Graphitic carbon nitride(g-C_(3)N_(4)),known for its green and abundant nature and composed of carbon and nitrogen in a two-dimensional structure,has emerged as a significant area of interest across various discipline...Graphitic carbon nitride(g-C_(3)N_(4)),known for its green and abundant nature and composed of carbon and nitrogen in a two-dimensional structure,has emerged as a significant area of interest across various disciplines,particularly in energy conversion and storage.Its recent demonstrations of high potential in supercapacitor applications mark it as a promising alternative to graphene within the realm of materials science.Numerous favorable features,such as chemical and thermal stability,abundant nitrogen content,eco-friendly attributes,and gentle conditions for synthesis,are shown.This review summarizes recent advancements in the use of g-C_(3)N_(4)and its composites as electrodes for supercapacitors,highlighting the advantages and issues associated with g-C_(3)N_(4)in these applications.This emphasizes situations where the composition of g-C_(3)N_(4)with other materials,such as metal oxides,metal chalcogenides,carbon materials,and conducting polymers,overcomes its limitations,leading to composite materials with improved functionalities.This review discusses the challenges that still need to be addressed and the possible future roles of g-C_(3)N_(4)in the research of advanced supercapacitor technology,such as battery-hybrid supercapacitors,flexible supercapacitors,and photo-supercapacitors.展开更多
With the rapid development of flexible wearable electronics,the demand for stretchable energy storage devices has surged.In this work,a novel gradient-layered architecture was design based on single-pore hollow lignin...With the rapid development of flexible wearable electronics,the demand for stretchable energy storage devices has surged.In this work,a novel gradient-layered architecture was design based on single-pore hollow lignin nanospheres(HLNPs)-intercalated two-dimensional transition metal carbide(Ti_(3)C_(2)T_(x) MXene)for fabricating highly stretchable and durable supercapacitors.By depositing and inserting HLNPs in the MXene layers with a bottom-up decreasing gradient,a multilayered porous MXene structure with smooth ion channels was constructed by reducing the overstacking of MXene lamella.Moreover,the micro-chamber architecture of thin-walled lignin nanospheres effectively extended the contact area between lignin and MXene to improve ion and electron accessibility,thus better utilizing the pseudocapacitive property of lignin.All these strategies effectively enhanced the capacitive performance of the electrodes.In addition,HLNPs,which acted as a protective phase for MXene layer,enhanced mechanical properties of the wrinkled stretchable electrodes by releasing stress through slip and deformation during the stretch-release cycling and greatly improved the structural integrity and capacitive stability of the electrodes.Flexible electrodes and symmetric flexible all-solid-state supercapacitors capable of enduring 600%uniaxial tensile strain were developed with high specific capacitances of 1273 mF cm^(−2)(241 F g^(−1))and 514 mF cm^(−2)(95 F g^(−1)),respectively.Moreover,their capacitances were well preserved after 1000 times of 600%stretch-release cycling.This study showcased new possibilities of incorporating biobased lignin nanospheres in energy storage devices to fabricate stretchable devices leveraging synergies among various two-dimensional nanomaterials.展开更多
Supercapacitors are gaining popularity due to their high cycling stability,power density,and fast charge and discharge rates.Researchers are ex-ploring electrode materials,electrolytes,and separat-ors for cost-effecti...Supercapacitors are gaining popularity due to their high cycling stability,power density,and fast charge and discharge rates.Researchers are ex-ploring electrode materials,electrolytes,and separat-ors for cost-effective energy storage systems.Ad-vances in materials science have led to the develop-ment of hybrid nanomaterials,such as combining fil-amentous carbon forms with inorganic nanoparticles,to create new charge and energy transfer processes.Notable materials for electrochemical energy-stor-age applications include MXenes,2D transition met-al carbides,and nitrides,carbon black,carbon aerogels,activated carbon,carbon nanotubes,conducting polymers,carbon fibers,and nanofibers,and graphene,because of their thermal,electrical,and mechanical properties.Carbon materials mixed with conducting polymers,ceramics,metal oxides,transition metal oxides,metal hydroxides,transition metal sulfides,trans-ition metal dichalcogenide,metal sulfides,carbides,nitrides,and biomass materials have received widespread attention due to their remarkable performance,eco-friendliness,cost-effectiveness,and renewability.This article explores the development of carbon-based hybrid materials for future supercapacitors,including electric double-layer capacitors,pseudocapacitors,and hy-brid supercapacitors.It investigates the difficulties that influence structural design,manufacturing(electrospinning,hydro-thermal/solvothermal,template-assisted synthesis,electrodeposition,electrospray,3D printing)techniques and the latest car-bon-based hybrid materials research offer practical solutions for producing high-performance,next-generation supercapacitors.展开更多
Filter capacitors play an important role in altern-ating current(AC)-line filtering for stabilizing voltage,sup-pressing harmonics,and improving power quality.However,traditional aluminum electrolytic capacitors(AECs)...Filter capacitors play an important role in altern-ating current(AC)-line filtering for stabilizing voltage,sup-pressing harmonics,and improving power quality.However,traditional aluminum electrolytic capacitors(AECs)suffer from a large size,short lifespan,low power density,and poor reliability,which limits their use.In contrast,ultrafast supercapacitors(SCs)are ideal for replacing commercial AECs because of their extremely high power densities,fast charging and discharging,and excellent high-frequency re-sponse.We review the design principles and key parameters for ultrafast supercapacitors and summarize research pro-gress in recent years from the aspects of electrode materials,electrolytes,and device configurations.The preparation,structures,and frequency response performance of electrode materials mainly consisting of carbon materials such as graphene and carbon nanotubes,conductive polymers,and transition metal compounds,are focused on.Finally,future research directions for ultrafast SCs are suggested.展开更多
By enhancing surface interaction between metal oxide particles and carbon-based materials,it can effectively improve Faraday capacitance and conductivity,ultimately achieving high energy density with sufficient redox ...By enhancing surface interaction between metal oxide particles and carbon-based materials,it can effectively improve Faraday capacitance and conductivity,ultimately achieving high energy density with sufficient redox reactions in supercapacitors.Through a gentle biomineralization process and subsequent thermal reduction strategy,we successfully prepared the graphene oxide(GO)wrapping mixed-valence manganese oxides(MnO_(x))and S,P self-codoped carbon matrix porous composite(MnO_(x)@SPC@reduced graphene oxide(RGO)).During the biomineralization process of engineered Pseudomonas sp.(Ml)cells,GO nanosheets functioned as the'soil'to adsorb Mn^(2+)ion and uniformly disperse biogenic Mn oxides(BMO).After undergoing annealing,the MnO_(x) nanoparticles were evenly wrapped with graphene,resulting in the creation of the MnO_(x)@SPC@RGO3 composite.This composite possesses strong C—O—Mn bond interfaces,numerous electroactive sites,and a uniform pore structure.By optimizing the synergistic interaction between the highly conductive graphene and the remarkable surface capacitance of MnO_(x),the MnO_(x)@SPC@RGO3 electrode,with its intercalation Faraday reactions mechanism of■transformations,exhibits an outstanding specific capacity(448.3 F·g^(-1)at 0.5 A·g^(-1)),multiplying performance(340.5 F·g^(-1)at10 A·g^(-1)),and cycling stability(93.8%retention after 5000 cycles).Moreover,the asymmetric all-solidstate supercapacitors of MnO_(x)@SPC@RGO3//PC exhibit an exceptional energy density of 64.8 W·h·kg^(-1)and power density of 350 W·kg^(-1),as well as a long lifespan with capacitance retention of 92.5%after10000 cycles.In conclusion,the synthetic route utilizing biomineralization and thermal reduction exhibits significant potential for exploiting high-performance electrode materials in all-solid-state supercapacitor applications.展开更多
The growing concern for energy efficiency and the increasing deployment of intermittent renewable energies has led to the development of technologies for capturing,storing,and discharging energy.Supercapacitors can be...The growing concern for energy efficiency and the increasing deployment of intermittent renewable energies has led to the development of technologies for capturing,storing,and discharging energy.Supercapacitors can be considered where batteries do not meet the requirements.However,supercapacitors in systems with a slower charge/discharge cycle,such as photovoltaic systems(PVS),present other obstacles that make replacing batteries more challenging.An extensive literature review unveils a knowledge gap regarding a methodological comparison of batteries and supercapacitors.In this study,we address the technological feasibility of intermittent renewable energy generation systems,focusing on storage solutions for PVS energy.We propose a framework according to one of the essential parameters for their application in PVS:Energy Density or Specific Energy(Wh/kg).Through computational modelling,issues related to the intermittency and seasonality of the solar energy source are addressed,evaluating the possible benefits of implementing batteries,supercapacitors,and hybrid solutions in renewable energy generation systems.Also,the characteristics of two hypothetical configurations of photovoltaic systems,off-grid and on-grid,were analysed.This analysis highlights the characteristics of totally isolated systems(e.g.,on an island or remote village)and systems connected to the grid(e.g.,solar farms),where eliminating the use of batteries can bring significant benefits,in addition to tax incentives,which are decisive in the investment decision-making process.The results clarify the viability of PVS and allow an understanding of parameters that can support the technical decision process between isolated or non-isolated systems,reflecting economic and financial issues.展开更多
Extensively explored for their distinctive pseudocapacitance characteristics,MXenes,a distinguished group of 2D materials,have led to remarkable achievements,particularly in the realm of energy storage devices.This wo...Extensively explored for their distinctive pseudocapacitance characteristics,MXenes,a distinguished group of 2D materials,have led to remarkable achievements,particularly in the realm of energy storage devices.This work presents an innovative Pseudocapacitive Sensor.The key lies in switching the energy storage kinetics from pseudocapacitor to electrical double layer capacitor by employing the change of local pH(-log[H^(+)])in MXene-based flexible supercapacitors during bending.Pseudocapacitive sensing is observed in acidic electrolyte but absent in neutral electrolyte.Applied shearing during bending causes liquid-crystalline MXene sheets to increase in their degree of anisotropic alignment.With blocking of H+mobility due to the higher diffusion barrier,local pH increases.The electrochemical energy storage kinetics transits from Faradaic chemical protonation(intercalation)to non-Faradaic physical adsorption.We utilize the phenomenon of capacitance change due to shifting energy storage kinetics for strain sensing purposes.The developed highly sensitive Pseudocapacitive Sensors feature a remarkable gauge factor(GF)of approximately 1200,far surpassing conventional strain sensors(GF:~1 for dielectric-cap sensor).The introduction of the Pseudocapacitive Sensor represents a paradigm shift,expanding the application of pseudocapacitance from being solely confined to energy devices to the realm of multifunctional electronics.This technological leap enriches our understanding of the pseudocapacitance mechanism of MXenes,and will drive innovation in cutting-edge technology areas,including advanced robotics,implantable biomedical devices,and health monitoring systems.展开更多
Aqueous supercapacitors(SCs)exhibit exceptional electrochemical characteristics,including extended cycle stability and high-power density,making them highly promising.Though their practical application and commerciali...Aqueous supercapacitors(SCs)exhibit exceptional electrochemical characteristics,including extended cycle stability and high-power density,making them highly promising.Though their practical application and commercialization are hindered by low energy density,we developed a high-performance,self-supporting SC electrode to address this limitation using nickel manganese layered double hydroxide(NiMn-LDH)directly synthesized on activated carbon cloth(ACC).This electrode achieved an extraordinary specific capacitance of 2838.8 F g^(-1)at a current density of 1 A g^(-1),with 70.3%retention at 30 A g^(-1)and 86.1%retention after 6,000 cycles at 15 A g^(-1),demonstrating its remarkable performance and durability.After being assembled into an asymmetric SCs(ASCs)device with the ACC negative electrode in 2M potassium hydroxide(KOH),a broad operating voltage window of 1.6 V with an energy density of up to 89.7 Wh kg^(-1)was achieved at a power density of 800.0 W kg^(-1).Furthermore,the device retained 89.30%of its initial capacitance after 10,000 cycles at 10 A g^(-1),with a nearperfect Coulombic efficiency close to 100%.The fishscale-like nanostructure effectively increases the active sites of the electrode to make sufficient full contact with the electrolyte,accelerating the transport of electrons/ions and enhancing its electrochemical performance.These findings emphasize the potential of NiMn-LDH for application in wearable and microscale energy storage devices.展开更多
Immense attention has been focused on developing supercapacitors in the field of energy storage by virtue of their exceptional power density,extended cycling stability and operational safety.However,traditional liquid...Immense attention has been focused on developing supercapacitors in the field of energy storage by virtue of their exceptional power density,extended cycling stability and operational safety.However,traditional liquid electrolytes pose severe challenges in response to leakage,high volatility and low electrochemical stability issues.To address these problems,we have developed a novel composite polymer membrane for gel polymer electrolytes(GPEs).This membrane features an internal fibrous framework composed of shape-memory polymers,while surface dielectric layers of PVDF-HFP cross-linked with modified TiO_(2)nanoparticles are constructed on both sides of the framework.This configuration modulates the Stern layer potential gradient and diffuse layer ionic distribution through dielectric polarization,thereby suppressing electrolyte decomposition at high voltages,mitigating side reactions and facilitating ionic conduction.The resultant quasi-solid-state supercapacitor demonstrates excellent electrochemical stability at a voltage of 3.5 V,achieving an energy density of 43.87 Wh kg^(-1),with a high-power density of 22.66 kW kg^(-1)along with exceptional cyclic stability and mechanical flexibility.The synergistic structural design offers a safe and efficient energy harvesting solution for wearable electronic devices and portable energy storage systems.展开更多
Improving the volumetric energy density of supercapacitors is essential for practical applications,which highly relies on the dense storage of ions in carbon-based electrodes.The functional units of carbon-based elect...Improving the volumetric energy density of supercapacitors is essential for practical applications,which highly relies on the dense storage of ions in carbon-based electrodes.The functional units of carbon-based electrode exhibit multi-scale structural characteristics including macroscopic electrode morphologies,mesoscopic microcrystals and pores,and microscopic defects and dopants in the carbon basal plane.Therefore,the ordered combination of multi-scale structures of carbon electrode is crucial for achieving dense energy storage and high volumetric performance by leveraging the functions of various scale structu re.Considering that previous reviews have focused more on the discussion of specific scale structu re of carbon electrodes,this review takes a multi-scale perspective in which recent progresses regarding the structureperformance relationship,underlying mechanism and directional design of carbon-based multi-scale structures including carbon morphology,pore structure,carbon basal plane micro-environment and electrode technology on dense energy storage and volumetric property of supercapacitors are systematically discussed.We analyzed in detail the effects of the morphology,pore,and micro-environment of carbon electrode materials on ion dense storage,summarized the specific effects of different scale structures on volumetric property and recent research progress,and proposed the mutual influence and trade-off relationship between various scale structures.In addition,the challenges and outlooks for improving the dense storage and volumetric performance of carbon-based supercapacitors are analyzed,which can provide feasible technical reference and guidance for the design and manufacture of dense carbon-based electrode materials.展开更多
Layered double hydroxides(LDHs)are a class of transition metal-based materials characterized by their two-dimensional nano-layered structure.They offer several advantages,such as easy adjustability of morphology and s...Layered double hydroxides(LDHs)are a class of transition metal-based materials characterized by their two-dimensional nano-layered structure.They offer several advantages,such as easy adjustability of morphology and structure and simple preparation methods,making them highly promising for the development of low-cost,high energy density supercapacitors.This article begins with a brief introduction to the basic structure,energy storage mechanism,and application challenges of LDHs.It then proceeds to summarize the innovations in the preparation methods of LDH electrode materials,such as the application of high precision synthesis technologies including component regulation,amorphization,and the introduction of oxygen vacancies.The achievements in performance optimization are also analyzed,for example,the improvement of specific capacitance and rate performance through nanostructure design and nanosizing treatment.However,it is also pointed out that there are problems such as low charge transfer efficiency and poor cycling stability in practical applications.This review is of great reference value for a deep understanding of the research status and development direction of LDH electrode materials.It is expected that breakthroughs will be achieved in aspects such as green and sustainable preparation processes and the expansion of applications in multiple fields in the future.展开更多
The development of high-voltage tandem thin-film supercapacitors(TFSCs)has been limited by the issues such as expensive electrode materials,indispensable commercial separators and metal current collectors,and complex ...The development of high-voltage tandem thin-film supercapacitors(TFSCs)has been limited by the issues such as expensive electrode materials,indispensable commercial separators and metal current collectors,and complex manufacturing processes.Herein,we develop a potentially scalable approach to address all these issues by using CO_(2) laser pyrolysis of polyimide(PI)paper into the three-dimensional(3D)morphology of graphene paper in air.The formation process and mechanism of PI to graphene were clarified by microstructure and chemical characterizations and reaction molecular dynamics.The influences of laser scan density,power,defocus,and scan speed on the sheet resistance,longitudinal resistance,Raman spectra,and electrochemical performance of graphene papers were systematically investigated.Results indicate that high-quality graphene papers with ultralow sheet resistance(4.88Ω·square^(-1))and longitudinal resistance(3.46Ω)and extra-large crystalline size(96.1 nm)were achieved under optimized process parameters.The graphene papers can simultaneously serve as active electrode materials,current collectors,and interconnectors.The active area of electrodes is defined by a PI mask,with the help of which a hydrogel electrolyte functions as a separator.The assembled graphene paper-based TFSCs demonstrate outstanding electrochemical performance and mechanical flexibility,with the areal capacitance of 54.5 mF·cm^(-2),energy density of 10.9µWh·cm^(-2),and cycle stability retention of 86.9%over 15000 cycles.Moreover,all the tandem metal-free TFSCs,ranging from 1 to 160 cells,show excellent performance uniformity.The output voltage increases linearly from 1.2 V to 200 V.Significantly,the 160-tandem TFSCs exhibit a high voltage density within a compact volume of∼3.8 cm^(3).This work provides an avenue for achieving tandem metal-free TFSCs in a simple and efficient manner.展开更多
Photo-assisted energy harvesting plays a crucial role in present research and future scenario in the field of technology advancements towards efficient energy utilization.Modern world sees an opportunity in developing...Photo-assisted energy harvesting plays a crucial role in present research and future scenario in the field of technology advancements towards efficient energy utilization.Modern world sees an opportunity in developing such technologies which are self-powered,self-driven and self-healing that can be utilized in the fields including portable,wearable electronics,internet of things(IOT)devices,electric vehicles,space applications,renewable energy systems,and smart grid applications.The present review gives an insight to the aspects in the present and future developmental goals in the field of light driven supercapacitors(LDS).Such systems comprise of active components viz.layer material selection in the solar cell and supercapacitors.A comprehensive study to achieve high absorption,power/energy density and efficient storage of absorbed energy has been discussed.The major factors for device design and mechanism adopted for efficient photo conversion and their subsequent storage as LDS depends on efficient light intensity source,surface area,optimization of the structure of electrodes,electrode selection,charge separation efficiency etc.A comprehensive analysis of the previously developed LDS with their optimized parameters has been presented.Various challenges viz.material selection,compatibility of layers,lower photovoltaic conversion and increased resistivity on integrating the energy conversion and storage module has also been discussed.In order to achieve high-performance LDS and to enhance their practicality various steps are suggested for the future development of LDS at industry and commercial scale.展开更多
The development of flexible supercapacitors(FSCs) capable of operating at high temperatures is crucial for expanding the application areas and operating conditions of supercapacitors. Gel polymer electrolytes and elec...The development of flexible supercapacitors(FSCs) capable of operating at high temperatures is crucial for expanding the application areas and operating conditions of supercapacitors. Gel polymer electrolytes and electrode materials stand as two key components that significantly impact the efficacy of hightemperature-tolerant FSCs(HT-FSCs). They should not only exhibit high electrochemical performance and excellent flexibility, but also withstand intense thermal stress. Considerable efforts have been devoted to enhancing their thermal stability while maintaining high electrochemical and mechanical performance. In this review, the fundamentals of HT-FSCs are outlined. A comprehensive overview of state-of-the-art progress and achievements in HT-FSCs, with a focus on thermally stable gel polymer electrolytes and electrode materials is provided. Finally, challenges and future perspectives regarding HT-FSCs are discussed, alongside strategies for elevating operational temperatures and performance.This review offers both theoretical foundations and practical guidelines for designing and manufacturing HT-FSCs, further promoting their widespread adoption across diverse fields.展开更多
Transition metal oxides(TMOs),thanks to their elevated theoretical capacitance and pseudocapacitive properties,are of particular interest in exploring the advanced supercapacitor electrode materials.The present work r...Transition metal oxides(TMOs),thanks to their elevated theoretical capacitance and pseudocapacitive properties,are of particular interest in exploring the advanced supercapacitor electrode materials.The present work reports the rapid laser-assisted synthesis of SiC@-Fe_(2)O_(3-x)anode materials with engineered oxygen vacancies in seconds,which improve the charge transport,redox activity,and structural stability,thus facilitating a substantial enhancement in electrochemical performance.As a result,the resultant SiC@Fe_(2)O_(3-x)nanowires exhibit excellent performances with an areal capacitance of 1082.16 at 5 mA cm^(-2),and retain 86.7%capacitance over 10,000 cycles.Furthermore,the assembled asymmetric supercapacitors(ASC),employing SiC@Fe_(2)O_(3-x)as the negative electrode and Ni(OH)2as the positive electrode,delivers a 1.5 V operating voltage,an energy density of 197μWh cm^(-2),and 80.6%capacitance retention after 14,000cycles,representing their promise toward the applications in next-generation energy storage materials.展开更多
Zn-ion hybrid supercapacitors(ZHSCs),as emerging energy storage systems,combine high energy and power density with cost-effectiveness and safety,attracting significant attention.However,due to the inherent energy stor...Zn-ion hybrid supercapacitors(ZHSCs),as emerging energy storage systems,combine high energy and power density with cost-effectiveness and safety,attracting significant attention.However,due to the inherent energy storage mechanism and the diminishing marginal benefits of increased porosity on capacitance,engineering porous nanostructures to develop carbon materials with ideal architectures is crucial for achieving high performance.Herein,a novel web-in-web porous carbon/carbon nanotubes(CNTs)composite has been proposed,fabricated by a simple phase separation method and two-step carbonization.During pre-oxidation,gradual air oxidation induces the formation of an O,N co-doped polymer-chain template,which subsequently transforms into a graphitized web during high-temperature carbonization.The optimized web-in-web structure,enriched with abundant active sites,accelerates mass transport and charge transfer kinetics.When assembled in ZHSCs,the web-in-web cathode achieved a high area capacitance(14,309 mF cm^(-2))with high mass loading(38.2 mg cm^(-2)).It delivered excellent high-rate performance at 50 mA cm^(-2)with a capacitance retention of 83%after 10,000 cycles,also boosting a high energy density(1452.7μWh cm^(-2))and power density(30.8 mW cm^(-2)).Furthermore,ex situ characterization and in situ electrochemical analyses reveal hybrid energy storage mechanisms,involving both physical/chemical adsorption and precipitation/dissolution across different potential regions.This study provides a promising strategy for designing high-area-capacitance carbon cathodes boosting high-performance ZHSCs.展开更多
NiS_(2)with high theoretical capacitance shows great potential for supercapacitors(SCs).However,the poor cycling stability and sluggish redox kinetics have limited the development of high-rate NiS_(2)-based SCs.Integr...NiS_(2)with high theoretical capacitance shows great potential for supercapacitors(SCs).However,the poor cycling stability and sluggish redox kinetics have limited the development of high-rate NiS_(2)-based SCs.Integrating materials with high conductivity potentially reinforces its structure and improves its rate ca-pability.1T-MoS_(2)featuring extended interlayer spacing and superior electronic conductivity emerges as an ideal candidate.Therefore,we designed a hybrid material with an alternating interconnected structure of NiS_(2)and MoS_(2)with adjustable content of 1T-MoS_(2).Owing to the improved ion/electron transmittabil-ity and the mutual shielding effect,an obvious positive correlation between rate capability and stability with 1T-MoS_(2)content was established.The optimized 1T-MoS_(2)/NiS_(2)nanosheets(NMS-2)with 1T phase purity of up to 67.6%in MoS_(2)demonstrated exceptional specific capacity(579.4 C g^(−1)at 1 A g^(−1))and impressive rate capability(345.0 C g^(−1)at 30 A g^(−1)),which suggests much faster kinetics compared to pure NiS_(2).Notably,the hybrid supercapacitor(HSC)assembled with NMS-2 as the cathode and activated carbon as the anode(NMS-2//AC HSC)exhibited a maximum specific capacitance of 137.4 F g^(−1)at 1 A g^(−1).Furthermore,this HSC can deliver a high energy density of 45.9 Wh kg^(−1)at 774.9 W kg^(−1),and could retain 17.7 Wh kg^(−1)even at a high power density of 7731.7 W kg^(−1).After 5000 cycles at a high current density of 5 A g^(−1),the HSC still remained 93.23%of its initial capacitance with an extremely low fading rate of 0.0014%per cycle.展开更多
Customized design of well-defined cathode structures with abundant adsorption sites and rapid diffusion dynamics,holds great promise in filling capacity gap of carbonaceous cathodes towards high-performance Zn-ion hyb...Customized design of well-defined cathode structures with abundant adsorption sites and rapid diffusion dynamics,holds great promise in filling capacity gap of carbonaceous cathodes towards high-performance Zn-ion hybrid supercapacitors(ZHC).Herein,we fabricate a series of dynamics-oriented hierarchical porous carbons derived from the unique organic-inorganic interpenetrating polymer networks.The interpenetrating polymer networks are obtained through physically knitting polyferric chloride(PFC)network into the highly crosslinked resorcinol-formaldehyde(RF)network.Instead of covalent bonding,physical interpenetrating force in such RF-PFC networks efficiently relieves the RF skeleton shrinkage upon pyrolysis.Meanwhile,the in-situ PFC network sacrifices as a structure-directing agent to suppress the macrophase separation,and correspondingly 3D hierarchical porous structure with plentiful ion-diffusion channels(pore volume of 1.35 cm^(3)/g)is generated in the representative HPC_(4) via nanospace occupation and swelling effect.Further removal of Fe fillers leaves behind a large accessible specific surface area of 1550 m^(2)/g for enhanced Zn-ion adsorption.When used as the cathode for ZHC,HPC_(4) demonstrates a remarkable electrochemical performance with a specific capacity of 215.1 mAh/g at 0.5 A/g and a high Zn^(2+)ion diffusion coefficient of 11.1×10^(-18)cm^(2)/s.The ZHC device yields 117.0 Wh/kg energy output at a power density of 272.1 W/kg,coupled with good cycle lifespan(100,000 cycles@10 A/g).This work inspires innovative insights to accelerate Zn diffusion dynamics by structure elaboration towards high-capacity cathode materials.展开更多
In this work,Dy_(2)O_(3)rods and layered Dy_(2)WO_(6)heterostructure were effectively interconnected by carbon spheres named Dy_(2)O_(3)/Dy_(2)WO_(6)/C-sph nanocomposite with a confined interface and it was fabricated...In this work,Dy_(2)O_(3)rods and layered Dy_(2)WO_(6)heterostructure were effectively interconnected by carbon spheres named Dy_(2)O_(3)/Dy_(2)WO_(6)/C-sph nanocomposite with a confined interface and it was fabricated using a simple solvothermal approach.These ternary nanocomposites were investigated by X-ray diffraction(XRD),UV-visible diffuse-reflectance spectroscopy(UV-DRS),Fourier transform-infrared spectroscopy(FT-IR),Raman,field emission scanning electron microscopy(FESEM)with energy disperse spectroscopy(EDS),high-resolution transmission electron microscopy(HRTEM),and X-ray photoelectron spectroscopy(XPS)analyses systematically.The XRD data expose that the synthesized materials are formed with a virtuous crystalline state.The charge storage properties and electrochemical performances of the as-synthesized nanocomposites and pure components were assessed with the help of cyclic voltammogram(CV),galvanostatic charge-discharge studies(GCD),and electrochemical impedance studies(EIS),respectively.The rare-earth-based novel Dy_(2)O_(3)/Dy_(2)WO_(6)/C-sph nanocomposite as wo rking electrodes established commendable electrochemical perfo rmances with a maximum specific capacitance value of 123 F/g at a current density of 0.4 A/g in 2.0 mol/L aqueous KOH solution.According to the stability measurements,it was observed that the initial capacitance was maintained at~93%even after 2500 cycles,indicating that good electrochemical stability with the lowest internal resistance values was obtained from EIS analysis.The electrochemical measurements suggest that the Dy_(2)O_(3)/Dy_(2)WO_(6)/C-sph nanocomposite enables great competence and can be used as alternative electrode material in supercapacitor devices to avail high energy efficiency in a sustainable approach.展开更多
基金financial support of the TMA pai scholarship from the Manipal Institute of Technology,Manipal Academy of Higher Education,Manipal,in achieving this milestone。
文摘Graphitic carbon nitride(g-C_(3)N_(4)),known for its green and abundant nature and composed of carbon and nitrogen in a two-dimensional structure,has emerged as a significant area of interest across various disciplines,particularly in energy conversion and storage.Its recent demonstrations of high potential in supercapacitor applications mark it as a promising alternative to graphene within the realm of materials science.Numerous favorable features,such as chemical and thermal stability,abundant nitrogen content,eco-friendly attributes,and gentle conditions for synthesis,are shown.This review summarizes recent advancements in the use of g-C_(3)N_(4)and its composites as electrodes for supercapacitors,highlighting the advantages and issues associated with g-C_(3)N_(4)in these applications.This emphasizes situations where the composition of g-C_(3)N_(4)with other materials,such as metal oxides,metal chalcogenides,carbon materials,and conducting polymers,overcomes its limitations,leading to composite materials with improved functionalities.This review discusses the challenges that still need to be addressed and the possible future roles of g-C_(3)N_(4)in the research of advanced supercapacitor technology,such as battery-hybrid supercapacitors,flexible supercapacitors,and photo-supercapacitors.
基金supported by Natural Science and Engineering Research Council of Canada(RGPIN-2017-06737)Canada Research Chairs program,the National Key Research and Development Program of China(2017YFD0601005,2022YFD0904201)+1 种基金the National Natural Science Foundation of China(51203075)the China Scholarship Council(Grant No.CSC202208320361).
文摘With the rapid development of flexible wearable electronics,the demand for stretchable energy storage devices has surged.In this work,a novel gradient-layered architecture was design based on single-pore hollow lignin nanospheres(HLNPs)-intercalated two-dimensional transition metal carbide(Ti_(3)C_(2)T_(x) MXene)for fabricating highly stretchable and durable supercapacitors.By depositing and inserting HLNPs in the MXene layers with a bottom-up decreasing gradient,a multilayered porous MXene structure with smooth ion channels was constructed by reducing the overstacking of MXene lamella.Moreover,the micro-chamber architecture of thin-walled lignin nanospheres effectively extended the contact area between lignin and MXene to improve ion and electron accessibility,thus better utilizing the pseudocapacitive property of lignin.All these strategies effectively enhanced the capacitive performance of the electrodes.In addition,HLNPs,which acted as a protective phase for MXene layer,enhanced mechanical properties of the wrinkled stretchable electrodes by releasing stress through slip and deformation during the stretch-release cycling and greatly improved the structural integrity and capacitive stability of the electrodes.Flexible electrodes and symmetric flexible all-solid-state supercapacitors capable of enduring 600%uniaxial tensile strain were developed with high specific capacitances of 1273 mF cm^(−2)(241 F g^(−1))and 514 mF cm^(−2)(95 F g^(−1)),respectively.Moreover,their capacitances were well preserved after 1000 times of 600%stretch-release cycling.This study showcased new possibilities of incorporating biobased lignin nanospheres in energy storage devices to fabricate stretchable devices leveraging synergies among various two-dimensional nanomaterials.
文摘Supercapacitors are gaining popularity due to their high cycling stability,power density,and fast charge and discharge rates.Researchers are ex-ploring electrode materials,electrolytes,and separat-ors for cost-effective energy storage systems.Ad-vances in materials science have led to the develop-ment of hybrid nanomaterials,such as combining fil-amentous carbon forms with inorganic nanoparticles,to create new charge and energy transfer processes.Notable materials for electrochemical energy-stor-age applications include MXenes,2D transition met-al carbides,and nitrides,carbon black,carbon aerogels,activated carbon,carbon nanotubes,conducting polymers,carbon fibers,and nanofibers,and graphene,because of their thermal,electrical,and mechanical properties.Carbon materials mixed with conducting polymers,ceramics,metal oxides,transition metal oxides,metal hydroxides,transition metal sulfides,trans-ition metal dichalcogenide,metal sulfides,carbides,nitrides,and biomass materials have received widespread attention due to their remarkable performance,eco-friendliness,cost-effectiveness,and renewability.This article explores the development of carbon-based hybrid materials for future supercapacitors,including electric double-layer capacitors,pseudocapacitors,and hy-brid supercapacitors.It investigates the difficulties that influence structural design,manufacturing(electrospinning,hydro-thermal/solvothermal,template-assisted synthesis,electrodeposition,electrospray,3D printing)techniques and the latest car-bon-based hybrid materials research offer practical solutions for producing high-performance,next-generation supercapacitors.
文摘Filter capacitors play an important role in altern-ating current(AC)-line filtering for stabilizing voltage,sup-pressing harmonics,and improving power quality.However,traditional aluminum electrolytic capacitors(AECs)suffer from a large size,short lifespan,low power density,and poor reliability,which limits their use.In contrast,ultrafast supercapacitors(SCs)are ideal for replacing commercial AECs because of their extremely high power densities,fast charging and discharging,and excellent high-frequency re-sponse.We review the design principles and key parameters for ultrafast supercapacitors and summarize research pro-gress in recent years from the aspects of electrode materials,electrolytes,and device configurations.The preparation,structures,and frequency response performance of electrode materials mainly consisting of carbon materials such as graphene and carbon nanotubes,conductive polymers,and transition metal compounds,are focused on.Finally,future research directions for ultrafast SCs are suggested.
基金supported by the National Natural Science Foundation of China(31900005)the Fund of Science and Technology Department of Henan Province(242102231001,242102320362,242102320157)+1 种基金the Fund of Program for Innovative Research Team(in Science and Technology)in University of Henan Province(23IRTSTHN009)Fund of Key Scientific Research Projects of Higher Education Institutions in Henan Province(22A150048)。
文摘By enhancing surface interaction between metal oxide particles and carbon-based materials,it can effectively improve Faraday capacitance and conductivity,ultimately achieving high energy density with sufficient redox reactions in supercapacitors.Through a gentle biomineralization process and subsequent thermal reduction strategy,we successfully prepared the graphene oxide(GO)wrapping mixed-valence manganese oxides(MnO_(x))and S,P self-codoped carbon matrix porous composite(MnO_(x)@SPC@reduced graphene oxide(RGO)).During the biomineralization process of engineered Pseudomonas sp.(Ml)cells,GO nanosheets functioned as the'soil'to adsorb Mn^(2+)ion and uniformly disperse biogenic Mn oxides(BMO).After undergoing annealing,the MnO_(x) nanoparticles were evenly wrapped with graphene,resulting in the creation of the MnO_(x)@SPC@RGO3 composite.This composite possesses strong C—O—Mn bond interfaces,numerous electroactive sites,and a uniform pore structure.By optimizing the synergistic interaction between the highly conductive graphene and the remarkable surface capacitance of MnO_(x),the MnO_(x)@SPC@RGO3 electrode,with its intercalation Faraday reactions mechanism of■transformations,exhibits an outstanding specific capacity(448.3 F·g^(-1)at 0.5 A·g^(-1)),multiplying performance(340.5 F·g^(-1)at10 A·g^(-1)),and cycling stability(93.8%retention after 5000 cycles).Moreover,the asymmetric all-solidstate supercapacitors of MnO_(x)@SPC@RGO3//PC exhibit an exceptional energy density of 64.8 W·h·kg^(-1)and power density of 350 W·kg^(-1),as well as a long lifespan with capacitance retention of 92.5%after10000 cycles.In conclusion,the synthetic route utilizing biomineralization and thermal reduction exhibits significant potential for exploiting high-performance electrode materials in all-solid-state supercapacitor applications.
基金the financial support from:“Ministerio de Ciencia,Innovación y Universidades”of Spain(PID2021-127713OA-I00,PID2021-123511OB-C33,PID2021-124139NBC22-CIN/AEI/10.13039/501100011033/FEDER,EU,TED2021-129851B-I00-/AEI/10.13039/501100011033/Unión Europea NextGenerationEU/PRTR and RED2022-134219-T)“Ministerio da Educacao-MEC”of Brazil(CAPES PDPG-POSDOC 88887.807971/2023-00).
文摘The growing concern for energy efficiency and the increasing deployment of intermittent renewable energies has led to the development of technologies for capturing,storing,and discharging energy.Supercapacitors can be considered where batteries do not meet the requirements.However,supercapacitors in systems with a slower charge/discharge cycle,such as photovoltaic systems(PVS),present other obstacles that make replacing batteries more challenging.An extensive literature review unveils a knowledge gap regarding a methodological comparison of batteries and supercapacitors.In this study,we address the technological feasibility of intermittent renewable energy generation systems,focusing on storage solutions for PVS energy.We propose a framework according to one of the essential parameters for their application in PVS:Energy Density or Specific Energy(Wh/kg).Through computational modelling,issues related to the intermittency and seasonality of the solar energy source are addressed,evaluating the possible benefits of implementing batteries,supercapacitors,and hybrid solutions in renewable energy generation systems.Also,the characteristics of two hypothetical configurations of photovoltaic systems,off-grid and on-grid,were analysed.This analysis highlights the characteristics of totally isolated systems(e.g.,on an island or remote village)and systems connected to the grid(e.g.,solar farms),where eliminating the use of batteries can bring significant benefits,in addition to tax incentives,which are decisive in the investment decision-making process.The results clarify the viability of PVS and allow an understanding of parameters that can support the technical decision process between isolated or non-isolated systems,reflecting economic and financial issues.
基金supported by NRF-2021M3H4A1A03047333 and NRF-2022R1F1A1075084 of the National Research Foundation(NRF)of Korea funded by the Ministry of Science and ICT,Koreasupported by Semiconductor-Secondary Battery Interfacing Platform Technology Development Project of NNFC.
文摘Extensively explored for their distinctive pseudocapacitance characteristics,MXenes,a distinguished group of 2D materials,have led to remarkable achievements,particularly in the realm of energy storage devices.This work presents an innovative Pseudocapacitive Sensor.The key lies in switching the energy storage kinetics from pseudocapacitor to electrical double layer capacitor by employing the change of local pH(-log[H^(+)])in MXene-based flexible supercapacitors during bending.Pseudocapacitive sensing is observed in acidic electrolyte but absent in neutral electrolyte.Applied shearing during bending causes liquid-crystalline MXene sheets to increase in their degree of anisotropic alignment.With blocking of H+mobility due to the higher diffusion barrier,local pH increases.The electrochemical energy storage kinetics transits from Faradaic chemical protonation(intercalation)to non-Faradaic physical adsorption.We utilize the phenomenon of capacitance change due to shifting energy storage kinetics for strain sensing purposes.The developed highly sensitive Pseudocapacitive Sensors feature a remarkable gauge factor(GF)of approximately 1200,far surpassing conventional strain sensors(GF:~1 for dielectric-cap sensor).The introduction of the Pseudocapacitive Sensor represents a paradigm shift,expanding the application of pseudocapacitance from being solely confined to energy devices to the realm of multifunctional electronics.This technological leap enriches our understanding of the pseudocapacitance mechanism of MXenes,and will drive innovation in cutting-edge technology areas,including advanced robotics,implantable biomedical devices,and health monitoring systems.
基金financially supported by the National Natural Science Foundation of China(Nos.U22A20429 and 52261033)Xinjiang Uygur Autonomous Region Postgraduate Innovation Research Program and the Tianshan Innovation Team Program(No.XJ2022G070)
文摘Aqueous supercapacitors(SCs)exhibit exceptional electrochemical characteristics,including extended cycle stability and high-power density,making them highly promising.Though their practical application and commercialization are hindered by low energy density,we developed a high-performance,self-supporting SC electrode to address this limitation using nickel manganese layered double hydroxide(NiMn-LDH)directly synthesized on activated carbon cloth(ACC).This electrode achieved an extraordinary specific capacitance of 2838.8 F g^(-1)at a current density of 1 A g^(-1),with 70.3%retention at 30 A g^(-1)and 86.1%retention after 6,000 cycles at 15 A g^(-1),demonstrating its remarkable performance and durability.After being assembled into an asymmetric SCs(ASCs)device with the ACC negative electrode in 2M potassium hydroxide(KOH),a broad operating voltage window of 1.6 V with an energy density of up to 89.7 Wh kg^(-1)was achieved at a power density of 800.0 W kg^(-1).Furthermore,the device retained 89.30%of its initial capacitance after 10,000 cycles at 10 A g^(-1),with a nearperfect Coulombic efficiency close to 100%.The fishscale-like nanostructure effectively increases the active sites of the electrode to make sufficient full contact with the electrolyte,accelerating the transport of electrons/ions and enhancing its electrochemical performance.These findings emphasize the potential of NiMn-LDH for application in wearable and microscale energy storage devices.
基金financially supported by the Key Research and Development Program of Shaanxi(No.2022GXLH-01-23)the Fundamental Research Funds for the Central Universities,CHD(No.300102384106)+1 种基金the Innovation Capability Support Program of Shaanxi(No.2022KXJ-144)the National Natural Science Foundation of China(No.22209101)
文摘Immense attention has been focused on developing supercapacitors in the field of energy storage by virtue of their exceptional power density,extended cycling stability and operational safety.However,traditional liquid electrolytes pose severe challenges in response to leakage,high volatility and low electrochemical stability issues.To address these problems,we have developed a novel composite polymer membrane for gel polymer electrolytes(GPEs).This membrane features an internal fibrous framework composed of shape-memory polymers,while surface dielectric layers of PVDF-HFP cross-linked with modified TiO_(2)nanoparticles are constructed on both sides of the framework.This configuration modulates the Stern layer potential gradient and diffuse layer ionic distribution through dielectric polarization,thereby suppressing electrolyte decomposition at high voltages,mitigating side reactions and facilitating ionic conduction.The resultant quasi-solid-state supercapacitor demonstrates excellent electrochemical stability at a voltage of 3.5 V,achieving an energy density of 43.87 Wh kg^(-1),with a high-power density of 22.66 kW kg^(-1)along with exceptional cyclic stability and mechanical flexibility.The synergistic structural design offers a safe and efficient energy harvesting solution for wearable electronic devices and portable energy storage systems.
基金funded by the Joint Fund for Regional Innovation and Development of National Natural Science Foundation of China(U21A20143)the National Science Fund for Excellent Young Scholars(52322607)the Excellent Youth Foundation of Heilongjiang Scientific Committee(YQ2022E028)。
文摘Improving the volumetric energy density of supercapacitors is essential for practical applications,which highly relies on the dense storage of ions in carbon-based electrodes.The functional units of carbon-based electrode exhibit multi-scale structural characteristics including macroscopic electrode morphologies,mesoscopic microcrystals and pores,and microscopic defects and dopants in the carbon basal plane.Therefore,the ordered combination of multi-scale structures of carbon electrode is crucial for achieving dense energy storage and high volumetric performance by leveraging the functions of various scale structu re.Considering that previous reviews have focused more on the discussion of specific scale structu re of carbon electrodes,this review takes a multi-scale perspective in which recent progresses regarding the structureperformance relationship,underlying mechanism and directional design of carbon-based multi-scale structures including carbon morphology,pore structure,carbon basal plane micro-environment and electrode technology on dense energy storage and volumetric property of supercapacitors are systematically discussed.We analyzed in detail the effects of the morphology,pore,and micro-environment of carbon electrode materials on ion dense storage,summarized the specific effects of different scale structures on volumetric property and recent research progress,and proposed the mutual influence and trade-off relationship between various scale structures.In addition,the challenges and outlooks for improving the dense storage and volumetric performance of carbon-based supercapacitors are analyzed,which can provide feasible technical reference and guidance for the design and manufacture of dense carbon-based electrode materials.
基金supported by Suzhou University Doctoral Initiation Fund and Open Project(2020BS009,2013YKF24)Anhui Provincial Department of Education Natural Science Foundation(2022AH051386,2023KYTD01)+1 种基金Anhui Higher Education Quality Engineering Project(2022jyxm1595,2020gnxm070)Teaching Research Project of Suzhou University(szxy2024jyjf55,2021jyxm1502).
文摘Layered double hydroxides(LDHs)are a class of transition metal-based materials characterized by their two-dimensional nano-layered structure.They offer several advantages,such as easy adjustability of morphology and structure and simple preparation methods,making them highly promising for the development of low-cost,high energy density supercapacitors.This article begins with a brief introduction to the basic structure,energy storage mechanism,and application challenges of LDHs.It then proceeds to summarize the innovations in the preparation methods of LDH electrode materials,such as the application of high precision synthesis technologies including component regulation,amorphization,and the introduction of oxygen vacancies.The achievements in performance optimization are also analyzed,for example,the improvement of specific capacitance and rate performance through nanostructure design and nanosizing treatment.However,it is also pointed out that there are problems such as low charge transfer efficiency and poor cycling stability in practical applications.This review is of great reference value for a deep understanding of the research status and development direction of LDH electrode materials.It is expected that breakthroughs will be achieved in aspects such as green and sustainable preparation processes and the expansion of applications in multiple fields in the future.
基金funded by the National Natural Science Foundation of China(Grant Nos.52205457 and 52422511)the National Key R&D Program of China(Grant No.2022YFB4701000)+3 种基金the Guangdong Basic and Applied Basic Research Foundation,China(Grant Nos.2024A1515010043,2025A1515010890 and 2022B1515120011)the Young Talent Support Project of Guangzhou Association for Science and Technology(Grant No.QT2024-010)the Guangzhou Basic and Applied Basic Research Foundation(Grant No.SL2024A04J01501)the State Key Laboratory of Precision Electronic Manufacturing Technology and Equipment(Grant No.JMDZ202303).
文摘The development of high-voltage tandem thin-film supercapacitors(TFSCs)has been limited by the issues such as expensive electrode materials,indispensable commercial separators and metal current collectors,and complex manufacturing processes.Herein,we develop a potentially scalable approach to address all these issues by using CO_(2) laser pyrolysis of polyimide(PI)paper into the three-dimensional(3D)morphology of graphene paper in air.The formation process and mechanism of PI to graphene were clarified by microstructure and chemical characterizations and reaction molecular dynamics.The influences of laser scan density,power,defocus,and scan speed on the sheet resistance,longitudinal resistance,Raman spectra,and electrochemical performance of graphene papers were systematically investigated.Results indicate that high-quality graphene papers with ultralow sheet resistance(4.88Ω·square^(-1))and longitudinal resistance(3.46Ω)and extra-large crystalline size(96.1 nm)were achieved under optimized process parameters.The graphene papers can simultaneously serve as active electrode materials,current collectors,and interconnectors.The active area of electrodes is defined by a PI mask,with the help of which a hydrogel electrolyte functions as a separator.The assembled graphene paper-based TFSCs demonstrate outstanding electrochemical performance and mechanical flexibility,with the areal capacitance of 54.5 mF·cm^(-2),energy density of 10.9µWh·cm^(-2),and cycle stability retention of 86.9%over 15000 cycles.Moreover,all the tandem metal-free TFSCs,ranging from 1 to 160 cells,show excellent performance uniformity.The output voltage increases linearly from 1.2 V to 200 V.Significantly,the 160-tandem TFSCs exhibit a high voltage density within a compact volume of∼3.8 cm^(3).This work provides an avenue for achieving tandem metal-free TFSCs in a simple and efficient manner.
基金supported by Science and Engineering Research Board(SERB),India for the support(File no.EEQ/2021/000172)。
文摘Photo-assisted energy harvesting plays a crucial role in present research and future scenario in the field of technology advancements towards efficient energy utilization.Modern world sees an opportunity in developing such technologies which are self-powered,self-driven and self-healing that can be utilized in the fields including portable,wearable electronics,internet of things(IOT)devices,electric vehicles,space applications,renewable energy systems,and smart grid applications.The present review gives an insight to the aspects in the present and future developmental goals in the field of light driven supercapacitors(LDS).Such systems comprise of active components viz.layer material selection in the solar cell and supercapacitors.A comprehensive study to achieve high absorption,power/energy density and efficient storage of absorbed energy has been discussed.The major factors for device design and mechanism adopted for efficient photo conversion and their subsequent storage as LDS depends on efficient light intensity source,surface area,optimization of the structure of electrodes,electrode selection,charge separation efficiency etc.A comprehensive analysis of the previously developed LDS with their optimized parameters has been presented.Various challenges viz.material selection,compatibility of layers,lower photovoltaic conversion and increased resistivity on integrating the energy conversion and storage module has also been discussed.In order to achieve high-performance LDS and to enhance their practicality various steps are suggested for the future development of LDS at industry and commercial scale.
基金Fundamental Research Funds for the Central Universities of China(Grant No. SWU-KT22030)Scientific and Technological Research Program of Chongqing Municipal Education Commission of China (No.KJQN202300205)financial support from the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under the project of 457444676。
文摘The development of flexible supercapacitors(FSCs) capable of operating at high temperatures is crucial for expanding the application areas and operating conditions of supercapacitors. Gel polymer electrolytes and electrode materials stand as two key components that significantly impact the efficacy of hightemperature-tolerant FSCs(HT-FSCs). They should not only exhibit high electrochemical performance and excellent flexibility, but also withstand intense thermal stress. Considerable efforts have been devoted to enhancing their thermal stability while maintaining high electrochemical and mechanical performance. In this review, the fundamentals of HT-FSCs are outlined. A comprehensive overview of state-of-the-art progress and achievements in HT-FSCs, with a focus on thermally stable gel polymer electrolytes and electrode materials is provided. Finally, challenges and future perspectives regarding HT-FSCs are discussed, alongside strategies for elevating operational temperatures and performance.This review offers both theoretical foundations and practical guidelines for designing and manufacturing HT-FSCs, further promoting their widespread adoption across diverse fields.
基金financially supported by the National Natural Science Foundation of China(No.52372063)China Postdoctoral Science Foundation(No.2023M730391)
文摘Transition metal oxides(TMOs),thanks to their elevated theoretical capacitance and pseudocapacitive properties,are of particular interest in exploring the advanced supercapacitor electrode materials.The present work reports the rapid laser-assisted synthesis of SiC@-Fe_(2)O_(3-x)anode materials with engineered oxygen vacancies in seconds,which improve the charge transport,redox activity,and structural stability,thus facilitating a substantial enhancement in electrochemical performance.As a result,the resultant SiC@Fe_(2)O_(3-x)nanowires exhibit excellent performances with an areal capacitance of 1082.16 at 5 mA cm^(-2),and retain 86.7%capacitance over 10,000 cycles.Furthermore,the assembled asymmetric supercapacitors(ASC),employing SiC@Fe_(2)O_(3-x)as the negative electrode and Ni(OH)2as the positive electrode,delivers a 1.5 V operating voltage,an energy density of 197μWh cm^(-2),and 80.6%capacitance retention after 14,000cycles,representing their promise toward the applications in next-generation energy storage materials.
基金financially supported by the National Key Research and Development Program of China(No.2024YFA1210602)Guangdong Basic and Applied Basic Research Foundation(No.2023A1515140044)
文摘Zn-ion hybrid supercapacitors(ZHSCs),as emerging energy storage systems,combine high energy and power density with cost-effectiveness and safety,attracting significant attention.However,due to the inherent energy storage mechanism and the diminishing marginal benefits of increased porosity on capacitance,engineering porous nanostructures to develop carbon materials with ideal architectures is crucial for achieving high performance.Herein,a novel web-in-web porous carbon/carbon nanotubes(CNTs)composite has been proposed,fabricated by a simple phase separation method and two-step carbonization.During pre-oxidation,gradual air oxidation induces the formation of an O,N co-doped polymer-chain template,which subsequently transforms into a graphitized web during high-temperature carbonization.The optimized web-in-web structure,enriched with abundant active sites,accelerates mass transport and charge transfer kinetics.When assembled in ZHSCs,the web-in-web cathode achieved a high area capacitance(14,309 mF cm^(-2))with high mass loading(38.2 mg cm^(-2)).It delivered excellent high-rate performance at 50 mA cm^(-2)with a capacitance retention of 83%after 10,000 cycles,also boosting a high energy density(1452.7μWh cm^(-2))and power density(30.8 mW cm^(-2)).Furthermore,ex situ characterization and in situ electrochemical analyses reveal hybrid energy storage mechanisms,involving both physical/chemical adsorption and precipitation/dissolution across different potential regions.This study provides a promising strategy for designing high-area-capacitance carbon cathodes boosting high-performance ZHSCs.
基金supported by the National Natural Science Foundation of China(Nos.51932001 and 52372170)the Beijing Natural Science Foundation(No.2232068)the National Key Research and Development Program of China(No.2018YFA0703503).
文摘NiS_(2)with high theoretical capacitance shows great potential for supercapacitors(SCs).However,the poor cycling stability and sluggish redox kinetics have limited the development of high-rate NiS_(2)-based SCs.Integrating materials with high conductivity potentially reinforces its structure and improves its rate ca-pability.1T-MoS_(2)featuring extended interlayer spacing and superior electronic conductivity emerges as an ideal candidate.Therefore,we designed a hybrid material with an alternating interconnected structure of NiS_(2)and MoS_(2)with adjustable content of 1T-MoS_(2).Owing to the improved ion/electron transmittabil-ity and the mutual shielding effect,an obvious positive correlation between rate capability and stability with 1T-MoS_(2)content was established.The optimized 1T-MoS_(2)/NiS_(2)nanosheets(NMS-2)with 1T phase purity of up to 67.6%in MoS_(2)demonstrated exceptional specific capacity(579.4 C g^(−1)at 1 A g^(−1))and impressive rate capability(345.0 C g^(−1)at 30 A g^(−1)),which suggests much faster kinetics compared to pure NiS_(2).Notably,the hybrid supercapacitor(HSC)assembled with NMS-2 as the cathode and activated carbon as the anode(NMS-2//AC HSC)exhibited a maximum specific capacitance of 137.4 F g^(−1)at 1 A g^(−1).Furthermore,this HSC can deliver a high energy density of 45.9 Wh kg^(−1)at 774.9 W kg^(−1),and could retain 17.7 Wh kg^(−1)even at a high power density of 7731.7 W kg^(−1).After 5000 cycles at a high current density of 5 A g^(−1),the HSC still remained 93.23%of its initial capacitance with an extremely low fading rate of 0.0014%per cycle.
基金financially supported by the National Natural Science Foundation of China(Nos.22272118,22172111,21905207,and 22309134)the Science and Technology Commission of Shanghai Municipality(Nos.22ZR1464100,20ZR1460300,and 19DZ2271500)+3 种基金China Postdoctoral Science Foundation(No.2022M712402)Shanghai Rising-Star Program(No.23YF1449200)Zhejiang Provincial Science and Technology Project(No.2022C01182)the Fundamental Research Funds for the Central Universities(Nos.22120210529 and 2023-3-YB-07)。
文摘Customized design of well-defined cathode structures with abundant adsorption sites and rapid diffusion dynamics,holds great promise in filling capacity gap of carbonaceous cathodes towards high-performance Zn-ion hybrid supercapacitors(ZHC).Herein,we fabricate a series of dynamics-oriented hierarchical porous carbons derived from the unique organic-inorganic interpenetrating polymer networks.The interpenetrating polymer networks are obtained through physically knitting polyferric chloride(PFC)network into the highly crosslinked resorcinol-formaldehyde(RF)network.Instead of covalent bonding,physical interpenetrating force in such RF-PFC networks efficiently relieves the RF skeleton shrinkage upon pyrolysis.Meanwhile,the in-situ PFC network sacrifices as a structure-directing agent to suppress the macrophase separation,and correspondingly 3D hierarchical porous structure with plentiful ion-diffusion channels(pore volume of 1.35 cm^(3)/g)is generated in the representative HPC_(4) via nanospace occupation and swelling effect.Further removal of Fe fillers leaves behind a large accessible specific surface area of 1550 m^(2)/g for enhanced Zn-ion adsorption.When used as the cathode for ZHC,HPC_(4) demonstrates a remarkable electrochemical performance with a specific capacity of 215.1 mAh/g at 0.5 A/g and a high Zn^(2+)ion diffusion coefficient of 11.1×10^(-18)cm^(2)/s.The ZHC device yields 117.0 Wh/kg energy output at a power density of 272.1 W/kg,coupled with good cycle lifespan(100,000 cycles@10 A/g).This work inspires innovative insights to accelerate Zn diffusion dynamics by structure elaboration towards high-capacity cathode materials.
基金supported by Selective Excellence Research Initiative-2023,SRM Institute of Science and Technology(SRMIST/R/AR(A)/SERI2023/174/26-3944)。
文摘In this work,Dy_(2)O_(3)rods and layered Dy_(2)WO_(6)heterostructure were effectively interconnected by carbon spheres named Dy_(2)O_(3)/Dy_(2)WO_(6)/C-sph nanocomposite with a confined interface and it was fabricated using a simple solvothermal approach.These ternary nanocomposites were investigated by X-ray diffraction(XRD),UV-visible diffuse-reflectance spectroscopy(UV-DRS),Fourier transform-infrared spectroscopy(FT-IR),Raman,field emission scanning electron microscopy(FESEM)with energy disperse spectroscopy(EDS),high-resolution transmission electron microscopy(HRTEM),and X-ray photoelectron spectroscopy(XPS)analyses systematically.The XRD data expose that the synthesized materials are formed with a virtuous crystalline state.The charge storage properties and electrochemical performances of the as-synthesized nanocomposites and pure components were assessed with the help of cyclic voltammogram(CV),galvanostatic charge-discharge studies(GCD),and electrochemical impedance studies(EIS),respectively.The rare-earth-based novel Dy_(2)O_(3)/Dy_(2)WO_(6)/C-sph nanocomposite as wo rking electrodes established commendable electrochemical perfo rmances with a maximum specific capacitance value of 123 F/g at a current density of 0.4 A/g in 2.0 mol/L aqueous KOH solution.According to the stability measurements,it was observed that the initial capacitance was maintained at~93%even after 2500 cycles,indicating that good electrochemical stability with the lowest internal resistance values was obtained from EIS analysis.The electrochemical measurements suggest that the Dy_(2)O_(3)/Dy_(2)WO_(6)/C-sph nanocomposite enables great competence and can be used as alternative electrode material in supercapacitor devices to avail high energy efficiency in a sustainable approach.