li near the Fermi level,dominating the superconductivity.First-principles calculations show that the SIEs progressively increase in number and couple strongly with phonons at high pressure.Moreover,the Fermi surface nesting associated with SIEs induces phonon softening,further enhancing the electron–phonon coupling and giving the superlithide Li_(14)CP a T_(c)of 10.6 K at 300 GPa.The leading role of SIEs in superconductivity is a general one and is also relevant to the recently predicted Li_(6)P and Li_(6)C.Our work presented here reshapes the understanding of NNA-dominated superconductivity and holds promise for guiding future discoveries and designs of novel high-temperature superconductors.展开更多
Pursuing new two-dimensional(2D)materials has been a hot topic in materials science,driven by their potential for diverse applications.Recent research has unveiled stable planar hypercoordinate motifs with unconventio...Pursuing new two-dimensional(2D)materials has been a hot topic in materials science,driven by their potential for diverse applications.Recent research has unveiled stable planar hypercoordinate motifs with unconventional geometric arrangements and bonding patterns that facilitate the synthesis of new 2D materials with diverse applications.Among these,yet the design of 2D transition metal systems featuring planar pentacoordinate boron(ppB)is particularly intriguing.Here we address this gap by proposing a novel family of transition metal boride monolayers(MBenes)composed of ppB and heptacoordinate M motifs.The novelty of our MBenes stems from their distinct atomic arrangements and bonding configurations,setting them apart from traditional 2D materials.High-throughput calculations identified 10 stable MBenes(with the stoichiometry of MB,M=Cr,Fe,Co,Ni,Cu,Mo,Pd,Ag,Pt,Au)with exceptional thermodynamic,dynamic,thermal,and mechanical stabilities attributed to strong BB covalent bonds and MB ionic interactions.Notably,five of these MBenes(M=Ni,Pd,Pt,Ag,Au)hold high promise as topological superconducting materials with superconducting transition temperatures of 2.4-5.2 K.This discovery not only enriches the family of topological superconducting materials but also opens new avenues for quantum device development.Meanwhile,FeB monolayer exhibits robust ferromagnetic properties with a high Curie temperature of~750 K,which is particularly significant for spintronics applications.In addition,NiB and CuB MBenes demonstrate extremely low sodium diffusion barriers(about 30 and 90 meV)and high sodium storage capacities(788 and 734 mAh g1,respectively),making them promising anode materials for sodium-ion batteries(SIBs).This study expands the selection of electrode materials for SIBs and mitigates some existing limitations in battery technology.Overall,these findings underscore the multifunctional potential of MBenes,positioning them as transformative materials for quantum computing,spintronics,and energy storage applications.展开更多
Two-dimensional(2D)superconductors have attracted significant research interest due to their promising potential applications in optoelectronic and microelectronic devices.Herein,we employ first-principles calculation...Two-dimensional(2D)superconductors have attracted significant research interest due to their promising potential applications in optoelectronic and microelectronic devices.Herein,we employ first-principles calculations to predicted a new 2D conventional superconductor,Tc_(2)B_(2),demonstrating its stable structural configuration.Remarkably,under biaxial strain,the superconducting transition temperature(T_(c))of Tc_(2)B_(2)demonstrates a significant enhancement,achieving 19.5 K under 3%compressive strain and 9.2 K under 11%tensile strain.Our study reveals that strain-induced modifications in Fermi surface topology significantly enhance the Fermi surface nesting effect,which amplifies electron–phonon coupling interactions and consequently elevates Tc.Additionally,the presence of the Lifshitz transition results in a more pronounced rise in Tc under compressive strain compared to tensile strain.These insights offer important theoretical guidance for designing 2D superconductors with high-Tc through strain modulation.展开更多
文摘In this paper, a strategy for the reactive power compensation and harmonic suppression of the power supply system in HT-7U superconductive Tokamak is proposed. The optimized approach is given in the parameters design for passive filter. Also a controlling method with fast response time and good accuracy is put forward for the compensator, which is more suitable for the dynamic load.
