CSIRO has had a long-term research effort in superconductivity, in particular, since the discovery of HTS which promised big prospects. Significant progress has been made in research and development of HTS electronic ...CSIRO has had a long-term research effort in superconductivity, in particular, since the discovery of HTS which promised big prospects. Significant progress has been made in research and development of HTS electronic devices and systems for practical applications such as mineral and exploration as well as some niche applications in emerging science and technology areas. This article presents an overview of the CSIRO research activities in HTS supercon- ducting electronics since 1987, outlining the HTS junction and device technology as well as various application systems developed by the group.展开更多
The interconnection bottleneck caused by limitations of cable number, inner space and cooling power of dilution refrigerators has been an outstanding challenge for building scalable superconducting quantum computers w...The interconnection bottleneck caused by limitations of cable number, inner space and cooling power of dilution refrigerators has been an outstanding challenge for building scalable superconducting quantum computers with the increasing number of qubits in quantum processors. To surmount such an obstacle, it is desirable to integrate qubits with quantum–classical interface(QCI) circuits based on rapid single flux quantum(RSFQ) circuits. In this work, a digital flux tuner for qubits(DFTQ) is proposed for manipulating flux of qubits as a crucial part of the interface circuit. A schematic diagram of the DFTQ is presented, consisting of a coarse tuning unit and a fine-tuning unit for providing magnetic flux with different precision to qubits. The method of using DFTQ to provide flux for gate operations is discussed from the optimization of circuit design and input signal. To verify the effectiveness of the method, simulations of a single DFTQ and quantum gates including a Z gate and an iSWAP gate with DFTQs are performed for flux-tunable transmons. The quantum process tomography corresponding to the two gates is also carried out to analyze the sources of gate error. The results of tomography show that the gate fidelities independent of the initial states of the Z gate and the iSWAP gate are 99.935% and 99.676%,respectively. With DFTQs inside, the QCI would be a powerful tool for building large-scale quantum computers.展开更多
A fully superconducting electron cyclotron resonance (ECR) ion source (SECRAL ID is currently being built in the Institute of Modern Physics, Chinese Academy of Sciences. Its key components are three superconductin...A fully superconducting electron cyclotron resonance (ECR) ion source (SECRAL ID is currently being built in the Institute of Modern Physics, Chinese Academy of Sciences. Its key components are three superconducting solenoids (Nb-Ti/Cu) and six superconducting sextupoles (Nb-Ti/Cu). Different from the conventional supercon- ducting ECR magnetic structure, the SEC17AL Ⅱ includes three superconducting solenoid coils' that are located inside the superconducting sextupoles. The SECRAL Ⅱ can significantly reduce the interaction forces between the sextupole and the solenoids, and the magnets can also be more compact in size. For this multi-component SECRAL Ⅱ generating its self field of -8 T and being often exposed to the high self field, the mechanical analysis has become the main issue to keep their stress at 〈200 MPa on coils. The analytical and experimental results in mechanics are presented in the SECRAL Ⅱ structure. To improve the accuracy and efficiency of analysis, according to the composite rule of micromechanics, the equivalent uniform windings are used to simulate the epoxy-impregnated Nb-Ti/Cu coils. In addition, using low temperature strain gauges and a wireless fast strain acquisition system, a fundamental experiment on the based on our analysis, the stresses and deformations optimized. strains developments of a sextupole is reported. Finally, for its assembly of each SECRAL Ⅱ coil will be further展开更多
We report on the investigation of optimal bias region of a wide-band superconducting hot electron bolometer(HEB)mixer in terms of noise temperature performance for multi-pixel heterodyne receiver application in the 5-...We report on the investigation of optimal bias region of a wide-band superconducting hot electron bolometer(HEB)mixer in terms of noise temperature performance for multi-pixel heterodyne receiver application in the 5-meter Dome A Terahertz Explorer(DATE5)telescope.By evaluating the double sideband(DSB)receiver noise temperature(Trec)across a wide frequency range from 0.2 THz to 1.34 THz and with a large number of bias points,a broad optimal bias region has been observed,illustrating a good bias applicability for multipixel application since the performance of the HEB mixer is uniquely determined by each bias point.The noise temperature of the HEB mixer has been analyzed by calibrating the noise contribution of all RF components,whose transmissions have been measured by a time-domain spectroscopy.The corrected noise temperature distribution shows a frequency independence relation.The dependence of the optimal bias region on the bath temperature of the HEB mixer has also been investigated,the bath temperature has limited effect on the lowest receiver noise temperature until 7 K,however the optimal bias region deteriorates obviously with increasing bath temperature.展开更多
