With the continuous improvement of supercomputer performance and the integration of artificial intelligence with traditional scientific computing,the scale of applications is gradually increasing,from millions to tens...With the continuous improvement of supercomputer performance and the integration of artificial intelligence with traditional scientific computing,the scale of applications is gradually increasing,from millions to tens of millions of computing cores,which raises great challenges to achieve high scalability and efficiency of parallel applications on super-large-scale systems.Taking the Sunway exascale prototype system as an example,in this paper we first analyze the challenges of high scalability and high efficiency for parallel applications in the exascale era.To overcome these challenges,the optimization technologies used in the parallel supporting environment software on the Sunway exascale prototype system are highlighted,including the parallel operating system,input/output(I/O)optimization technology,ultra-large-scale parallel debugging technology,10-million-core parallel algorithm,and mixed-precision method.Parallel operating systems and I/O optimization technology mainly support largescale system scaling,while the ultra-large-scale parallel debugging technology,10-million-core parallel algorithm,and mixed-precision method mainly enhance the efficiency of large-scale applications.Finally,the contributions to various applications running on the Sunway exascale prototype system are introduced,verifying the effectiveness of the parallel supporting environment design.展开更多
The overall efficiency of an extreme-scale supercomputer largely relies on the performance of its network interconnects.Several of the state of the art supercomputers use networks based on the increasingly popular Dra...The overall efficiency of an extreme-scale supercomputer largely relies on the performance of its network interconnects.Several of the state of the art supercomputers use networks based on the increasingly popular Dragonfly topology.It is crucial to study the behavior and performance of different parallel applications running on Dragonfly networks in order to make optimal system configurations and design choices,such as job scheduling and routing strategies.However,in order to study these temporal network behavior,we would need a tool to analyze and correlate numerous sets of multivariate time-series data collected from the Dragonfly's multi-level hierarchies.This paper presents such a tool-a visual analytics system-that uses the Dragonfly network to investigate the temporal behavior and optimize the communication performance of a supercomputer.We coupled interactive visualization with time-series analysis methods to help reveal hidden patterns in the network behavior with respect to different parallel applications and system configurations.Our system also provides multiple coordinated views for connecting behaviors observed at different levels of the network hierarchies,which effectively helps visual analysis tasks.We demonstrate the effectiveness of the system with a set of case studies.Our system and findings can not only help improve the communication performance of supercomputing applications,but also the network performance of next-generation supercomputers.展开更多
In this paper,a typical experiment is carried out based on a high-resolution air-sea coupled model,namely,the coupled ocean-atmosphere-wave-sediment transport(COAWST)model,on both heterogeneous many-core(SW)and homoge...In this paper,a typical experiment is carried out based on a high-resolution air-sea coupled model,namely,the coupled ocean-atmosphere-wave-sediment transport(COAWST)model,on both heterogeneous many-core(SW)and homogenous multicore(Intel)supercomputing platforms.We construct a hindcast of Typhoon Lekima on both the SW and Intel platforms,compare the simulation results between these two platforms and compare the key elements of the atmospheric and ocean modules to reanalysis data.The comparative experiment in this typhoon case indicates that the domestic many-core computing platform and general cluster yield almost no differences in the simulated typhoon path and intensity,and the differences in surface pressure(PSFC)in the WRF model and sea surface temperature(SST)in the short-range forecast are very small,whereas a major difference can be identified at high latitudes after the first 10 days.Further heat budget analysis verifies that the differences in SST after 10 days are mainly caused by shortwave radiation variations,as influenced by subsequently generated typhoons in the system.These typhoons generated in the hindcast after the first 10 days attain obviously different trajectories between the two platforms.展开更多
The Dynamical Density Functional Theory(DDFT)algorithm,derived by associating classical Density Functional Theory(DFT)with the fundamental Smoluchowski dynamical equation,describes the evolution of inhomo-geneous flui...The Dynamical Density Functional Theory(DDFT)algorithm,derived by associating classical Density Functional Theory(DFT)with the fundamental Smoluchowski dynamical equation,describes the evolution of inhomo-geneous fluid density distributions over time.It plays a significant role in studying the evolution of density distributions over time in inhomogeneous systems.The Sunway Bluelight II supercomputer,as a new generation of China’s developed supercomputer,possesses powerful computational capabilities.Porting and optimizing industrial software on this platform holds significant importance.For the optimization of the DDFT algorithm,based on the Sunway Bluelight II supercomputer and the unique hardware architecture of the SW39000 processor,this work proposes three acceleration strategies to enhance computational efficiency and performance,including direct parallel optimization,local-memory constrained optimization for CPEs,and multi-core groups collaboration and communication optimization.This method combines the characteristics of the program’s algorithm with the unique hardware architecture of the Sunway Bluelight II supercomputer,optimizing the storage and transmission structures to achieve a closer integration of software and hardware.For the first time,this paper presents Sunway-Dynamical Density Functional Theory(SW-DDFT).Experimental results show that SW-DDFT achieves a speedup of 6.67 times within a single-core group compared to the original DDFT implementation,with six core groups(a total of 384 CPEs),the maximum speedup can reach 28.64 times,and parallel efficiency can reach 71%,demonstrating excellent acceleration performance.展开更多