基金This work was supported by the National Natural Science Foundation of Chinathe National Laboratory of Rapidly Solidified Non-equilibrium Alloys,Institute of Metal Research,Academia Sinica
文摘By laser heated pedestal growth method, Bi_2Sr_2CaCu_2O_(8+δ) as-grown fibers with different morphologies were solidified in non-equilibrium condition at the rates of 0.1~14mm/min.At low rates,a(Sr_(1-x)Ca_x)CuO_2 phase with long and straight strips in shape and a white Cu-rich phase having a morphology of globular shape were found. With the increase of solidification rates,the phase (Sr_(1-x)Ca_x)CuO_2 becomes thinner and the Cu-rich phase becomes smaller and dispersive.When the solidification rates were last.another unstable phase(Sr_(1-x)Ca_x)Cu_2O_3 occurred.In fact,the tran- sition of the semiconductive as-grown fiber to the superconductor is a peritectoid reaction influenced by the annealing temperature and time.
文摘Large area YBCO superconductive films prepared by d.c. magnetron sputtering have reached: T c>89 K, J c>3.5×10 6 A/cm 2 (77 K, 0 T), R s=0.25 mΩ, at 77.5 K, 9894 MHz. The microstructure analysis of the film showed it has fine monocrystalline structure and the crystalline perfectness is satisfactory. The oscillator, filter and antenna made from these films are good in performance. Therefore, YBCO superconductive films have great prospect in application.
文摘As one of the main materials in the practical application.of superconductor,lead(Pb)has been used to manufacture superconducting AC power cable,and some weak current fields.With the development of manufacturing,technology,more and more researchers focus on exploring the physical and chemical properties of cryogenic superconducting materials,instead of blindly pursuing the improvement of the superconducting transition temperature(T_(c)).In this paper,the structural properties and superconducting transition temperature under high pressure of Pb have been studied by first-principles calculations.It has shown that Pb can withstand the compressive strain up to 10%while the lattice structure remains stable,indicated by the calculations of phonon band structures.From 0%to 10%compressive strain,there is neither a band-gap nor changing of the band structure.The.changing of electronic DOS.at the Fermi level leads to a decreasing of T_(c).Our calculations show that Pb is a stable elemental metallic superconductor even under high pressure,which explains the reason why it has been used in practical productions.
基金Project supported by the National Natural Science Foundation of China (Grant No. 111174040)the Fundamental Research Funds for the Central Universities
文摘We investigate the controllable group velocity of a microwave probe field in a superconductive quantum circuit(SQC) pumped by microwave fields,and the use of such a SQC function as an artificial Λ-type three-level atom.The exchange between the subluminal and the superluminal states of the probe field can be realized simply by sweeping the pumping intensity,and the superluminal state is usually realized with a lower absorption.This work is one of the efforts to extend the study of electromagnetically induced transparency and its related properties from the lightwave band to the microwave band.
文摘On the basis of the published literature and the interviews with some participants,this paper introduces the early history of the studies of superconductive materials and superconducting magnet during 1962~ 1966 in China,narrates the achievements of other relevant experimental and theoretical studies of superconductivity in that period briefly,and tries to give the authors' comments on that history.
基金supported by the National Basic Research Program of China(Grant Nos.2013CB921902 and 2011CB922200)the National Natural Science Foundation of China(Grant Nos.11227404,11274228,11521404,11174199,and 11134008)
文摘The discovery of an extraordinarily superconductive large energy gap in SrTiO3 supported single-layer FeSe films has recently initiated a great deal of research interests in surface-enhanced superconductivity and superconductive ultrathin films fabricated on crystal surfaces. On account of the instability of ultra-thin films in air, it is desirable to perform elec- trical transport measurement in ultra-high vaccum (UHV). Here we review the experimental techniques of in situ electrical transport measurement and their applications on superconductive ultrathin films.