Terahertz (THz) direct detectors based on superconducting niobium nitride (NbN) hot electron bolometers (HEBs) with microwave (MW) biasing are studied. The MW is used to bias the HEB to the optimum point and t...Terahertz (THz) direct detectors based on superconducting niobium nitride (NbN) hot electron bolometers (HEBs) with microwave (MW) biasing are studied. The MW is used to bias the HEB to the optimum point and to readout the impedance changes caused by the incident THz signals. Compared with the thermal biasing method, this method would be more promising in large scale array with simple readout. The used NbN HEB has an excellent performance as heterodyne detector with the double sideband noise temperature (T N) of 403K working at 4.2K and 0.65THz. As a result, the noise equivalent power of 1.5pW/Hz 1/2 and the response time of 64ps are obtained for the direct detectors based on the NbN HEBs and working at 4.2K and 0.65THz.展开更多
A five-channel far-infrared (FIR) hydrogen cyanide (HCN) laser interferometer was developed to measure plasma electron density profile on the HT-7 superconducting tokamak. The principle and structure of the five-chann...A five-channel far-infrared (FIR) hydrogen cyanide (HCN) laser interferometer was developed to measure plasma electron density profile on the HT-7 superconducting tokamak. The principle and structure of the five-channel FIR laser interferometer is described. The laser source used in the interferometer was a continuous wave glow discharge HCN laser with a 3.4 m cavity length and a 100 mW power output at 337μm wavelength. The temporal resolution was 0.1 ms and the detection sensitivity was 1/12 fringe. Preliminary experimental results measured by the interferometer on HT-7 tokamak are reported.展开更多
Superconducting La1.937Sr0.063CuO4 crystals grown by the travelling-solvent floating-zone technique were thermally treated under various temperatures and oxygen pressures for moderately adjusting the oxygen content. T...Superconducting La1.937Sr0.063CuO4 crystals grown by the travelling-solvent floating-zone technique were thermally treated under various temperatures and oxygen pressures for moderately adjusting the oxygen content. The response of intrinsic electronic property of the crystals to the change of hole density in La2-xSrxCuO4 in the vicinity of the magic doping of x= 1/16 (= 0.0625) is studied in detail by magnetic measurements under various fields up to 1 T. It is found that when the superconducting critical temperature (Tc) increases with the oxygen content, there appears also a new subtle electronic state that can be detected from the differential curves of diamagnetic susceptibility dx/dT of the crystal sample. In contrast with the intrinsic state, the new subtle electronic state is very fragile under the magnetic fields. Our results indicate that a moderate change in oxygen doping does not significantly modify the intrinsic electronic state originally existing at the magic doping level.展开更多
Submission Deadline: 15 February 2008 Journal of Electronic Science and Technology of China (JESTC) invites manuscript submissions in the area of High Temperature Superconductivity (HTS). This special issue of JESTC w...Submission Deadline: 15 February 2008 Journal of Electronic Science and Technology of China (JESTC) invites manuscript submissions in the area of High Temperature Superconductivity (HTS). This special issue of JESTC will focus on recent experiment, theoretical, and application progress in HTS. It is intended to highlight and summarize the major developments that have occurred over the past few years. Topic scopes related to HTS to be covered include:展开更多
Journal of Electronic Science and Technology of China (JESTC) invites manuscript submissions in the area of High Temperature Superconductivity (HTS). This special issue of
Submission Deadline: 15 February 2008 Journal of Electronic Science and Technology of China (JESTC) invites manuscript submissions in the area of High Temperature Superconductivity (HTS). This special issue of JESTC w...Submission Deadline: 15 February 2008 Journal of Electronic Science and Technology of China (JESTC) invites manuscript submissions in the area of High Temperature Superconductivity (HTS). This special issue of JESTC will focus on recent experiment, theoretical, and application progress in HTS. It is intended to highlight and summarize the major developments that have occurred over the past few years. Topic scopes related to HTS to be covered include:展开更多
文摘CSIRO has had a long-term research effort in superconductivity, in particular, since the discovery of HTS which promised big prospects. Significant progress has been made in research and development of HTS electronic devices and systems for practical applications such as mineral and exploration as well as some niche applications in emerging science and technology areas. This article presents an overview of the CSIRO research activities in HTS supercon- ducting electronics since 1987, outlining the HTS junction and device technology as well as various application systems developed by the group.