In June 2018, the United States claimed the No. 1 position in supercomputing according to TOP500, which ranks the top 500 most powerful computer systems in the world [1]. The US Department of Energy’s Summit machine ...In June 2018, the United States claimed the No. 1 position in supercomputing according to TOP500, which ranks the top 500 most powerful computer systems in the world [1]. The US Department of Energy’s Summit machine (Fig. 1)[1] claimed this distinction, which previously had been held by China’s Sunway TaihuLight supercomputer.展开更多
The first in China 10~9 sparallel supercomputer, named as Yinhe-Ⅱ, had been manufac-tured by Science-technological University of National Defence. The main feature of thesupercomputer are: 4-processor system, the pri...The first in China 10~9 sparallel supercomputer, named as Yinhe-Ⅱ, had been manufac-tured by Science-technological University of National Defence. The main feature of thesupercomputer are: 4-processor system, the principle frequence 50 MHz, the word length 64 byte,the main memory 256 Mb, two individual input / output subsystems, > 10~9 operations per sec-展开更多
China’s first supercomputer capable of 100 million calculations per second was the YH-1,which was independently developed by the Institute of Computer Science at the National University of Defense Technology(NUDT)bet...China’s first supercomputer capable of 100 million calculations per second was the YH-1,which was independently developed by the Institute of Computer Science at the National University of Defense Technology(NUDT)between 1978 and 1983.YH-1 played an important role in China’s national defense construction and national economic development.It made China one of the few countries in the world to successfully develop a supercomputer.Based on original archive documents,interviews with relevant personnel,and an analysis of the technological parameters of the supercomputers YH-1 in China and Cray-1 in the United States,this paper reviews in detail the historic process of the development of YH-1,analyzing its innovation and summarizing the experience and lessons learned from it.This analysis is significant for current military-civilian integration,and the commercialization of university research findings in China.展开更多
As an important branch of information technology, high-performance computing has expanded its application field and its influence has been expanding. High-performance computing is always a key area of application in m...As an important branch of information technology, high-performance computing has expanded its application field and its influence has been expanding. High-performance computing is always a key area of application in meteorology. We used field research and literature review methods to study the application of high performance computing in China’s meteorological department, and obtained the following results: 1) China Meteorological Department gradually established the first high-performance computer system since 1978. High-performance computing services can support operational numerical weather prediction models. 2) The Chinese meteorological department has always used the relatively advanced high-performance computing technology, and the business system capability has been continuously improved. The computing power has become an important symbol of the level of meteorological modernization. 3) High-performance computing technology and meteorological numerical forecasting applications are increasingly integrated, and continue to innovate and develop. 4) In the future, high-performance computing resource management will gradually transit from the current local pre-allocation mode to the local remote unified scheduling and shared use. In summary, we have come to the conclusion that the performance calculation business of the meteorological department will usher in a better tomorrow.展开更多
We have demonstrated the application of the world’s fastest supercomputer Fugaku located in Japan to select the COVID-19 drugs and stopping the pandemic spread. Using computer simulation out of 2128 potential drug ca...We have demonstrated the application of the world’s fastest supercomputer Fugaku located in Japan to select the COVID-19 drugs and stopping the pandemic spread. Using computer simulation out of 2128 potential drug candidates, the world’s fastest supercomputer picked 30 most effective and potential drugs. Twelve of them are under clinical trials outside Japan;some are being tested in Japan. The computer reduced the computation time from one year to 10 days when compared to second superfast computer of the world. Fugaku supercomputer was employed to know the behavior of airborne aerosol COVID-19 virus. 3Cs were suggested: avoid closed and crowded spaces and contacts to stop the pandemic spread. The progress in vaccine development and proper use and type of mask has also been described in this article. The article will benefit greatly to stop spreading and treating the pandemic COVID-19.展开更多
Exploring the human brain is perhaps the most challenging and fascinating scientific issue in the 21st century.It will facilitate the development of various aspects of the society,including economics,education,health ...Exploring the human brain is perhaps the most challenging and fascinating scientific issue in the 21st century.It will facilitate the development of various aspects of the society,including economics,education,health care,national defense and daily life.The artificial intelligence techniques are becoming useful as an alternate method of classical techniques or as a component of an integrated system.They are used to solve complicated problems in various fields and becoming increasingly popular nowadays.Especially,the investigation of human brain will promote the artificial intelligence techniques,utilizing the accumulating knowledge of neuroscience,brain-machine interface techniques,algorithms of spiking neural networks and neuromorphic supercomputers.Consequently,we provide a comprehensive survey of the research and motivations for brain-inspired artificial intelligence and its engineering over its history.The goals of this work are to provide a brief review of the research associated with brain-inspired artificial intelligence and its related engineering techniques,and to motivate further work by elucidating challenges in the field where new researches are required.展开更多
On June 17, 2013, MilkyWay-2 (Tianhe-2) supercomputer was crowned as the fastest supercomputer in the world on the 41th TOP500 list. This paper provides an overview of the MilkyWay-2 project and describes the design...On June 17, 2013, MilkyWay-2 (Tianhe-2) supercomputer was crowned as the fastest supercomputer in the world on the 41th TOP500 list. This paper provides an overview of the MilkyWay-2 project and describes the design of hardware and software systems. The key architecture features of MilkyWay-2 are highlighted, including neo-heterogeneous compute nodes integrating commodity- off-the-shelf processors and accelerators that share similar instruction set architecture, powerful networks that employ proprietary interconnection chips to support the massively parallel message-passing communications, proprietary 16- core processor designed for scientific computing, efficient software stacks that provide high performance file system, emerging programming model for heterogeneous systems, and intelligent system administration. We perform extensive evaluation with wide-ranging applications from LINPACK and Graph500 benchmarks to massively parallel software deployed in the system.展开更多
In this paper, we present the Tianhe-2 interconnect network and message passing services. We describe the architecture of the router and network interface chips, and highlight a set of hardware and software features e...In this paper, we present the Tianhe-2 interconnect network and message passing services. We describe the architecture of the router and network interface chips, and highlight a set of hardware and software features effectively supporting high performance communications, ranging over remote direct memory access, collective optimization, hardwareenable reliable end-to-end communication, user-level message passing services, etc. Measured hardware performance results are also presented.展开更多
With the rapid improvement of computation capability in high performance supercomputer system, the imbalance of performance between computation subsystem and storage subsystem has become more and more serious, especia...With the rapid improvement of computation capability in high performance supercomputer system, the imbalance of performance between computation subsystem and storage subsystem has become more and more serious, especially when various big data are produced ranging from tens of gigabytes up to terabytes. To reduce this gap, large-scale storage systems need to be designed and implemented with high performance and scalability. MilkyWay-2 (TH-2) supercomputer system with peak performance 54.9 Props, definitely has this kind of requirement for storage system. This paper mainly introduces the storage system in MilkyWay-2 supercomputer, including the hardware architecture and the parallel file system. The storage system in MilkyWay-2 supercomputer exploits a novel hybrid hierarchy storage architecture to enable high scalability of I/O clients, I/O bandwidth and storage capacity. To fit this architecture, a user level virtualized file system, named H^2FS, is designed and implemented which can cooperate local storage and shared storage together into a dynamic single namespace to optimize I/O performance in IO-intensive applications. The evaluation results show that the storage system in MilkyWay-2 supercomputer can satisfy the critical requirements in large scale supercomputer, such as performance and scalability.展开更多
With the increase of system scale, the inherent reliability of supercomputers becomes lower and lower. The cost of fault handling and task recovery increases so rapidly that the reliability issue will soon harm the us...With the increase of system scale, the inherent reliability of supercomputers becomes lower and lower. The cost of fault handling and task recovery increases so rapidly that the reliability issue will soon harm the usability of supercomputers. This issue is referred to as the "reliability wall", which is regarded as a critical problem for current and future supercomputers. To address this problem, we propose an autonomous fault-tolerant system, named Iaso, in MilkyWay- 2 system. Iaso introduces the concept of autonomous management in supercomputers. By autonomous management, the computer itself, rather than manpower, takes charge of the fault management work. Iaso automatically manage the whole lifecycle of faults, including fault detection, fault diagnosis, fault isolation, and task recovery. Iaso endows the autonomous features with MilkyWay-2 system, such as self-awareness, self-diagnosis, self-healing, and self-protection. With the help of Iaso, the cost of fault handling in supercomputers reduces from several hours to a few seconds. Iaso greatly improves the usability and reliability of MilkyWay-2 system.展开更多
Exascale computing is one of the major challenges of this decade,and several studies have shown that communications are becoming one of the bottlenecks for scaling parallel applications.The analysis on the characteris...Exascale computing is one of the major challenges of this decade,and several studies have shown that communications are becoming one of the bottlenecks for scaling parallel applications.The analysis on the characteristics of communications can effectively aid to improve the performance of scientific applications.In this paper,we focus on the statistical regularity in time-dimension communication characteristics for representative scientific applications on supercomputer systems,and then prove that the distribution of communication-event intervals has a power-law decay,which is common in scientific interests and human activities.We verify the distribution of communication-event intervals has really a power-law decay on the Tianhe-2 supercomputer,and also on the other six parallel systems with three different network topologies and two routing policies.In order to do a quantitative study on the power-law distribution,we exploit two groups of statistics:bursty vs.memory and periodicity vs.dispersion.Our results indicate that the communication events show a“strong-bursty and weak-memory”characteristic and the communication event intervals show the periodicity and the dispersion.Finally,our research provides an insight into the relationship between communication optimizations and time-dimension communication characteristics.展开更多
An analysis of real-world operational data of Tianhe-1A(TH-1A)supercomputer system shows that chilled water data not only can reflect the status of a chiller system but also are related to supercomputer load.This stud...An analysis of real-world operational data of Tianhe-1A(TH-1A)supercomputer system shows that chilled water data not only can reflect the status of a chiller system but also are related to supercomputer load.This study proposes AquaSee,a method that can predict the load and cooling system faults of supercomputers by using chilled water pressure and temperature data.This method is validated on the basis of real-world operational data of the TH-1A supercomputer system at the National Supercomputer Center in Tianjin.Datasets with various compositions are used to construct the prediction model,which is also established using different prediction sequence lengths.Experimental results show that the method that uses a combination of pressure and temperature data performs more effectively than that only consisting of either pressure or temperature data.The best inference sequence length is two points.Furthermore,an anomaly monitoring system is set up by using chilled water data to help engineers detect chiller system anomalies.展开更多