文摘Laser heated pedestal growth technique (LHPG) has been used to fabricate BSCCO (BiSrCaCuO) superconductive wires.The critical current density of the wires has surpassed 5000A/cm^2 (78K, OT;cross area=1.04 mm^2).The fiber rods obtained directly from LHPG method are semiconductive and after heat treatment at temperature range from 780 to 870℃,they transformed into superconductive wires.Triple junctions and sharp grain boundary exist in the sample.HREM studies showed the intergrowth of (010) and (110),the occasional missing of CaCuO_2 layer in the 2212 phase.
基金This work was supported by the State Key Program of China (Grant No. G1998061412) the National 863 Project (Grant No. 863-CD070103) .
文摘High quality YBa2Cu3O6+x (YBCO) superconductive thin films have been fabricated on the SrTiO3(100) substrate using laser molecular beam epitaxy (laser-MBE).The active oxygen source was used,which made the necessary ambient oxygen pressure be 2-3 orders lower than that in pulsed laser deposition (PLD).Tc0 is 85-87 K,and Jc~1.0×106 A/cm2.Atomic force microscopy (AFM) measurements show that no obvious particulates can be observed and the root mean square roughness is 7.8 nm.High stability DC superconducting quantum interference devices (DC-SQUID) was fabricated using this YBCO thin film.
基金supported by the National Natural Science Foundation of China(12072136).
文摘Research on the mechanical–electrical properties is crucial for designing and preparing high-temperature superconducting(HTS)cables.Various winding core structures can influence the mechanical–electrical behavior of cables,but the impact of alterations in the winding core structure on the mechanical–electrical behavior of superconducting cables remains unclear.This paper presents a 3D finite element model to predict the performance of three cables with different core structures when subjected to transverse compression and axial tension.The three cables analyzed are CORC(conductor-on-round-core),CORT(conductor-on-round-tube),and HFRC(conductor-on-spiral-tube).A parametric analysis is carried out by varying the core diameter and inner-to-outer diameter ratio.Results indicate that the CORT cable demonstrates better performance in transverse compression compared to the CORC cable,aligning with experimental data.Among the three cables,the HFRC cables exhibit the weakest resistance to transverse deformation.However,the HFRC cable demonstrates superior tensile deformation resistance compared to the CORT cable,provided that the transverse compression properties are maintained.Finite element results also show that the optimum inner-to-outer diameter ratios for achieving the best transverse compression performance are approximately 0.8 for CORT cables and 0.6 for HFRC cables.Meanwhile,the study explores the effect of structural changes in HTS cable winding cores on their electromagnetic properties.It recommends utilizing small tape gaps,lower frequencies,and spiral core construction to minimize eddy losses.The findings presented in this paper offer valuable insights for the commercialization and practical manufacturing of HTS cables.
基金supported by the studies of intelligent LLRF control algorithms for superconducting RF cavities(No.E129851YR0)the National Natural Science Foundation of China(No.U22A20261)Applications of Artificial Intelligence in the Stability Study of Superconducting Linear Accelerators(No.E429851YR0)。
文摘Superconducting radio-frequency(SRF)cavities are the core components of SRF linear accelerators,making their stable operation considerably important.However,the operational experience from different accelerator laboratories has revealed that SRF faults are the leading cause of short machine downtime trips.When a cavity fault occurs,system experts analyze the time-series data recorded by low-level RF systems and identify the fault type.However,this requires expertise and intuition,posing a major challenge for control-room operators.Here,we propose an expert feature-based machine learning model for automating SRF cavity fault recognition.The main challenge in converting the"expert reasoning"process for SRF faults into a"model inference"process lies in feature extraction,which is attributed to the associated multidimensional and complex time-series waveforms.Existing autoregression-based feature-extraction methods require the signal to be stable and autocorrelated,resulting in difficulty in capturing the abrupt features that exist in several SRF failure patterns.To address these issues,we introduce expertise into the classification model through reasonable feature engineering.We demonstrate the feasibility of this method using the SRF cavity of the China accelerator facility for superheavy elements(CAFE2).Although specific faults in SRF cavities may vary across different accelerators,similarities exist in the RF signals.Therefore,this study provides valuable guidance for fault analysis of the entire SRF community.
