期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
Confronting the Antimicrobial Resistance Crisis in China:Emerging Superbugs,Genomic Surveillance,and Innovative Countermeasures
1
作者 Qian Tong Liping Zeng +1 位作者 Yixin Ge Jia Jia 《China CDC weekly》 2025年第37期1175-1181,共7页
The antimicrobial resistance(AMR)crisis in China has escalated into a critical public health threat.Extensive antibiotic use in both clinical and agricultural settings has created strong selective pressures,promoting ... The antimicrobial resistance(AMR)crisis in China has escalated into a critical public health threat.Extensive antibiotic use in both clinical and agricultural settings has created strong selective pressures,promoting the emergence of resistant strains and accelerating their dissemination.This increasing threat is exemplified by the rapid spread of multidrugresistant bacteria.Consequently,genomic surveillance of these pathogens and the development of effective countermeasures are urgently needed.In this paper,we highlight three critical dimensions of the AMR challenge in China,which include the recent emergence of resistant bacteria,genomic surveillance efforts,and progress in the development of novel antimicrobial agents.By synthesizing recent research on the evolutionary dynamics of drug-resistant pathogens in China and outlining innovative antimicrobial strategies,this study provides insights to guide evidence-based antimicrobial stewardship programs. 展开更多
关键词 antimicrobial resistance antimicrobial resistance amr crisis superbugs development effective countermeasures China genomic surveillance innovative countermeasures surveillance pathogens
原文传递
Pharmaceutical effluent evokes superbugs in the environment:A call to action
2
作者 Rehab A.Rayan 《Biosafety and Health》 CAS CSCD 2023年第6期363-371,共9页
Antimicrobial resistance(AMR)is a growing global threat,especially in low-and middle-income countries(LMICs),causing prolonged illnesses,heightened antimicrobial use,increased healthcare expenses,and avoidable deaths.... Antimicrobial resistance(AMR)is a growing global threat,especially in low-and middle-income countries(LMICs),causing prolonged illnesses,heightened antimicrobial use,increased healthcare expenses,and avoidable deaths.If not tackled,AMR could force 24 million people into severe poverty by 2030 and hinder progress on Sustainable Development Goals(SDGs).AMR spreads through interconnected ecosystems,with humans,animals,and the environment serving as reservoirs.Pharmaceutical wastewater,loaded with antibiotics and resistance genes,poses a significant environmental risk,mainly due to inadequate treatment and irresponsible disposal.The pharmaceutical industry is a notable contributor to environmental antibiotic pollution,with varying effluent management practices.Contaminated pharmaceutical wastewater discharge harms water sources and ecosystems.Urgent collaborative efforts are needed across policymakers,regulators,manufacturers,researchers,civil society,and communities,adopting a One Health approach to curb AMR's spread.Developing global standards for pharmaceutical effluent antibiotic residues,effective treatment methods,and improved diagnostics are vital in addressing AMR's environmental impact while safeguarding public health and the environment.National action plans should encompass comprehensive strategies to combat AMR.Preserving antibiotic efficacy and ensuring sustainable production require a united front from all stakeholders. 展开更多
关键词 One Health Environmental Health Public Health ANTIBIOTICS Antimicrobial resistance superbugs Antimicrobial stewardship Pharmaceutical industry Pharmaceutical effluent
原文传递
Study on Pharmaceutical Intervention for Rational Application of Antibiotics in Clinic
3
作者 SONG Zhihao 《外文科技期刊数据库(文摘版)医药卫生》 2021年第5期375-377,共5页
Objective: to analyze the influence of pharmaceutical intervention on clinical rational use of antibiotics and its related value. Methods: the clinical application of antibiotics and the research data of bacterial res... Objective: to analyze the influence of pharmaceutical intervention on clinical rational use of antibiotics and its related value. Methods: the clinical application of antibiotics and the research data of bacterial resistance were applied. Results: 125 infected patients were assessed for antibiotic types, usage and resistance to various antibiotics. The utilization rate of antibiotics was 96.0%, with the highest proportion of cephalosporins (96.7%). The pre-average use time of antibiotics was (23.21±2.52) d, and the combined use rate was 53.3%. The drug resistance of Gram-negative and Gram-positive bacteria is mainly reflected in penicillins and cephalosporins. Conclusion: pharmaceutical intervention in the process of antibiotics application is very beneficial to reduce the occurrence of irrational drug use. 展开更多
关键词 ANTIBIOTICS drug resistance superbugs environmental health
暂未订购
Insights on the structural characteristics of NDM-1: The journey so far
4
作者 Avneet Saini Rohit Bansal 《Advances in Biological Chemistry》 2012年第4期323-334,共12页
New Delhi metallo-β-lactamase (NDM-1) has created a medical storm ever since it was first reported;as it is active on virtually all clinically used β-lactam antibiotics. NDM-1 rampancy worldwide is now considered a ... New Delhi metallo-β-lactamase (NDM-1) has created a medical storm ever since it was first reported;as it is active on virtually all clinically used β-lactam antibiotics. NDM-1 rampancy worldwide is now considered a nightmare scenario, particularly due to its rapid dissemination. An underlying theme in the majority of recent studies is structural characterization as knowledge of the three-dimensional structure of NDM-1 shall help find connections between its structure and function. Moreover, structural details are even critical in order to reveal the resistance mecha- nism to β-lactam antibiotics. In this perspective, we review structural characteristics of NDM-1 that have been delineated since its first report. We anticipate that these structure-function connections made by its characterization shall further serve as future guidelines for elucidating pathways towards de novo design of functional inhibitors. 展开更多
关键词 NDM-1 METALLO-Β-LACTAMASE SUPERBUG Β-LACTAM Extended-Spectrum Β-LACTAMASES
暂未订购
Intriguing anti-superbug Cu2O@ZrP hybrid nanosheet with enhanced antibacterial performance and weak cytotoxicity 被引量:8
5
作者 Jialiang Zhou Hengxue Xiang +3 位作者 Fatemeh Zabihi Senlong Yu Bin Sun Meifang Zhu 《Nano Research》 SCIE EI CAS CSCD 2019年第6期1453-1460,共8页
In view of it's strong antibacterial function and minor toxicity,cuprous oxide (Cu2O) is frequently used in various broad-spectrum antibacterial reagents.Nonetheless the undesirable effects of superbugs still rema... In view of it's strong antibacterial function and minor toxicity,cuprous oxide (Cu2O) is frequently used in various broad-spectrum antibacterial reagents.Nonetheless the undesirable effects of superbugs still remain challenging.In this research,a chemical deposition approach is used to prepare a Cu2O@ZrP composite with nanosheet configuration demonstrating excellent dispersibility and antibacterial traits.From systematic analysis,it was inffered that the content of copper in the nanosheet was about 57-188 mg/g while the average thickness of the nanosheets Cu2O formed on ZrP is approximately 0.8 nm.The results of the minimal inhibitory concentration (MIC) revealed that an extremely low loading of Cu2O in Cu2O@ZrP nanosheet can lead to exceptional antibacterial activity.Examined on two various superbugs;i.e.methicillin-resistant staphylococcus aureus (MRSA) and vancomycin-resistant enterococcus (VRE),the composite nanosheet reagent performed over 99% microbial reduction.More intesetingly,the cell growth rate of the Cu2O@ZrP nanosheet was determined to be 20% lower than that of the neat Cu2O,manifesting a weaker cytotoxicity.This unique hybrid nanosheet with intriguing anti-superbug performance promises highly efficient protection for the fabrics,battledress,and medical textiles. 展开更多
关键词 SUPERBUG CU2O ZRP NANOSHEET ANTIBACTERIAL activitycy totoxicity
原文传递
Fighting the Next Superbug
6
作者 LAN XINZHEN 《Beijing Review》 2010年第40期22-23,共2页
Chinese pharmaceutical giant sets five-year goal to develop treatments for future contagions using traditional Chinese
关键词 Fighting the Next Superbug TCM CO
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部