During the era of global warming and highly urbanized development,extreme and high impact weather as well as air pollution incidents influence everyday life and might even cause the incalculable loss of life and prope...During the era of global warming and highly urbanized development,extreme and high impact weather as well as air pollution incidents influence everyday life and might even cause the incalculable loss of life and property.Despite the vast development of atmospheric models,there still exist substantial numerical forecast biases objectively.To accurately predict extreme weather,severe air pollution,and abrupt climate change,numerical atmospheric model requires not only to simulate meteorology and atmospheric compositions simultaneously involving many sophisticated physical and chemical processes but also at high spatiotemporal resolution.Global integrated atmospheric simulation at spatial resolutions of a few kilometers remains challenging due to its intensive computational and input/output(I/O)requirement.Through multi-dimension-parallelism structuring,aggressive and finer-grained optimizing,manual vectorizing,and parallelized I/O fragmenting,an integrated Atmospheric Model Across Scales(iAMAS)was established on the new Sunway supercomputer platform to significantly increase the computational efficiency and reduce the I/O cost.The global 3-km atmospheric simulation for meteorology with online integrated aerosol feedbacks with iAMAS was scaled to 39,000,000 processor cores and achieved the speed of 0.82 simulation day per hour(SDPH)with routine I/O,which enabled us to perform 5-day global weather forecast at 3-km horizontal resolution with online natural aerosol impacts.The results demonstrate the promising future that the increasing of spatial resolution to a few kilometers with online integrated aerosol feedbacks may significantly improve the global weather forecast.展开更多
The authors regret that the acknowledgment section in the final submitted version is unfortunately left out.The section should be``Acknowledgments This study is supported by National Natural Science Foundation of Chin...The authors regret that the acknowledgment section in the final submitted version is unfortunately left out.The section should be``Acknowledgments This study is supported by National Natural Science Foundation of China(41925017).The calculations were partly conducted at supercomputing center of University of Science and Technology of China.''展开更多
This paper presents an overview of TianHe-lA (TH-1A) supercomputer, which is built by National University of Defense Technology of China (NUDT). TH-1A adopts a hybrid architecture by integrating CPUs and GPUs, and...This paper presents an overview of TianHe-lA (TH-1A) supercomputer, which is built by National University of Defense Technology of China (NUDT). TH-1A adopts a hybrid architecture by integrating CPUs and GPUs, and its interconnect network is a proprietary high-speed communication network. The theoretical peak performance of TH-1A is 4700TFlops, and its LINPACK test result is 2566TFlops. It was ranked the No. 1 on the TOP500 List released in November, 2010. TH-1A is now deployed in National Supercomputer Center in Tianjin and provides high performance computing services. TH-1A has played an important role in many applications, such as oil exploration, weather forecast, bio-medical research.展开更多
High performance computers provide strategic computing power in the construction of national economy and defense, and become one of symbols of the country's overall strength. Over 30 years, with the supports of gover...High performance computers provide strategic computing power in the construction of national economy and defense, and become one of symbols of the country's overall strength. Over 30 years, with the supports of governments, the technology of high performance computers is in the process of rapid development, during which the computing performance increases nearly 3 million times and the processors number expands over 10 hundred thousands times. To solve the critical issues related with parallel efficiency and scalability, scientific researchers pursued extensive theoretical studies and technical innovations. The paper briefly looks back the course of building high performance computer systems both at home and abroad, and summarizes the significant breakthroughs of international high performance computer technology. We also overview the technology progress of China in the area of parallel computer architecture, parallel operating system and resource management, parallel compiler and performance optimization, environment for parallel programming and network computing. Finally, we examine the challenging issues, "memory wall", system scalability and "power wall", and discuss the issues of high productivity computers, which is the trend in building next generation high performance computers.展开更多
基金Project supported by the Key R&D Program of Zhejiang Province,China(No.2022C01250)the National Key R&D Program of China(No.2019YFA0709402)。
文摘With the continuous improvement of supercomputer performance and the integration of artificial intelligence with traditional scientific computing,the scale of applications is gradually increasing,from millions to tens of millions of computing cores,which raises great challenges to achieve high scalability and efficiency of parallel applications on super-large-scale systems.Taking the Sunway exascale prototype system as an example,in this paper we first analyze the challenges of high scalability and high efficiency for parallel applications in the exascale era.To overcome these challenges,the optimization technologies used in the parallel supporting environment software on the Sunway exascale prototype system are highlighted,including the parallel operating system,input/output(I/O)optimization technology,ultra-large-scale parallel debugging technology,10-million-core parallel algorithm,and mixed-precision method.Parallel operating systems and I/O optimization technology mainly support largescale system scaling,while the ultra-large-scale parallel debugging technology,10-million-core parallel algorithm,and mixed-precision method mainly enhance the efficiency of large-scale applications.Finally,the contributions to various applications running on the Sunway exascale prototype system are introduced,verifying the effectiveness of the parallel supporting environment design.