基金supported by the National Nature Science Foundation of China(Grant No.52302507)。
文摘The technology of electric propulsion aircraft(EPA)represents an important direction and an advanced stage in the development of aviation electrification.It is a key pathway for green development in aviation industry and can significantly enhance the energy efficiency of aircraft propulsion system.Electric motor is the most critical electromechanical energy conversion component in an aircraft electric propulsion system(EPS).High-performance electric motors,power electronic converters and EPS control form the foundation of the EPA.This paper provides an overview of the characteristics of electric motors for EPA,analyzes the inverter topologies of EPSs,and reviews ongoing EPA projects.The article highlights the latest advancements in three types of motors:superconducting motors(SCMs),permanent magnet synchronous motors(PMSMs),and induction motors(IMs).It summarizes the control system architectures of current EPA initiatives and,building on this foundation,proposes future research directions for EPSs.These include cutting-edge areas such as high-performance motors and advanced manufacturing technologies,Ga N-or Si C-based inverter integration and innovation,electric propulsion control systems,and optimization of wiring systems.
基金supported by the Large Research Infrastructures China initiative Accelerator Driven System(No.2017-000052-75-01-000590)the Youth Innovation Promotion Association of Chinese Academy of Sciences(No.2022422)+1 种基金the Young Scientists of National Natural Science Foundation of China(No.12005275)the Advanced Energy Science and Technology Guangdong Laboratory(No.HND22PTZZYY)。
文摘Theoretically,copper–niobium(Cu-Nb)composite superconducting cavities have excellent potential for high thermal and mechanical stability.They can appropriately exploit the high-gradient surface processing recipes developed for the bulk niobium(Nb)cavity and the thick copper(Cu)layer’s high thermal conductivity and rigidity,thereby enhancing the operational stability of the bulk Nb cavities.This study conducted a global review of the technical approaches employed for fabricating Cu-Nb composite superconducting cavities.We explored Cu-Nb composite superconducting cavities based on two technologies at the Institute of Modern Physics,Chinese Academy of Sciences(IMP,CAS),including their manufacturing processes,radio-frequency(RF)characteristics,and mechanical performance.These cavities exhibit robust mechanical stability.First,the investigation of several 1.3 GHz single-cell elliptical cavities using the Cu-Nb composite sheets indicated that the wavy structure at the Cu-Nb interface influenced the reliable welding of the Cu-Nb composite parts.We observed the generation and trapping of magnetic flux density during the T_c crossing of Nb in cooldown process.The cooling rates during the T_c crossing of Nb exerted a substantial impact on the performance of the cavities.Furthermore,we measured and analyzed the surface resistance R_(s)attributed to the trapped magnetic flux induced by the Seebeck effect after quenching events.Second,for the first time,a low-beta bulk Nb cavity was plated with Cu on its outer surface using electroplating technology.We achieved a high peak electric field E_(pk)of~88.8 MV/m at 2 K and the unloaded quality factor Q_(0)at the E_(pk)of 88.8 MV/m exceeded 1×10^(10).This demonstrated that the electroplating Cu on the bulk Nb cavity is a practical method of developing the Cu-Nb composite superconducting cavity with superior thermal stability.The results presented here provide valuable insights for applying Cu-Nb composite superconducting cavities in superconducting accelerators with stringent operational stability requirements.
文摘Background In superconductive linear accelerator,the performance and stability can be impacted by gas adsorbed on cryogenic surfaces adversely.The cryogenic devices usually work at 4.2 K or 1.9 K and are refrigerated by normal or super fluid liquid helium,respectively.Purpose The purpose of this paper is to study the character of gas migration in cryogenic tubes.Method Adsorption coefficient for hydrogen at 4.2 K is measured by experimental study.Then,a gas migration model is established based on the experimental results to depict the hydrogen migration process in cryogenic tubes.Results The experimental results and model analysis indicated that at cryogenic temperature(4.2 K),adsorption coefficient for hydrogen is very close to 1,which is several orders higher than the adsorption coefficient at room temperature,resulting in a unique pressure distribution pattern in cryogenic tubes when compared with the pressure distribution in room temperature tubes.Conclusions At 4.2 K or 1.9 K,the gas migration process is obviously different from the process at room temperature and is significantly affected by the gas adsorption on the cryogenic surfaces.The model established in this article can be applied not only to hydrogen migration in cryogenic tubes but also to other gas migration in tubes with high adsorption coefficient.