文摘The interconnection bottleneck caused by limitations of cable number, inner space and cooling power of dilution refrigerators has been an outstanding challenge for building scalable superconducting quantum computers with the increasing number of qubits in quantum processors. To surmount such an obstacle, it is desirable to integrate qubits with quantum–classical interface(QCI) circuits based on rapid single flux quantum(RSFQ) circuits. In this work, a digital flux tuner for qubits(DFTQ) is proposed for manipulating flux of qubits as a crucial part of the interface circuit. A schematic diagram of the DFTQ is presented, consisting of a coarse tuning unit and a fine-tuning unit for providing magnetic flux with different precision to qubits. The method of using DFTQ to provide flux for gate operations is discussed from the optimization of circuit design and input signal. To verify the effectiveness of the method, simulations of a single DFTQ and quantum gates including a Z gate and an iSWAP gate with DFTQs are performed for flux-tunable transmons. The quantum process tomography corresponding to the two gates is also carried out to analyze the sources of gate error. The results of tomography show that the gate fidelities independent of the initial states of the Z gate and the iSWAP gate are 99.935% and 99.676%,respectively. With DFTQs inside, the QCI would be a powerful tool for building large-scale quantum computers.
基金Supported by the National Natural Science Foundation of China under Grant No 11302225the China Postdoctoral Science Foundation under Grant Nos 2014M560820 and 2015T81071
文摘A fully superconducting electron cyclotron resonance (ECR) ion source (SECRAL ID is currently being built in the Institute of Modern Physics, Chinese Academy of Sciences. Its key components are three superconducting solenoids (Nb-Ti/Cu) and six superconducting sextupoles (Nb-Ti/Cu). Different from the conventional supercon- ducting ECR magnetic structure, the SEC17AL Ⅱ includes three superconducting solenoid coils' that are located inside the superconducting sextupoles. The SECRAL Ⅱ can significantly reduce the interaction forces between the sextupole and the solenoids, and the magnets can also be more compact in size. For this multi-component SECRAL Ⅱ generating its self field of -8 T and being often exposed to the high self field, the mechanical analysis has become the main issue to keep their stress at 〈200 MPa on coils. The analytical and experimental results in mechanics are presented in the SECRAL Ⅱ structure. To improve the accuracy and efficiency of analysis, according to the composite rule of micromechanics, the equivalent uniform windings are used to simulate the epoxy-impregnated Nb-Ti/Cu coils. In addition, using low temperature strain gauges and a wireless fast strain acquisition system, a fundamental experiment on the based on our analysis, the stresses and deformations optimized. strains developments of a sextupole is reported. Finally, for its assembly of each SECRAL Ⅱ coil will be further
基金Project supported by the Chinese Academy of Sciences(Grant Nos.GJJSTD20180003 and QYZDJ-SSW-SLH043)the National Key Basic Research and Development Program of China(Grant Nos.2017YFA0304003 and 2018YFA0404701)+1 种基金the National Natural Science Foundation of China(Grant Nos.11603081,11673073,U1831202,and 11873099)PICS projects between the CAS and the CNRS.