基金This research was sponsored by the Advanced Scientific Computing Research Program,the Office of Science,U.SDepartment of Energy through grants DE-SC0014917,DE-SC0012610,and DE-AC02-06CH11357.
文摘The overall efficiency of an extreme-scale supercomputer largely relies on the performance of its network interconnects.Several of the state of the art supercomputers use networks based on the increasingly popular Dragonfly topology.It is crucial to study the behavior and performance of different parallel applications running on Dragonfly networks in order to make optimal system configurations and design choices,such as job scheduling and routing strategies.However,in order to study these temporal network behavior,we would need a tool to analyze and correlate numerous sets of multivariate time-series data collected from the Dragonfly's multi-level hierarchies.This paper presents such a tool-a visual analytics system-that uses the Dragonfly network to investigate the temporal behavior and optimize the communication performance of a supercomputer.We coupled interactive visualization with time-series analysis methods to help reveal hidden patterns in the network behavior with respect to different parallel applications and system configurations.Our system also provides multiple coordinated views for connecting behaviors observed at different levels of the network hierarchies,which effectively helps visual analysis tasks.We demonstrate the effectiveness of the system with a set of case studies.Our system and findings can not only help improve the communication performance of supercomputing applications,but also the network performance of next-generation supercomputers.
基金This work is supported by the National Key Research and Development Plan program of the Ministry of Science and Technology of China(No.2016YFB0201100)Additionally,this work is supported by the National Laboratory for Marine Science and Technology(Qingdao)Major Project of the Aoshan Science and Technology Innovation Program(No.2018ASKJ01-04)the Open Fundation of Key Laboratory of Marine Science and Numerical Simulation,Ministry of Natural Resources(No.2021-YB-02).
文摘In this paper,a typical experiment is carried out based on a high-resolution air-sea coupled model,namely,the coupled ocean-atmosphere-wave-sediment transport(COAWST)model,on both heterogeneous many-core(SW)and homogenous multicore(Intel)supercomputing platforms.We construct a hindcast of Typhoon Lekima on both the SW and Intel platforms,compare the simulation results between these two platforms and compare the key elements of the atmospheric and ocean modules to reanalysis data.The comparative experiment in this typhoon case indicates that the domestic many-core computing platform and general cluster yield almost no differences in the simulated typhoon path and intensity,and the differences in surface pressure(PSFC)in the WRF model and sea surface temperature(SST)in the short-range forecast are very small,whereas a major difference can be identified at high latitudes after the first 10 days.Further heat budget analysis verifies that the differences in SST after 10 days are mainly caused by shortwave radiation variations,as influenced by subsequently generated typhoons in the system.These typhoons generated in the hindcast after the first 10 days attain obviously different trajectories between the two platforms.
基金supported by National Key Research and Development Program of China under Grant 2024YFE0210800National Natural Science Foundation of China under Grant 62495062Beijing Natural Science Foundation under Grant L242017.
文摘The Dynamical Density Functional Theory(DDFT)algorithm,derived by associating classical Density Functional Theory(DFT)with the fundamental Smoluchowski dynamical equation,describes the evolution of inhomo-geneous fluid density distributions over time.It plays a significant role in studying the evolution of density distributions over time in inhomogeneous systems.The Sunway Bluelight II supercomputer,as a new generation of China’s developed supercomputer,possesses powerful computational capabilities.Porting and optimizing industrial software on this platform holds significant importance.For the optimization of the DDFT algorithm,based on the Sunway Bluelight II supercomputer and the unique hardware architecture of the SW39000 processor,this work proposes three acceleration strategies to enhance computational efficiency and performance,including direct parallel optimization,local-memory constrained optimization for CPEs,and multi-core groups collaboration and communication optimization.This method combines the characteristics of the program’s algorithm with the unique hardware architecture of the Sunway Bluelight II supercomputer,optimizing the storage and transmission structures to achieve a closer integration of software and hardware.For the first time,this paper presents Sunway-Dynamical Density Functional Theory(SW-DDFT).Experimental results show that SW-DDFT achieves a speedup of 6.67 times within a single-core group compared to the original DDFT implementation,with six core groups(a total of 384 CPEs),the maximum speedup can reach 28.64 times,and parallel efficiency can reach 71%,demonstrating excellent acceleration performance.
文摘In June 2018, the United States claimed the No. 1 position in supercomputing according to TOP500, which ranks the top 500 most powerful computer systems in the world [1]. The US Department of Energy’s Summit machine (Fig. 1)[1] claimed this distinction, which previously had been held by China’s Sunway TaihuLight supercomputer.
文摘The first in China 10~9 sparallel supercomputer, named as Yinhe-Ⅱ, had been manufac-tured by Science-technological University of National Defence. The main feature of thesupercomputer are: 4-processor system, the principle frequence 50 MHz, the word length 64 byte,the main memory 256 Mb, two individual input / output subsystems, > 10~9 operations per sec-
文摘China’s first supercomputer capable of 100 million calculations per second was the YH-1,which was independently developed by the Institute of Computer Science at the National University of Defense Technology(NUDT)between 1978 and 1983.YH-1 played an important role in China’s national defense construction and national economic development.It made China one of the few countries in the world to successfully develop a supercomputer.Based on original archive documents,interviews with relevant personnel,and an analysis of the technological parameters of the supercomputers YH-1 in China and Cray-1 in the United States,this paper reviews in detail the historic process of the development of YH-1,analyzing its innovation and summarizing the experience and lessons learned from it.This analysis is significant for current military-civilian integration,and the commercialization of university research findings in China.
文摘As an important branch of information technology, high-performance computing has expanded its application field and its influence has been expanding. High-performance computing is always a key area of application in meteorology. We used field research and literature review methods to study the application of high performance computing in China’s meteorological department, and obtained the following results: 1) China Meteorological Department gradually established the first high-performance computer system since 1978. High-performance computing services can support operational numerical weather prediction models. 2) The Chinese meteorological department has always used the relatively advanced high-performance computing technology, and the business system capability has been continuously improved. The computing power has become an important symbol of the level of meteorological modernization. 3) High-performance computing technology and meteorological numerical forecasting applications are increasingly integrated, and continue to innovate and develop. 4) In the future, high-performance computing resource management will gradually transit from the current local pre-allocation mode to the local remote unified scheduling and shared use. In summary, we have come to the conclusion that the performance calculation business of the meteorological department will usher in a better tomorrow.
文摘We have demonstrated the application of the world’s fastest supercomputer Fugaku located in Japan to select the COVID-19 drugs and stopping the pandemic spread. Using computer simulation out of 2128 potential drug candidates, the world’s fastest supercomputer picked 30 most effective and potential drugs. Twelve of them are under clinical trials outside Japan;some are being tested in Japan. The computer reduced the computation time from one year to 10 days when compared to second superfast computer of the world. Fugaku supercomputer was employed to know the behavior of airborne aerosol COVID-19 virus. 3Cs were suggested: avoid closed and crowded spaces and contacts to stop the pandemic spread. The progress in vaccine development and proper use and type of mask has also been described in this article. The article will benefit greatly to stop spreading and treating the pandemic COVID-19.
文摘Exploring the human brain is perhaps the most challenging and fascinating scientific issue in the 21st century.It will facilitate the development of various aspects of the society,including economics,education,health care,national defense and daily life.The artificial intelligence techniques are becoming useful as an alternate method of classical techniques or as a component of an integrated system.They are used to solve complicated problems in various fields and becoming increasingly popular nowadays.Especially,the investigation of human brain will promote the artificial intelligence techniques,utilizing the accumulating knowledge of neuroscience,brain-machine interface techniques,algorithms of spiking neural networks and neuromorphic supercomputers.Consequently,we provide a comprehensive survey of the research and motivations for brain-inspired artificial intelligence and its engineering over its history.The goals of this work are to provide a brief review of the research associated with brain-inspired artificial intelligence and its related engineering techniques,and to motivate further work by elucidating challenges in the field where new researches are required.
基金Acknowledgements This work was partially supported by the Na- tional High-tech R&D Program of China (863 Program) (2012AA01A301), and the National Natural Science Foundation of China (Grant No. 61120106005). The MilkyWay-2 project is a great team effort and benefits from the cooperation of many individuals at NUDT. We thank all the people who have contributed to the system in a variety of ways.
文摘On June 17, 2013, MilkyWay-2 (Tianhe-2) supercomputer was crowned as the fastest supercomputer in the world on the 41th TOP500 list. This paper provides an overview of the MilkyWay-2 project and describes the design of hardware and software systems. The key architecture features of MilkyWay-2 are highlighted, including neo-heterogeneous compute nodes integrating commodity- off-the-shelf processors and accelerators that share similar instruction set architecture, powerful networks that employ proprietary interconnection chips to support the massively parallel message-passing communications, proprietary 16- core processor designed for scientific computing, efficient software stacks that provide high performance file system, emerging programming model for heterogeneous systems, and intelligent system administration. We perform extensive evaluation with wide-ranging applications from LINPACK and Graph500 benchmarks to massively parallel software deployed in the system.
基金This work was partially supported by the National High Technology Research and Development 863 Program of China under Grant No. 2012AA01A301 and the National Natural Science Foundation of China under Grant No. 61120106005. Acknowledgements The Tianhe-2 project is a great team effort and benefits from the cooperation of many individuals at NUDT. We would like to thank the entire Tianhe-2 development, applications, and bench- marking teams, and all the people who have contributed to the system in a variety of ways.
文摘In this paper, we present the Tianhe-2 interconnect network and message passing services. We describe the architecture of the router and network interface chips, and highlight a set of hardware and software features effectively supporting high performance communications, ranging over remote direct memory access, collective optimization, hardwareenable reliable end-to-end communication, user-level message passing services, etc. Measured hardware performance results are also presented.
基金Acknowledgements This work was supported by the National High-Tech Research & Development Program of China (863 Program) (2012AA01A301), and by the National Natural Science Foundation of China (Grant Nos. 61120106005, 61202118, 61303187).
文摘With the rapid improvement of computation capability in high performance supercomputer system, the imbalance of performance between computation subsystem and storage subsystem has become more and more serious, especially when various big data are produced ranging from tens of gigabytes up to terabytes. To reduce this gap, large-scale storage systems need to be designed and implemented with high performance and scalability. MilkyWay-2 (TH-2) supercomputer system with peak performance 54.9 Props, definitely has this kind of requirement for storage system. This paper mainly introduces the storage system in MilkyWay-2 supercomputer, including the hardware architecture and the parallel file system. The storage system in MilkyWay-2 supercomputer exploits a novel hybrid hierarchy storage architecture to enable high scalability of I/O clients, I/O bandwidth and storage capacity. To fit this architecture, a user level virtualized file system, named H^2FS, is designed and implemented which can cooperate local storage and shared storage together into a dynamic single namespace to optimize I/O performance in IO-intensive applications. The evaluation results show that the storage system in MilkyWay-2 supercomputer can satisfy the critical requirements in large scale supercomputer, such as performance and scalability.
基金Acknowledgements This work was partially supported by National High-tech R&D Program of China (863 Program) (2012AA01A301, 2012AA010901), by Program for New Century Excellent Talents in University and by National Natural Science Foundation of China (Grant Nos. 61272142, 61103082, 61170261, and 61103193).
文摘With the increase of system scale, the inherent reliability of supercomputers becomes lower and lower. The cost of fault handling and task recovery increases so rapidly that the reliability issue will soon harm the usability of supercomputers. This issue is referred to as the "reliability wall", which is regarded as a critical problem for current and future supercomputers. To address this problem, we propose an autonomous fault-tolerant system, named Iaso, in MilkyWay- 2 system. Iaso introduces the concept of autonomous management in supercomputers. By autonomous management, the computer itself, rather than manpower, takes charge of the fault management work. Iaso automatically manage the whole lifecycle of faults, including fault detection, fault diagnosis, fault isolation, and task recovery. Iaso endows the autonomous features with MilkyWay-2 system, such as self-awareness, self-diagnosis, self-healing, and self-protection. With the help of Iaso, the cost of fault handling in supercomputers reduces from several hours to a few seconds. Iaso greatly improves the usability and reliability of MilkyWay-2 system.
基金funding from the National Key Research and Development Program of China(2017YFB0202200)the Advanced Research Project of China(31511010203)+1 种基金Open Fund(201503-02)from State Key Laboratory of High Performance Computing,and Research Program of NUDT(ZK18-03-10).
文摘Exascale computing is one of the major challenges of this decade,and several studies have shown that communications are becoming one of the bottlenecks for scaling parallel applications.The analysis on the characteristics of communications can effectively aid to improve the performance of scientific applications.In this paper,we focus on the statistical regularity in time-dimension communication characteristics for representative scientific applications on supercomputer systems,and then prove that the distribution of communication-event intervals has a power-law decay,which is common in scientific interests and human activities.We verify the distribution of communication-event intervals has really a power-law decay on the Tianhe-2 supercomputer,and also on the other six parallel systems with three different network topologies and two routing policies.In order to do a quantitative study on the power-law distribution,we exploit two groups of statistics:bursty vs.memory and periodicity vs.dispersion.Our results indicate that the communication events show a“strong-bursty and weak-memory”characteristic and the communication event intervals show the periodicity and the dispersion.Finally,our research provides an insight into the relationship between communication optimizations and time-dimension communication characteristics.