文摘A team of researchers from the University of Science and Technology of China(USTC)of the Chinese Academy of Sciences(CAS)and its partners have made significant advancements in random quantum circuit sampling with Zuchongzhi-3,a superconducting quantum computing prototype featuring 105 qubits and 182 couplers.
基金supported by the National Key R&D Program of China under Grants Nos.2023YFA1406001,2024YFA1408000,2021YFA1401800,2023YFA1608902,and 2022YFA1402301the financial support from Shanghai Key Laboratory of MFree,China(No.22dz2260800)Shanghai Science and Technology Committee,China(No.22JC1410300)。
文摘Ytterbium polyhydrides were synthesized through in-situ high pressure laser heating techniques utilizing a diamond anvil cell.The temperature dependence of resistance measurement at high pressure demonstrates that the sample undergoes a superconducting transition at 11.5 K at 180 GPa.
基金supported by the National Key R&D Program of China(Gran Nos.2022YFA1402304 and 2022YFA1402802)the National Natural Science Foundation of China(Grant Nos.12494591,12122405,12274169,and 92165204)+4 种基金Program for Science and Technology Innovation Team in Zhejiang(Grant No.2021R01004)Guangdong Provincial Key Laboratory of Magnetoelectric Physics and Devices(Grant No.2022B1212010008)Guangdong Fundamental Research Center for Magnetoelectric Physics(2024B0303390001)Guangdong Provincial Quantum Science Strategic Initiative(Grant No.GDZX2401010)the Fundamental Research Funds for the Central Universities。
文摘The discovery of high-temperature superconductivity in bilayer nickelate La_(3)Ni_(2)O_(7)under high-pressure conditions has spurred extensive efforts to stabilize superconductivity at ambient pressure.Recently,the realization of superconductivity in compressively strained La_(3)Ni_(2)O_(7)thin films grown on the SrLaAlO_(4)substrates,with a T_(c)exceeding 40 K,represents a significant step toward this goal.Here,we investigate the influence of film thickness and carrier doping on the electronic structure of La_(3)Ni_(2)O_(7)thin films,ranging from 0.5 to 3 unit cells,using first-principles calculations.For a 2 unit-cell film with an optimal doping concentration of 0.3 hole per formula unit(0.15 hole/Ni),the Ni-d_(z^(2))interlayer bonding state crosses the Fermi level,resulting in the formation ofγpockets at the Fermi surface.These findings align with angle-resolved photoemission spectroscopy experimental data.Our results provide theoretical validation for the recent experimental discovery of ambient-pressure superconductivity in La_(3)Ni_(2)O_(7)thin films and underscore the significant impact of film thickness and carrier doping on electronic property modulation.
基金supported by the National Key R&D Program of China(Grant No.2023YFA1406200)the National Natural Science Foundation of China(Grant Nos.12374004 and 12174141)the High Performance Computing Center of Jilin University,China。
文摘The discovery of pressure-induced superconducting electrides has sparked a intense wave of interest in novel superconductors.However,opinions vary regarding the relationship between non-nuclear attractors(NNAs)and superconductivity,with two opposing views currently represented by the materials Li_(6)P and Li_(6)C.Here,we choose the ternary Li–C–P as a model system and reveal the underlying mechanism by which NNAs contribute to superconductivity.The loosely bound NNAs in the superlithide Li_(14)CP covalently bond with Li and form unique satellite interstitial electrons(SIEs)around Li near the Fermi level,dominating the superconductivity.First-principles calculations show that the SIEs progressively increase in number and couple strongly with phonons at high pressure.Moreover,the Fermi surface nesting associated with SIEs induces phonon softening,further enhancing the electron–phonon coupling and giving the superlithide Li_(14)CP a T_(c)of 10.6 K at 300 GPa.The leading role of SIEs in superconductivity is a general one and is also relevant to the recently predicted Li_(6)P and Li_(6)C.Our work presented here reshapes the understanding of NNA-dominated superconductivity and holds promise for guiding future discoveries and designs of novel high-temperature superconductors.
基金supported by Research Foundation for Advanced Talents of Inner Mongolia Normal University(2025YJRC005)the National Natural Science Foundation of China(12364038)+5 种基金the“Grassland Talents”project of the Inner Mongolia Autonomous Region(12000-12102613)the Young Science and Technology Talents Cultivation Project of Inner Mongolia University(21200-5223708)the Industrial Technology Innovation Projects of Inner Mongolia Academy of Science and Technology of China(2023JSYD01002)Science and Technology Plan Projects of Inner Mongolia Autonomous Region of China(2023KYPT0012)Key Project Funding from the Inner Mongolia Autonomous Region Natural Science Foundation(2023ZD27)High Level Introduction of Talent Research Start-up Fund(5909002405).
文摘Pursuing new two-dimensional(2D)materials has been a hot topic in materials science,driven by their potential for diverse applications.Recent research has unveiled stable planar hypercoordinate motifs with unconventional geometric arrangements and bonding patterns that facilitate the synthesis of new 2D materials with diverse applications.Among these,yet the design of 2D transition metal systems featuring planar pentacoordinate boron(ppB)is particularly intriguing.Here we address this gap by proposing a novel family of transition metal boride monolayers(MBenes)composed of ppB and heptacoordinate M motifs.The novelty of our MBenes stems from their distinct atomic arrangements and bonding configurations,setting them apart from traditional 2D materials.High-throughput calculations identified 10 stable MBenes(with the stoichiometry of MB,M=Cr,Fe,Co,Ni,Cu,Mo,Pd,Ag,Pt,Au)with exceptional thermodynamic,dynamic,thermal,and mechanical stabilities attributed to strong BB covalent bonds and MB ionic interactions.Notably,five of these MBenes(M=Ni,Pd,Pt,Ag,Au)hold high promise as topological superconducting materials with superconducting transition temperatures of 2.4-5.2 K.This discovery not only enriches the family of topological superconducting materials but also opens new avenues for quantum device development.Meanwhile,FeB monolayer exhibits robust ferromagnetic properties with a high Curie temperature of~750 K,which is particularly significant for spintronics applications.In addition,NiB and CuB MBenes demonstrate extremely low sodium diffusion barriers(about 30 and 90 meV)and high sodium storage capacities(788 and 734 mAh g1,respectively),making them promising anode materials for sodium-ion batteries(SIBs).This study expands the selection of electrode materials for SIBs and mitigates some existing limitations in battery technology.Overall,these findings underscore the multifunctional potential of MBenes,positioning them as transformative materials for quantum computing,spintronics,and energy storage applications.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.12274169,12122405,and 52072188)the National Key Research and Development Program of China(Grant No.2022YFA1402304)+1 种基金the Program for Science and Technology Innovation Team in Zhejiang Province,China(Grant No.2021R01004)the Fundamental Research Funds for the Central Universities.
文摘Two-dimensional(2D)superconductors have attracted significant research interest due to their promising potential applications in optoelectronic and microelectronic devices.Herein,we employ first-principles calculations to predicted a new 2D conventional superconductor,Tc_(2)B_(2),demonstrating its stable structural configuration.Remarkably,under biaxial strain,the superconducting transition temperature(T_(c))of Tc_(2)B_(2)demonstrates a significant enhancement,achieving 19.5 K under 3%compressive strain and 9.2 K under 11%tensile strain.Our study reveals that strain-induced modifications in Fermi surface topology significantly enhance the Fermi surface nesting effect,which amplifies electron–phonon coupling interactions and consequently elevates Tc.Additionally,the presence of the Lifshitz transition results in a more pronounced rise in Tc under compressive strain compared to tensile strain.These insights offer important theoretical guidance for designing 2D superconductors with high-Tc through strain modulation.