期刊文献+
共找到280,417篇文章
< 1 2 250 >
每页显示 20 50 100
基于改进Super-Twisting滑模观测器的永磁同步电机无传感器控制 被引量:5
1
作者 王涛 黄景春 +1 位作者 周行之 金靖 《西南交通大学学报》 北大核心 2025年第2期445-453,共9页
在无传感器控制宽调速范围内,传统super-twisting二阶滑模观测器算法在永磁同步电机中存在转子位置估计误差随速度变化而发生抖动的问题.为减小转子位置估计误差并提升电机调速控制性能,本文基于双曲函数提出一种改进的滑模观测器,并设... 在无传感器控制宽调速范围内,传统super-twisting二阶滑模观测器算法在永磁同步电机中存在转子位置估计误差随速度变化而发生抖动的问题.为减小转子位置估计误差并提升电机调速控制性能,本文基于双曲函数提出一种改进的滑模观测器,并设计定子电阻的在线辨识方案,同时开发扰动电压观测器以在线估计逆变器非线性引起的失真电压;最后,通过电机硬件在环实验测试进行验证.测试结果表明:位置估计误差减小7.6%,速度估计精度提高5.8%. 展开更多
关键词 永磁同步电机 无传感器控制 改进super-twisting算法 定子电阻在线辨识 逆变器非线性补偿
在线阅读 下载PDF
基于Super-Twisting的自适应分数阶滑模控制PMSM调速系统
2
作者 邹大林 刘曰涛 +3 位作者 于智勇 王福凯 温尚林 祝保财 《组合机床与自动化加工技术》 北大核心 2025年第9期103-107,共5页
针对PMSM在实际工作情况中面临复杂多变的工况、极易受到外界干扰且具有非线性的特点,常用的PI控制系统精度不高,难以满足现代工业电机控制要求,提出了一种新型自适应分数阶滑模控制(AFOSMC)方法。根据永磁同步电机的实时工作状态,采用... 针对PMSM在实际工作情况中面临复杂多变的工况、极易受到外界干扰且具有非线性的特点,常用的PI控制系统精度不高,难以满足现代工业电机控制要求,提出了一种新型自适应分数阶滑模控制(AFOSMC)方法。根据永磁同步电机的实时工作状态,采用自适应滑模控制实时地转变电机运行状态,相比于传统的PI控制更为灵活。同时结合一种Super-Twisting观测器,使控制系统有较强的鲁棒性。两者相结合取长补短,能更好地完成对PMSM的精确控制。通过实验验证,使用该控制系统超调量减小至3.9%,在突增负载时转速下降27 r/min,稳态调节时间为0.01 s,具有良好的运动性能和抗干扰性,且明显减小了传统滑模控制中的抖振现象。 展开更多
关键词 永磁同步电机 自适应控制 滑模控制 super-twisting算法
在线阅读 下载PDF
基于Super-Twisting滑模观测器的主动侧杆杆力控制研究
3
作者 陈嘉鸿 张科平 王志胜 《机械与电子》 2025年第6期48-54,共7页
针对主动侧杆使用场景下电机受环境温度、磁场耦合等影响产生的综合扰动问题,设计了一种基于改进Super-Twisting滑模观测器无差拍电流预测控制方法,并对开关函数进行修改,加快扰动跟踪响应速度,抑制了因滑模面存在的不连续性而产生的高... 针对主动侧杆使用场景下电机受环境温度、磁场耦合等影响产生的综合扰动问题,设计了一种基于改进Super-Twisting滑模观测器无差拍电流预测控制方法,并对开关函数进行修改,加快扰动跟踪响应速度,抑制了因滑模面存在的不连续性而产生的高频抖振。此外,添加了自适应动态前馈参数调节,使主动侧杆系统在更大的电机参数摄动范围下能够稳定响应且保持良好的性能。同时,设计了一种前馈控制作为杆力控制器,改善杆力控制精度与跟踪性能。通过仿真实验可知,在电机模型参数产生较大摄动时,系统仍能稳定运行且有更小的电流波动,在杆力快速性与精度上有着更优秀的表现,证明了该算法的有效性。 展开更多
关键词 主动侧杆 无差拍电流预测控制 改进super-twisting滑模观测器 自适应动态前馈
在线阅读 下载PDF
基于Super-Twisting滑模S面的无人机路径跟踪控制 被引量:2
4
作者 张国兵 石上瑶 +2 位作者 李佳成 常哲 陈鹏云 《火力与指挥控制》 CSCD 北大核心 2024年第2期11-17,共7页
针对小型固定翼无人机在执行任务时跟踪精度低以及容易受外界风影响的问题,设计基于Super-Twisting滑模S面(STSM S-Plane)的路径跟踪控制器,同时采用内外双环控制模式。外环即速度环采用Super-Twisting滑模控制,内环即姿态环采用S面控... 针对小型固定翼无人机在执行任务时跟踪精度低以及容易受外界风影响的问题,设计基于Super-Twisting滑模S面(STSM S-Plane)的路径跟踪控制器,同时采用内外双环控制模式。外环即速度环采用Super-Twisting滑模控制,内环即姿态环采用S面控制。考虑到S面控制求导易导致积分爆炸的问题引入了二阶微分器,并对外界风组成进行建模研究。最后通过空间特殊曲线来验证所设计算法的控制性能。仿真结果表明,所设计的算法可以实现固定翼无人机对期望路径的精确跟踪,并具有良好的鲁棒性和抗干扰性能。 展开更多
关键词 固定翼无人机 super-twisting滑模 S面控制 风干扰
在线阅读 下载PDF
基于自适应Super-twisting算法的永磁同步电机驱动控制 被引量:2
5
作者 林锡坚 张剑波 +1 位作者 许元威 洪俊杰 《黑龙江电力》 CAS 2024年第3期202-208,共7页
在永磁同步电机调速系统中,良好的速度控制器要同时兼顾跟踪性能及抗干扰性能,非线性控制具有快速响应及强鲁棒性的优点,适用于速度控制器的设计,但传统滑模控制存在着严重的抖振问题。自适应Super-twisting算法属于二阶滑模,能将相轨... 在永磁同步电机调速系统中,良好的速度控制器要同时兼顾跟踪性能及抗干扰性能,非线性控制具有快速响应及强鲁棒性的优点,适用于速度控制器的设计,但传统滑模控制存在着严重的抖振问题。自适应Super-twisting算法属于二阶滑模,能将相轨迹的状态量以级数的形式收敛到原点,又能在线调整控制器的增益,因此能有效削弱抖振现象。采用自适应Super-twisting算法来设计速度控制器,并通过李雅普诺夫函数给出其稳定性证明。试验结果表明,所设计的控制器具有良好的跟踪性能及抗干扰性能,同时能减小电流的纹波,达到削弱抖振的目的。 展开更多
关键词 永磁同步电机 自适应super-twisting算法 抖振 跟踪性能 抗干扰性能
在线阅读 下载PDF
大长径比远程制导火箭弹自适应Super-twisting控制方法 被引量:1
6
作者 范军芳 闫华杰 +2 位作者 纪毅 唐文桃 赵国宁 《中国惯性技术学报》 EI CSCD 北大核心 2024年第2期196-204,212,共10页
针对具有轻质薄壳结构的大长径比远程制导火箭弹刚体-弹性体耦合动力学控制难题,提出了一种自适应Super-twisting控制方法。首先,将大长径比远程制导火箭弹的弹性模态与外部干扰项视为归一化扰动,建立了考虑参数、模型不确定性的刚体-... 针对具有轻质薄壳结构的大长径比远程制导火箭弹刚体-弹性体耦合动力学控制难题,提出了一种自适应Super-twisting控制方法。首先,将大长径比远程制导火箭弹的弹性模态与外部干扰项视为归一化扰动,建立了考虑参数、模型不确定性的刚体-弹性体耦合动力学模型。针对外部扰动难以实时精准获取的问题,设计了有限时间收敛干扰观测器,能够在大范围气动参数摄动情形下对远程制导火箭弹外部扰动进行实时精准估计。为提高系统鲁棒性,设计了基于Super-twisting算法的自适应有限时间控制方法,使系统能根据状态误差自动调节控制参数,在削弱高频抖振的同时有效提高抗干扰能力。仿真结果表明:所提控制方法在弹体±15%气动参数摄动的条件下,由平飞状态转变为跟踪幅值为10的正弦弹道倾角指令时,实现3.2 s内弹道倾角跟踪误差收敛至0.002°,可实现远程制导火箭弹姿态平稳跟踪控制弹道倾角指令。 展开更多
关键词 远程制导火箭弹 弹性效应 自适应super-twisting 有限时间收敛 扰动观测器
在线阅读 下载PDF
基于改进Super-Twisting算法和电流预测的PMSM调速控制
7
作者 温超 邱楠 《自动化与仪表》 2024年第7期129-133,共5页
针对永磁同步电机传统PI控制器存在响应速度慢、控制精度低、鲁棒性差等问题,该文提出一种改进调速控制方案。首先,将全局快速积分型终端滑模理论与广义Super-Twisting算法相结合,基于Anti-Windup原理设计改进广义Super-Twisting积分终... 针对永磁同步电机传统PI控制器存在响应速度慢、控制精度低、鲁棒性差等问题,该文提出一种改进调速控制方案。首先,将全局快速积分型终端滑模理论与广义Super-Twisting算法相结合,基于Anti-Windup原理设计改进广义Super-Twisting积分终端滑模速度控制器,并采用新型分段指数函数优化控制律;其次,设计改进扩展扰动观测器对系统未知扰动进行前馈补偿;最后,在电流环引入无差拍电流预测控制器,进一步改善系统的动态响应。仿真结果表明,所提出的改进控制方案能够有效提高调速系统的动态控制性能、控制精度和鲁棒性。 展开更多
关键词 永磁同步电机 滑模控制器 super-twisting 扩展扰动观测器 电流预测
在线阅读 下载PDF
Cooperative guidance law based on super-twisting observer for target maneuvering
8
作者 GAO Mengjing YAN Tian +3 位作者 HAN Bingjie CHENG Haoyu FU Wenxing HAN Bo 《Journal of Systems Engineering and Electronics》 SCIE CSCD 2024年第5期1304-1314,共11页
To solve the problem that multiple missiles should simultaneously attack unmeasurable maneuvering targets,a guidance law with temporal consistency constraint based on the super-twisting observer is proposed.Firstly,th... To solve the problem that multiple missiles should simultaneously attack unmeasurable maneuvering targets,a guidance law with temporal consistency constraint based on the super-twisting observer is proposed.Firstly,the relative motion equations between multiple missiles and targets are established,and the topological model among multiple agents is considered.Secondly,based on the temporal consistency constraint,a cooperative guidance law for simultaneous arrival with finite-time convergence is derived.Finally,the unknown target maneuver-ing is regarded as bounded interference.Based on the second-order sliding mode theory,a super-twisting sliding mode observer is devised to observe and track the bounded interfer-ence,and the stability of the observer is proved.Compared with the existing research,this approach only needs to obtain the sliding mode variable which simplifies the design process.The simulation results show that the designed cooperative guidance law for maneuvering targets achieves the expected effect.It ensures successful cooperative attacks,even when confronted with strong maneuvering targets. 展开更多
关键词 cooperative guidance super-twisting target maneuver finite time convergence.
在线阅读 下载PDF
Method for Estimating the State of Health of Lithium-ion Batteries Based on Differential Thermal Voltammetry and Sparrow Search Algorithm-Elman Neural Network 被引量:1
9
作者 Yu Zhang Daoyu Zhang TiezhouWu 《Energy Engineering》 EI 2025年第1期203-220,共18页
Precisely estimating the state of health(SOH)of lithium-ion batteries is essential for battery management systems(BMS),as it plays a key role in ensuring the safe and reliable operation of battery systems.However,curr... Precisely estimating the state of health(SOH)of lithium-ion batteries is essential for battery management systems(BMS),as it plays a key role in ensuring the safe and reliable operation of battery systems.However,current SOH estimation methods often overlook the valuable temperature information that can effectively characterize battery aging during capacity degradation.Additionally,the Elman neural network,which is commonly employed for SOH estimation,exhibits several drawbacks,including slow training speed,a tendency to become trapped in local minima,and the initialization of weights and thresholds using pseudo-random numbers,leading to unstable model performance.To address these issues,this study addresses the challenge of precise and effective SOH detection by proposing a method for estimating the SOH of lithium-ion batteries based on differential thermal voltammetry(DTV)and an SSA-Elman neural network.Firstly,two health features(HFs)considering temperature factors and battery voltage are extracted fromthe differential thermal voltammetry curves and incremental capacity curves.Next,the Sparrow Search Algorithm(SSA)is employed to optimize the initial weights and thresholds of the Elman neural network,forming the SSA-Elman neural network model.To validate the performance,various neural networks,including the proposed SSA-Elman network,are tested using the Oxford battery aging dataset.The experimental results demonstrate that the method developed in this study achieves superior accuracy and robustness,with a mean absolute error(MAE)of less than 0.9%and a rootmean square error(RMSE)below 1.4%. 展开更多
关键词 Lithium-ion battery state of health differential thermal voltammetry Sparrow Search algorithm
在线阅读 下载PDF
Robustness Optimization Algorithm with Multi-Granularity Integration for Scale-Free Networks Against Malicious Attacks 被引量:1
10
作者 ZHANG Yiheng LI Jinhai 《昆明理工大学学报(自然科学版)》 北大核心 2025年第1期54-71,共18页
Complex network models are frequently employed for simulating and studyingdiverse real-world complex systems.Among these models,scale-free networks typically exhibit greater fragility to malicious attacks.Consequently... Complex network models are frequently employed for simulating and studyingdiverse real-world complex systems.Among these models,scale-free networks typically exhibit greater fragility to malicious attacks.Consequently,enhancing the robustness of scale-free networks has become a pressing issue.To address this problem,this paper proposes a Multi-Granularity Integration Algorithm(MGIA),which aims to improve the robustness of scale-free networks while keeping the initial degree of each node unchanged,ensuring network connectivity and avoiding the generation of multiple edges.The algorithm generates a multi-granularity structure from the initial network to be optimized,then uses different optimization strategies to optimize the networks at various granular layers in this structure,and finally realizes the information exchange between different granular layers,thereby further enhancing the optimization effect.We propose new network refresh,crossover,and mutation operators to ensure that the optimized network satisfies the given constraints.Meanwhile,we propose new network similarity and network dissimilarity evaluation metrics to improve the effectiveness of the optimization operators in the algorithm.In the experiments,the MGIA enhances the robustness of the scale-free network by 67.6%.This improvement is approximately 17.2%higher than the optimization effects achieved by eight currently existing complex network robustness optimization algorithms. 展开更多
关键词 complex network model MULTI-GRANULARITY scale-free networks ROBUSTNESS algorithm integration
原文传递
Short-TermWind Power Forecast Based on STL-IAOA-iTransformer Algorithm:A Case Study in Northwest China 被引量:2
11
作者 Zhaowei Yang Bo Yang +5 位作者 Wenqi Liu Miwei Li Jiarong Wang Lin Jiang Yiyan Sang Zhenning Pan 《Energy Engineering》 2025年第2期405-430,共26页
Accurate short-term wind power forecast technique plays a crucial role in maintaining the safety and economic efficiency of smart grids.Although numerous studies have employed various methods to forecast wind power,th... Accurate short-term wind power forecast technique plays a crucial role in maintaining the safety and economic efficiency of smart grids.Although numerous studies have employed various methods to forecast wind power,there remains a research gap in leveraging swarm intelligence algorithms to optimize the hyperparameters of the Transformer model for wind power prediction.To improve the accuracy of short-term wind power forecast,this paper proposes a hybrid short-term wind power forecast approach named STL-IAOA-iTransformer,which is based on seasonal and trend decomposition using LOESS(STL)and iTransformer model optimized by improved arithmetic optimization algorithm(IAOA).First,to fully extract the power data features,STL is used to decompose the original data into components with less redundant information.The extracted components as well as the weather data are then input into iTransformer for short-term wind power forecast.The final predicted short-term wind power curve is obtained by combining the predicted components.To improve the model accuracy,IAOA is employed to optimize the hyperparameters of iTransformer.The proposed approach is validated using real-generation data from different seasons and different power stations inNorthwest China,and ablation experiments have been conducted.Furthermore,to validate the superiority of the proposed approach under different wind characteristics,real power generation data fromsouthwestChina are utilized for experiments.Thecomparative results with the other six state-of-the-art prediction models in experiments show that the proposed model well fits the true value of generation series and achieves high prediction accuracy. 展开更多
关键词 Short-termwind power forecast improved arithmetic optimization algorithm iTransformer algorithm SimuNPS
在线阅读 下载PDF
A LODBO algorithm for multi-UAV search and rescue path planning in disaster areas 被引量:1
12
作者 Liman Yang Xiangyu Zhang +2 位作者 Zhiping Li Lei Li Yan Shi 《Chinese Journal of Aeronautics》 2025年第2期200-213,共14页
In disaster relief operations,multiple UAVs can be used to search for trapped people.In recent years,many researchers have proposed machine le arning-based algorithms,sampling-based algorithms,and heuristic algorithms... In disaster relief operations,multiple UAVs can be used to search for trapped people.In recent years,many researchers have proposed machine le arning-based algorithms,sampling-based algorithms,and heuristic algorithms to solve the problem of multi-UAV path planning.The Dung Beetle Optimization(DBO)algorithm has been widely applied due to its diverse search patterns in the above algorithms.However,the update strategies for the rolling and thieving dung beetles of the DBO algorithm are overly simplistic,potentially leading to an inability to fully explore the search space and a tendency to converge to local optima,thereby not guaranteeing the discovery of the optimal path.To address these issues,we propose an improved DBO algorithm guided by the Landmark Operator(LODBO).Specifically,we first use tent mapping to update the population strategy,which enables the algorithm to generate initial solutions with enhanced diversity within the search space.Second,we expand the search range of the rolling ball dung beetle by using the landmark factor.Finally,by using the adaptive factor that changes with the number of iterations.,we improve the global search ability of the stealing dung beetle,making it more likely to escape from local optima.To verify the effectiveness of the proposed method,extensive simulation experiments are conducted,and the result shows that the LODBO algorithm can obtain the optimal path using the shortest time compared with the Genetic Algorithm(GA),the Gray Wolf Optimizer(GWO),the Whale Optimization Algorithm(WOA)and the original DBO algorithm in the disaster search and rescue task set. 展开更多
关键词 Unmanned aerial vehicle Path planning Meta heuristic algorithm DBO algorithm NP-hard problems
原文传递
Research on Euclidean Algorithm and Reection on Its Teaching
13
作者 ZHANG Shaohua 《应用数学》 北大核心 2025年第1期308-310,共3页
In this paper,we prove that Euclid's algorithm,Bezout's equation and Divi-sion algorithm are equivalent to each other.Our result shows that Euclid has preliminarily established the theory of divisibility and t... In this paper,we prove that Euclid's algorithm,Bezout's equation and Divi-sion algorithm are equivalent to each other.Our result shows that Euclid has preliminarily established the theory of divisibility and the greatest common divisor.We further provided several suggestions for teaching. 展开更多
关键词 Euclid's algorithm Division algorithm Bezout's equation
在线阅读 下载PDF
DDoS Attack Autonomous Detection Model Based on Multi-Strategy Integrate Zebra Optimization Algorithm
14
作者 Chunhui Li Xiaoying Wang +2 位作者 Qingjie Zhang Jiaye Liang Aijing Zhang 《Computers, Materials & Continua》 SCIE EI 2025年第1期645-674,共30页
Previous studies have shown that deep learning is very effective in detecting known attacks.However,when facing unknown attacks,models such as Deep Neural Networks(DNN)combined with Long Short-Term Memory(LSTM),Convol... Previous studies have shown that deep learning is very effective in detecting known attacks.However,when facing unknown attacks,models such as Deep Neural Networks(DNN)combined with Long Short-Term Memory(LSTM),Convolutional Neural Networks(CNN)combined with LSTM,and so on are built by simple stacking,which has the problems of feature loss,low efficiency,and low accuracy.Therefore,this paper proposes an autonomous detectionmodel for Distributed Denial of Service attacks,Multi-Scale Convolutional Neural Network-Bidirectional Gated Recurrent Units-Single Headed Attention(MSCNN-BiGRU-SHA),which is based on a Multistrategy Integrated Zebra Optimization Algorithm(MI-ZOA).The model undergoes training and testing with the CICDDoS2019 dataset,and its performance is evaluated on a new GINKS2023 dataset.The hyperparameters for Conv_filter and GRU_unit are optimized using the Multi-strategy Integrated Zebra Optimization Algorithm(MIZOA).The experimental results show that the test accuracy of the MSCNN-BiGRU-SHA model based on the MIZOA proposed in this paper is as high as 0.9971 in the CICDDoS 2019 dataset.The evaluation accuracy of the new dataset GINKS2023 created in this paper is 0.9386.Compared to the MSCNN-BiGRU-SHA model based on the Zebra Optimization Algorithm(ZOA),the detection accuracy on the GINKS2023 dataset has improved by 5.81%,precisionhas increasedby 1.35%,the recallhas improvedby 9%,and theF1scorehas increasedby 5.55%.Compared to the MSCNN-BiGRU-SHA models developed using Grid Search,Random Search,and Bayesian Optimization,the MSCNN-BiGRU-SHA model optimized with the MI-ZOA exhibits better performance in terms of accuracy,precision,recall,and F1 score. 展开更多
关键词 Distributed denial of service attack intrusion detection deep learning zebra optimization algorithm multi-strategy integrated zebra optimization algorithm
在线阅读 下载PDF
Bearing capacity prediction of open caissons in two-layered clays using five tree-based machine learning algorithms 被引量:1
15
作者 Rungroad Suppakul Kongtawan Sangjinda +3 位作者 Wittaya Jitchaijaroen Natakorn Phuksuksakul Suraparb Keawsawasvong Peem Nuaklong 《Intelligent Geoengineering》 2025年第2期55-65,共11页
Open caissons are widely used in foundation engineering because of their load-bearing efficiency and adaptability in diverse soil conditions.However,accurately predicting their undrained bearing capacity in layered so... Open caissons are widely used in foundation engineering because of their load-bearing efficiency and adaptability in diverse soil conditions.However,accurately predicting their undrained bearing capacity in layered soils remains a complex challenge.This study presents a novel application of five ensemble machine(ML)algorithms-random forest(RF),gradient boosting machine(GBM),extreme gradient boosting(XGBoost),adaptive boosting(AdaBoost),and categorical boosting(CatBoost)-to predict the undrained bearing capacity factor(Nc)of circular open caissons embedded in two-layered clay on the basis of results from finite element limit analysis(FELA).The input dataset consists of 1188 numerical simulations using the Tresca failure criterion,varying in geometrical and soil parameters.The FELA was performed via OptumG2 software with adaptive meshing techniques and verified against existing benchmark studies.The ML models were trained on 70% of the dataset and tested on the remaining 30%.Their performance was evaluated using six statistical metrics:coefficient of determination(R²),mean absolute error(MAE),root mean squared error(RMSE),index of scatter(IOS),RMSE-to-standard deviation ratio(RSR),and variance explained factor(VAF).The results indicate that all the models achieved high accuracy,with R²values exceeding 97.6%and RMSE values below 0.02.Among them,AdaBoost and CatBoost consistently outperformed the other methods across both the training and testing datasets,demonstrating superior generalizability and robustness.The proposed ML framework offers an efficient,accurate,and data-driven alternative to traditional methods for estimating caisson capacity in stratified soils.This approach can aid in reducing computational costs while improving reliability in the early stages of foundation design. 展开更多
关键词 Two-layered clay Open caisson Tree-based algorithms FELA Machine learning
在线阅读 下载PDF
Path Planning for Thermal Power Plant Fan Inspection Robot Based on Improved A^(*)Algorithm 被引量:1
16
作者 Wei Zhang Tingfeng Zhang 《Journal of Electronic Research and Application》 2025年第1期233-239,共7页
To improve the efficiency and accuracy of path planning for fan inspection tasks in thermal power plants,this paper proposes an intelligent inspection robot path planning scheme based on an improved A^(*)algorithm.The... To improve the efficiency and accuracy of path planning for fan inspection tasks in thermal power plants,this paper proposes an intelligent inspection robot path planning scheme based on an improved A^(*)algorithm.The inspection robot utilizes multiple sensors to monitor key parameters of the fans,such as vibration,noise,and bearing temperature,and upload the data to the monitoring center.The robot’s inspection path employs the improved A^(*)algorithm,incorporating obstacle penalty terms,path reconstruction,and smoothing optimization techniques,thereby achieving optimal path planning for the inspection robot in complex environments.Simulation results demonstrate that the improved A^(*)algorithm significantly outperforms the traditional A^(*)algorithm in terms of total path distance,smoothness,and detour rate,effectively improving the execution efficiency of inspection tasks. 展开更多
关键词 Power plant fans Inspection robot Path planning Improved A^(*)algorithm
在线阅读 下载PDF
An Algorithm for Cloud-based Web Service Combination Optimization Through Plant Growth Simulation
17
作者 Li Qiang Qin Huawei +1 位作者 Qiao Bingqin Wu Ruifang 《系统仿真学报》 北大核心 2025年第2期462-473,共12页
In order to improve the efficiency of cloud-based web services,an improved plant growth simulation algorithm scheduling model.This model first used mathematical methods to describe the relationships between cloud-base... In order to improve the efficiency of cloud-based web services,an improved plant growth simulation algorithm scheduling model.This model first used mathematical methods to describe the relationships between cloud-based web services and the constraints of system resources.Then,a light-induced plant growth simulation algorithm was established.The performance of the algorithm was compared through several plant types,and the best plant model was selected as the setting for the system.Experimental results show that when the number of test cloud-based web services reaches 2048,the model being 2.14 times faster than PSO,2.8 times faster than the ant colony algorithm,2.9 times faster than the bee colony algorithm,and a remarkable 8.38 times faster than the genetic algorithm. 展开更多
关键词 cloud-based service scheduling algorithm resource constraint load optimization cloud computing plant growth simulation algorithm
原文传递
Improved algorithm of multi-mainlobe interference suppression under uncorrelated and coherent conditions 被引量:1
18
作者 CAI Miaohong CHENG Qiang +1 位作者 MENG Jinli ZHAO Dehua 《Journal of Southeast University(English Edition)》 2025年第1期84-90,共7页
A new method based on the iterative adaptive algorithm(IAA)and blocking matrix preprocessing(BMP)is proposed to study the suppression of multi-mainlobe interference.The algorithm is applied to precisely estimate the s... A new method based on the iterative adaptive algorithm(IAA)and blocking matrix preprocessing(BMP)is proposed to study the suppression of multi-mainlobe interference.The algorithm is applied to precisely estimate the spatial spectrum and the directions of arrival(DOA)of interferences to overcome the drawbacks associated with conventional adaptive beamforming(ABF)methods.The mainlobe interferences are identified by calculating the correlation coefficients between direction steering vectors(SVs)and rejected by the BMP pretreatment.Then,IAA is subsequently employed to reconstruct a sidelobe interference-plus-noise covariance matrix for the preferable ABF and residual interference suppression.Simulation results demonstrate the excellence of the proposed method over normal methods based on BMP and eigen-projection matrix perprocessing(EMP)under both uncorrelated and coherent circumstances. 展开更多
关键词 mainlobe interference suppression adaptive beamforming spatial spectral estimation iterative adaptive algorithm blocking matrix preprocessing
在线阅读 下载PDF
Intelligent sequential multi-impulse collision avoidance method for non-cooperative spacecraft based on an improved search tree algorithm 被引量:1
19
作者 Xuyang CAO Xin NING +4 位作者 Zheng WANG Suyi LIU Fei CHENG Wenlong LI Xiaobin LIAN 《Chinese Journal of Aeronautics》 2025年第4期378-393,共16页
The problem of collision avoidance for non-cooperative targets has received significant attention from researchers in recent years.Non-cooperative targets exhibit uncertain states and unpredictable behaviors,making co... The problem of collision avoidance for non-cooperative targets has received significant attention from researchers in recent years.Non-cooperative targets exhibit uncertain states and unpredictable behaviors,making collision avoidance significantly more challenging than that for space debris.Much existing research focuses on the continuous thrust model,whereas the impulsive maneuver model is more appropriate for long-duration and long-distance avoidance missions.Additionally,it is important to minimize the impact on the original mission while avoiding noncooperative targets.On the other hand,the existing avoidance algorithms are computationally complex and time-consuming especially with the limited computing capability of the on-board computer,posing challenges for practical engineering applications.To conquer these difficulties,this paper makes the following key contributions:(A)a turn-based(sequential decision-making)limited-area impulsive collision avoidance model considering the time delay of precision orbit determination is established for the first time;(B)a novel Selection Probability Learning Adaptive Search-depth Search Tree(SPL-ASST)algorithm is proposed for non-cooperative target avoidance,which improves the decision-making efficiency by introducing an adaptive-search-depth mechanism and a neural network into the traditional Monte Carlo Tree Search(MCTS).Numerical simulations confirm the effectiveness and efficiency of the proposed method. 展开更多
关键词 Non-cooperative target Collision avoidance Limited motion area Impulsive maneuver model Search tree algorithm Neural networks
原文传递
A Class of Parallel Algorithm for Solving Low-rank Tensor Completion
20
作者 LIU Tingyan WEN Ruiping 《应用数学》 北大核心 2025年第4期1134-1144,共11页
In this paper,we established a class of parallel algorithm for solving low-rank tensor completion problem.The main idea is that N singular value decompositions are implemented in N different processors for each slice ... In this paper,we established a class of parallel algorithm for solving low-rank tensor completion problem.The main idea is that N singular value decompositions are implemented in N different processors for each slice matrix under unfold operator,and then the fold operator is used to form the next iteration tensor such that the computing time can be decreased.In theory,we analyze the global convergence of the algorithm.In numerical experiment,the simulation data and real image inpainting are carried out.Experiment results show the parallel algorithm outperform its original algorithm in CPU times under the same precision. 展开更多
关键词 Tensor completion Low-rank CONVERGENCE Parallel algorithm
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部