基金The work was supported by the National Key Research and Development Program Program of China under Grant No.2016YFB0201800.
文摘An analysis of real-world operational data of Tianhe-1A(TH-1A)supercomputer system shows that chilled water data not only can reflect the status of a chiller system but also are related to supercomputer load.This study proposes AquaSee,a method that can predict the load and cooling system faults of supercomputers by using chilled water pressure and temperature data.This method is validated on the basis of real-world operational data of the TH-1A supercomputer system at the National Supercomputer Center in Tianjin.Datasets with various compositions are used to construct the prediction model,which is also established using different prediction sequence lengths.Experimental results show that the method that uses a combination of pressure and temperature data performs more effectively than that only consisting of either pressure or temperature data.The best inference sequence length is two points.Furthermore,an anomaly monitoring system is set up by using chilled water data to help engineers detect chiller system anomalies.
基金supported by the Strategic Priority Research Program of Chinese Academy of Sciences(XDB41000000)the Research Funds of the Double First-Class Initiative of University of Science and Technology of China(YD2080002007)the National Natural Science Foundation of China(91837310,42061134009,and 41775146)。
文摘During the era of global warming and highly urbanized development,extreme and high impact weather as well as air pollution incidents influence everyday life and might even cause the incalculable loss of life and property.Despite the vast development of atmospheric models,there still exist substantial numerical forecast biases objectively.To accurately predict extreme weather,severe air pollution,and abrupt climate change,numerical atmospheric model requires not only to simulate meteorology and atmospheric compositions simultaneously involving many sophisticated physical and chemical processes but also at high spatiotemporal resolution.Global integrated atmospheric simulation at spatial resolutions of a few kilometers remains challenging due to its intensive computational and input/output(I/O)requirement.Through multi-dimension-parallelism structuring,aggressive and finer-grained optimizing,manual vectorizing,and parallelized I/O fragmenting,an integrated Atmospheric Model Across Scales(iAMAS)was established on the new Sunway supercomputer platform to significantly increase the computational efficiency and reduce the I/O cost.The global 3-km atmospheric simulation for meteorology with online integrated aerosol feedbacks with iAMAS was scaled to 39,000,000 processor cores and achieved the speed of 0.82 simulation day per hour(SDPH)with routine I/O,which enabled us to perform 5-day global weather forecast at 3-km horizontal resolution with online natural aerosol impacts.The results demonstrate the promising future that the increasing of spatial resolution to a few kilometers with online integrated aerosol feedbacks may significantly improve the global weather forecast.
文摘The authors regret that the acknowledgment section in the final submitted version is unfortunately left out.The section should be``Acknowledgments This study is supported by National Natural Science Foundation of China(41925017).The calculations were partly conducted at supercomputing center of University of Science and Technology of China.''
基金Supported by the National High Technology Research and Development 863 Program of China under Grant No. 2009AA01A128
文摘This paper presents an overview of TianHe-lA (TH-1A) supercomputer, which is built by National University of Defense Technology of China (NUDT). TH-1A adopts a hybrid architecture by integrating CPUs and GPUs, and its interconnect network is a proprietary high-speed communication network. The theoretical peak performance of TH-1A is 4700TFlops, and its LINPACK test result is 2566TFlops. It was ranked the No. 1 on the TOP500 List released in November, 2010. TH-1A is now deployed in National Supercomputer Center in Tianjin and provides high performance computing services. TH-1A has played an important role in many applications, such as oil exploration, weather forecast, bio-medical research.
基金The paper is partly supported by the National Natural Science Foundation of China under Grant No. 69933030. Acknowledgement We have to indicate with great regret that some excellent researches may not be mentioned in this paper because of our limited knowledge and the wide area related with high performance computer technology.
文摘High performance computers provide strategic computing power in the construction of national economy and defense, and become one of symbols of the country's overall strength. Over 30 years, with the supports of governments, the technology of high performance computers is in the process of rapid development, during which the computing performance increases nearly 3 million times and the processors number expands over 10 hundred thousands times. To solve the critical issues related with parallel efficiency and scalability, scientific researchers pursued extensive theoretical studies and technical innovations. The paper briefly looks back the course of building high performance computer systems both at home and abroad, and summarizes the significant breakthroughs of international high performance computer technology. We also overview the technology progress of China in the area of parallel computer architecture, parallel operating system and resource management, parallel compiler and performance optimization, environment for parallel programming and network computing. Finally, we examine the challenging issues, "memory wall", system scalability and "power wall", and discuss the issues of high productivity computers, which is the trend in building next generation high performance computers.