文摘We report on the investigation of optimal bias region of a wide-band superconducting hot electron bolometer(HEB)mixer in terms of noise temperature performance for multi-pixel heterodyne receiver application in the 5-meter Dome A Terahertz Explorer(DATE5)telescope.By evaluating the double sideband(DSB)receiver noise temperature(Trec)across a wide frequency range from 0.2 THz to 1.34 THz and with a large number of bias points,a broad optimal bias region has been observed,illustrating a good bias applicability for multipixel application since the performance of the HEB mixer is uniquely determined by each bias point.The noise temperature of the HEB mixer has been analyzed by calibrating the noise contribution of all RF components,whose transmissions have been measured by a time-domain spectroscopy.The corrected noise temperature distribution shows a frequency independence relation.The dependence of the optimal bias region on the bath temperature of the HEB mixer has also been investigated,the bath temperature has limited effect on the lowest receiver noise temperature until 7 K,however the optimal bias region deteriorates obviously with increasing bath temperature.
基金Supported by the National Basic Research Program of China under Grant No 2014CB339800the National Natural Science Foundation of China under Grant Nos 61521001,11173015 and 11227904+1 种基金the Fundamental Research Funds for the Central Universitiesthe Key Laboratory of Advanced Techniques for Manipulating Electromagnetic Waves of Jiangsu Province
文摘Terahertz (THz) direct detectors based on superconducting niobium nitride (NbN) hot electron bolometers (HEBs) with microwave (MW) biasing are studied. The MW is used to bias the HEB to the optimum point and to readout the impedance changes caused by the incident THz signals. Compared with the thermal biasing method, this method would be more promising in large scale array with simple readout. The used NbN HEB has an excellent performance as heterodyne detector with the double sideband noise temperature (T N) of 403K working at 4.2K and 0.65THz. As a result, the noise equivalent power of 1.5pW/Hz 1/2 and the response time of 64ps are obtained for the direct detectors based on the NbN HEBs and working at 4.2K and 0.65THz.
文摘A five-channel far-infrared (FIR) hydrogen cyanide (HCN) laser interferometer was developed to measure plasma electron density profile on the HT-7 superconducting tokamak. The principle and structure of the five-channel FIR laser interferometer is described. The laser source used in the interferometer was a continuous wave glow discharge HCN laser with a 3.4 m cavity length and a 100 mW power output at 337μm wavelength. The temporal resolution was 0.1 ms and the detection sensitivity was 1/12 fringe. Preliminary experimental results measured by the interferometer on HT-7 tokamak are reported.
基金Project supported by the Ministry of Science and Technology of China (973 project Grant No 2006CB0L0302)the National Natural Science Foundation of China (Grant No 10574149)Chinese Academy of Sciences (Grant No KJCX2-SW-W18)
文摘Superconducting La1.937Sr0.063CuO4 crystals grown by the travelling-solvent floating-zone technique were thermally treated under various temperatures and oxygen pressures for moderately adjusting the oxygen content. The response of intrinsic electronic property of the crystals to the change of hole density in La2-xSrxCuO4 in the vicinity of the magic doping of x= 1/16 (= 0.0625) is studied in detail by magnetic measurements under various fields up to 1 T. It is found that when the superconducting critical temperature (Tc) increases with the oxygen content, there appears also a new subtle electronic state that can be detected from the differential curves of diamagnetic susceptibility dx/dT of the crystal sample. In contrast with the intrinsic state, the new subtle electronic state is very fragile under the magnetic fields. Our results indicate that a moderate change in oxygen doping does not significantly modify the intrinsic electronic state originally existing at the magic doping level.
文摘Submission Deadline: 15 February 2008 Journal of Electronic Science and Technology of China (JESTC) invites manuscript submissions in the area of High Temperature Superconductivity (HTS). This special issue of JESTC will focus on recent experiment, theoretical, and application progress in HTS. It is intended to highlight and summarize the major developments that have occurred over the past few years. Topic scopes related to HTS to be covered include:
文摘Journal of Electronic Science and Technology of China (JESTC) invites manuscript submissions in the area of High Temperature Superconductivity (HTS). This special issue of
文摘Submission Deadline: 15 February 2008 Journal of Electronic Science and Technology of China (JESTC) invites manuscript submissions in the area of High Temperature Superconductivity (HTS). This special issue of JESTC will focus on recent experiment, theoretical, and application progress in HTS. It is intended to highlight and summarize the major developments that have occurred over the past few years. Topic scopes related to HTS to be covered include: