期刊文献+
共找到4,381篇文章
< 1 2 220 >
每页显示 20 50 100
Super-Resolution Generative Adversarial Network with Pyramid Attention Module for Face Generation
1
作者 Parvathaneni Naga Srinivasu G.JayaLakshmi +4 位作者 Sujatha Canavoy Narahari Victor Hugo C.de Albuquerque Muhammad Attique Khan Hee-Chan Cho Byoungchol Chang 《Computers, Materials & Continua》 2025年第10期2117-2139,共23页
The generation of high-quality,realistic face generation has emerged as a key field of research in computer vision.This paper proposes a robust approach that combines a Super-Resolution Generative Adversarial Network(... The generation of high-quality,realistic face generation has emerged as a key field of research in computer vision.This paper proposes a robust approach that combines a Super-Resolution Generative Adversarial Network(SRGAN)with a Pyramid Attention Module(PAM)to enhance the quality of deep face generation.The SRGAN framework is designed to improve the resolution of generated images,addressing common challenges such as blurriness and a lack of intricate details.The Pyramid Attention Module further complements the process by focusing on multi-scale feature extraction,enabling the network to capture finer details and complex facial features more effectively.The proposed method was trained and evaluated over 100 epochs on the CelebA dataset,demonstrating consistent improvements in image quality and a marked decrease in generator and discriminator losses,reflecting the model’s capacity to learn and synthesize high-quality images effectively,given adequate computational resources.Experimental outcome demonstrates that the SRGAN model with PAM module has outperformed,yielding an aggregate discriminator loss of 0.055 for real,0.043 for fake,and a generator loss of 10.58 after training for 100 epochs.The model has yielded an structural similarity index measure of 0.923,that has outperformed the other models that are considered in the current study for analysis. 展开更多
关键词 Artificial intelligence generative adversarial network pyramid attention module face generation deep learning
在线阅读 下载PDF
Pore structure properties characterization of shale using generative adversarial network:Image augmentation,super-resolution reconstruction,and multi-mineral auto-segmentation
2
作者 LIU Fugui YANG Yongfei +7 位作者 YANG Haiyuan TAO Liu TAO Yunwei ZHANG Kai SUN Hai ZHANG Lei ZHONG Junjie YAO Jun 《Petroleum Exploration and Development》 2025年第5期1262-1274,共13页
Existing imaging techniques cannot simultaneously achieve high resolution and a wide field of view,and manual multi-mineral segmentation in shale lacks precision.To address these limitations,we propose a comprehensive... Existing imaging techniques cannot simultaneously achieve high resolution and a wide field of view,and manual multi-mineral segmentation in shale lacks precision.To address these limitations,we propose a comprehensive framework based on generative adversarial network(GAN)for characterizing pore structure properties of shale,which incorporates image augmentation,super-resolution reconstruction,and multi-mineral auto-segmentation.Using real 2D and 3D shale images,the framework was assessed through correlation function,entropy,porosity,pore size distribution,and permeability.The application results show that this framework enables the enhancement of 3D low-resolution digital cores by a scale factor of 8,without paired shale images,effectively reconstructing the unresolved fine-scale pores under a low resolution,rather than merely denoising,deblurring,and edge clarification.The trained GAN-based segmentation model effectively improves manual multi-mineral segmentation results,resulting in a strong resemblance to real samples in terms of pore size distribution and permeability.This framework significantly improves the characterization of complex shale microstructures and can be expanded to other heterogeneous porous media,such as carbonate,coal,and tight sandstone reservoirs. 展开更多
关键词 SHALE pore structure parameter generative adversarial network super-resolution multi-mineral auto-segmentation multiscale fusion
在线阅读 下载PDF
Multi-Constraint Generative Adversarial Network-Driven Optimization Method for Super-Resolution Reconstruction of Remote Sensing Images
3
作者 Binghong Zhang Jialing Zhou +3 位作者 Xinye Zhou Jia Zhao Jinchun Zhu Guangpeng Fan 《Computers, Materials & Continua》 2026年第1期779-796,共18页
Remote sensing image super-resolution technology is pivotal for enhancing image quality in critical applications including environmental monitoring,urban planning,and disaster assessment.However,traditional methods ex... Remote sensing image super-resolution technology is pivotal for enhancing image quality in critical applications including environmental monitoring,urban planning,and disaster assessment.However,traditional methods exhibit deficiencies in detail recovery and noise suppression,particularly when processing complex landscapes(e.g.,forests,farmlands),leading to artifacts and spectral distortions that limit practical utility.To address this,we propose an enhanced Super-Resolution Generative Adversarial Network(SRGAN)framework featuring three key innovations:(1)Replacement of L1/L2 loss with a robust Charbonnier loss to suppress noise while preserving edge details via adaptive gradient balancing;(2)A multi-loss joint optimization strategy dynamically weighting Charbonnier loss(β=0.5),Visual Geometry Group(VGG)perceptual loss(α=1),and adversarial loss(γ=0.1)to synergize pixel-level accuracy and perceptual quality;(3)A multi-scale residual network(MSRN)capturing cross-scale texture features(e.g.,forest canopies,mountain contours).Validated on Sentinel-2(10 m)and SPOT-6/7(2.5 m)datasets covering 904 km2 in Motuo County,Xizang,our method outperforms the SRGAN baseline(SR4RS)with Peak Signal-to-Noise Ratio(PSNR)gains of 0.29 dB and Structural Similarity Index(SSIM)improvements of 3.08%on forest imagery.Visual comparisons confirm enhanced texture continuity despite marginal Learned Perceptual Image Patch Similarity(LPIPS)increases.The method significantly improves noise robustness and edge retention in complex geomorphology,demonstrating 18%faster response in forest fire early warning and providing high-resolution support for agricultural/urban monitoring.Future work will integrate spectral constraints and lightweight architectures. 展开更多
关键词 Charbonnier loss function deep learning generative adversarial network perceptual loss remote sensing image super-resolution
在线阅读 下载PDF
Medical image enhancement for improved diagnostic accuracy using generative adversarial network
4
作者 Lakshman Prabhu Balasubramaniam Jayashree Lagumiah Subramaniam 《Medical Data Mining》 2025年第3期11-18,共8页
Background:Enhancing the quality of images from retinal,MRI and echocardiography imaging shows promise with SR-GANs for medical imaging use.Using these networks,it is possible to produce high-quality images even from ... Background:Enhancing the quality of images from retinal,MRI and echocardiography imaging shows promise with SR-GANs for medical imaging use.Using these networks,it is possible to produce high-quality images even from low-quality medical scans.Methods:To do this,SR-GANs make use of growth from low to high resolutions in two 2×stages,multiple sizes of filters and powerful loss functions.The medical super-resolution network and denoising SR-GAN focus on problems such as image noise and artifacts to improve a photo’s stability,ability to extract features and how it looks.Results:Assessment by numbers has found that using SR-GAN-based approaches leads to marked improvements such as increases in the PSNR by up to 4.85 dB and improvements in the SSIM by between 0.04 and 0.05.Such improvements are better than traditional super-resolution methods which help doctors achieve clear images of the mitral valve in cardiac ultrasonography.Conclusion:It is anticipated that applying SR-GANs in clinical tasks will increase the accuracy of diagnoses,ease the workload for patients and widen the application of super-resolution methods in various medical procedures.The results prove that SR-GANs improve the picture quality of echocardiograms used for diagnosing mitral valve problems.Having proven the model in research settings,future studies should try to apply it to real-world clinical cases,test for its use across a range of imaging devices and perfect the system to ensure it is efficient for use in medical settings. 展开更多
关键词 medical imaging mitral valve echo cardiology super resolution super-resolution generative adversarial network
在线阅读 下载PDF
5DGWO-GAN:A Novel Five-Dimensional Gray Wolf Optimizer for Generative Adversarial Network-Enabled Intrusion Detection in IoT Systems
5
作者 Sarvenaz Sadat Khatami Mehrdad Shoeibi +2 位作者 Anita Ershadi Oskouei Diego Martín Maral Keramat Dashliboroun 《Computers, Materials & Continua》 SCIE EI 2025年第1期881-911,共31页
The Internet of Things(IoT)is integral to modern infrastructure,enabling connectivity among a wide range of devices from home automation to industrial control systems.With the exponential increase in data generated by... The Internet of Things(IoT)is integral to modern infrastructure,enabling connectivity among a wide range of devices from home automation to industrial control systems.With the exponential increase in data generated by these interconnected devices,robust anomaly detection mechanisms are essential.Anomaly detection in this dynamic environment necessitates methods that can accurately distinguish between normal and anomalous behavior by learning intricate patterns.This paper presents a novel approach utilizing generative adversarial networks(GANs)for anomaly detection in IoT systems.However,optimizing GANs involves tuning hyper-parameters such as learning rate,batch size,and optimization algorithms,which can be challenging due to the non-convex nature of GAN loss functions.To address this,we propose a five-dimensional Gray wolf optimizer(5DGWO)to optimize GAN hyper-parameters.The 5DGWO introduces two new types of wolves:gamma(γ)for improved exploitation and convergence,and theta(θ)for enhanced exploration and escaping local minima.The proposed system framework comprises four key stages:1)preprocessing,2)generative model training,3)autoencoder(AE)training,and 4)predictive model training.The generative models are utilized to assist the AE training,and the final predictive models(including convolutional neural network(CNN),deep belief network(DBN),recurrent neural network(RNN),random forest(RF),and extreme gradient boosting(XGBoost))are trained using the generated data and AE-encoded features.We evaluated the system on three benchmark datasets:NSL-KDD,UNSW-NB15,and IoT-23.Experiments conducted on diverse IoT datasets show that our method outperforms existing anomaly detection strategies and significantly reduces false positives.The 5DGWO-GAN-CNNAE exhibits superior performance in various metrics,including accuracy,recall,precision,root mean square error(RMSE),and convergence trend.The proposed 5DGWO-GAN-CNNAE achieved the lowest RMSE values across the NSL-KDD,UNSW-NB15,and IoT-23 datasets,with values of 0.24,1.10,and 0.09,respectively.Additionally,it attained the highest accuracy,ranging from 94%to 100%.These results suggest a promising direction for future IoT security frameworks,offering a scalable and efficient solution to safeguard against evolving cyber threats. 展开更多
关键词 Internet of things intrusion detection generative adversarial networks five-dimensional binary gray wolf optimizer deep learning
在线阅读 下载PDF
A super-resolution reconstruction algorithm for mural images based on improved generative adversarial network
6
作者 GAO Li ZHOU Xiaohui 《Journal of Measurement Science and Instrumentation》 CAS CSCD 2024年第4期499-508,共10页
In order to solve the problem of the lack of ornamental value and research value of ancient mural paintings due to low resolution and fuzzy texture details,a super resolution(SR)method based on generative adduction ne... In order to solve the problem of the lack of ornamental value and research value of ancient mural paintings due to low resolution and fuzzy texture details,a super resolution(SR)method based on generative adduction network(GAN)was proposed.This method reconstructed the detail texture of mural image better.Firstly,in view of the insufficient utilization of shallow image features,information distillation blocks(IDB)were introduced to extract shallow image features and enhance the output results of the network behind.Secondly,residual dense blocks with residual scaling and feature fusion(RRDB-Fs)were used to extract deep image features,which removed the BN layer in the residual block that affected the quality of image generation,and improved the training speed of the network.Furthermore,local feature fusion and global feature fusion were applied in the generation network,and the features of different levels were merged together adaptively,so that the reconstructed image contained rich details.Finally,in calculating the perceptual loss,the brightness consistency between the reconstructed fresco and the original fresco was enhanced by using the features before activation,while avoiding artificial interference.The experimental results showed that the peak signal-to-noise ratio and structural similarity metrics were improved compared with other algorithms,with an improvement of 0.512 dB-3.016 dB in peak signal-to-noise ratio and 0.009-0.089 in structural similarity,and the proposed method had better visual effects. 展开更多
关键词 mural image super-resolution reconstruction generative adversarial network information distillation block(IDB) feature fusion
在线阅读 下载PDF
Integrating Speech-to-Text for Image Generation Using Generative Adversarial Networks
7
作者 Smita Mahajan Shilpa Gite +5 位作者 Biswajeet Pradhan Abdullah Alamri Shaunak Inamdar Deva Shriyansh Akshat Ashish Shah Shruti Agarwal 《Computer Modeling in Engineering & Sciences》 2025年第5期2001-2026,共26页
The development of generative architectures has resulted in numerous novel deep-learning models that generate images using text inputs.However,humans naturally use speech for visualization prompts.Therefore,this paper... The development of generative architectures has resulted in numerous novel deep-learning models that generate images using text inputs.However,humans naturally use speech for visualization prompts.Therefore,this paper proposes an architecture that integrates speech prompts as input to image-generation Generative Adversarial Networks(GANs)model,leveraging Speech-to-Text translation along with the CLIP+VQGAN model.The proposed method involves translating speech prompts into text,which is then used by the Contrastive Language-Image Pretraining(CLIP)+Vector Quantized Generative Adversarial Network(VQGAN)model to generate images.This paper outlines the steps required to implement such a model and describes in detail the methods used for evaluating the model.The GAN model successfully generates artwork from descriptions using speech and text prompts.Experimental outcomes of synthesized images demonstrate that the proposed methodology can produce beautiful abstract visuals containing elements from the input prompts.The model achieved a Frechet Inception Distance(FID)score of 28.75,showcasing its capability to produce high-quality and diverse images.The proposed model can find numerous applications in educational,artistic,and design spaces due to its ability to generate images using speech and the distinct abstract artistry of the output images.This capability is demonstrated by giving the model out-of-the-box prompts to generate never-before-seen images with plausible realistic qualities. 展开更多
关键词 generative adversarial networks speech-to-image translation visualization transformers prompt engineering
在线阅读 下载PDF
Autonomous Cyber-Physical System for Anomaly Detection and Attack Prevention Using Transformer-Based Attention Generative Adversarial Residual Network
8
作者 Abrar M.Alajlan Marwah M.Almasri 《Computers, Materials & Continua》 2025年第12期5237-5262,共26页
Cyber-Physical Systems integrated with information technologies introduce vulnerabilities that extend beyond traditional cyber threats.Attackers can non-invasively manipulate sensors and spoof controllers,which in tur... Cyber-Physical Systems integrated with information technologies introduce vulnerabilities that extend beyond traditional cyber threats.Attackers can non-invasively manipulate sensors and spoof controllers,which in turn increases the autonomy of the system.Even though the focus on protecting against sensor attacks increases,there is still uncertainty about the optimal timing for attack detection.Existing systems often struggle to manage the trade-off between latency and false alarm rate,leading to inefficiencies in real-time anomaly detection.This paper presents a framework designed to monitor,predict,and control dynamic systems with a particular emphasis on detecting and adapting to changes,including anomalies such as“drift”and“attack”.The proposed algorithm integrates a Transformer-based Attention Generative Adversarial Residual model,which combines the strengths of generative adversarial networks,residual networks,and attention algorithms.The system operates in two phases:offline and online.During the offline phase,the proposed model is trained to learn complex patterns,enabling robust anomaly detection.The online phase applies a trained model,where the drift adapter adjusts the model to handle data changes,and the attack detector identifies deviations by comparing predicted and actual values.Based on the output of the attack detector,the controller makes decisions then the actuator executes suitable actions.Finally,the experimental findings show that the proposed model balances detection accuracy of 99.25%,precision of 98.84%,sensitivity of 99.10%,specificity of 98.81%,and an F1-score of 98.96%,thus provides an effective solution for dynamic and safety-critical environments. 展开更多
关键词 Cyber-physical systems cyber threats generative adversarial networks residual networks and attention algorithms
在线阅读 下载PDF
Design of Dual-Wavelength Bifocal Metalens Based on Generative Adversarial Network Model
9
作者 LIU Gangcheng WANG Junkai +4 位作者 LIN Sen WU Binhe WANG Chunrui ZHOU Jian SUN Hao 《Journal of Donghua University(English Edition)》 2025年第2期168-176,共9页
Multifocal metalenses are of great concern in optical communications,optical imaging and micro-optics systems,but their design is extremely challenging.In recent years,deep learning methods have provided novel solutio... Multifocal metalenses are of great concern in optical communications,optical imaging and micro-optics systems,but their design is extremely challenging.In recent years,deep learning methods have provided novel solutions to the design of optical planar devices.Here,an approach is proposed to explore the use of generative adversarial networks(GANs)to realize the design of metalenses with different focusing positions at dual wavelengths.This approach includes a forward network and an inverse network,where the former predicts the optical response of meta-atoms and the latter generates structures that meet specific requirements.Compared to the traditional search method,the inverse network demonstrates higher precision and efficiency in designing a dual-wavelength bifocal metalens.The results will provide insights and methodologies for the design of tunable wavelength metalenses,while also highlighting the potential of deep learning in optical device design. 展开更多
关键词 generative adversarial network(GAN) metalens forward network inverse design
在线阅读 下载PDF
Multi-parameter ultrasound imaging for musculoskeletal tissues based on a physics informed generative adversarial network
10
作者 Pengxin Wang Heyu Ma +3 位作者 Tianyu Liu Chengcheng Liu Dan Li Dean Ta 《Chinese Physics B》 2025年第4期442-455,共14页
Full waveform inversion(FWI)has showed great potential in the detection of musculoskeletal disease.However,FWI is an ill-posed inverse problem and has a high requirement on the initial model during the imaging process... Full waveform inversion(FWI)has showed great potential in the detection of musculoskeletal disease.However,FWI is an ill-posed inverse problem and has a high requirement on the initial model during the imaging process.An inaccurate initial model may lead to local minima in the inversion and unexpected imaging results caused by cycle-skipping phenomenon.Deep learning methods have been applied in musculoskeletal imaging,but need a large amount of data for training.Inspired by work related to generative adversarial networks with physical informed constrain,we proposed a method named as bone ultrasound imaging with physics informed generative adversarial network(BUIPIGAN)to achieve unsupervised multi-parameter imaging for musculoskeletal tissues,focusing on speed of sound(SOS)and density.In the in-silico experiments using a ring array transducer,conventional FWI methods and BUIPIGAN were employed for multiparameter imaging of two musculoskeletal tissue models.The results were evaluated based on visual appearance,structural similarity index measure(SSIM),signal-to-noise ratio(SNR),and relative error(RE).For SOS imaging of the tibia–fibula model,the proposed BUIPIGAN achieved accurate SOS imaging with best performance.The specific quantitative metrics for SOS imaging were SSIM 0.9573,SNR 28.70 dB,and RE 5.78%.For the multi-parameter imaging of the tibia–fibula and human forearm,the BUIPIGAN successfully reconstructed SOS and density distributions with SSIM above 94%,SNR above 21 dB,and RE below 10%.The BUIPIGAN also showed robustness across various noise levels(i.e.,30 dB,10 dB).The results demonstrated that the proposed BUIPIGAN can achieve high-accuracy SOS and density imaging,proving its potential for applications in musculoskeletal ultrasound imaging. 展开更多
关键词 ultrasound image physics informed generative adversarial network musculoskeletal imaging
原文传递
Conditional Generative Adversarial Network-Based Travel Route Recommendation
11
作者 Sunbin Shin Luong Vuong Nguyen +3 位作者 Grzegorz J.Nalepa Paulo Novais Xuan Hau Pham Jason J.Jung 《Computers, Materials & Continua》 2026年第1期1178-1217,共40页
Recommending personalized travel routes from sparse,implicit feedback poses a significant challenge,as conventional systems often struggle with information overload and fail to capture the complex,sequential nature of... Recommending personalized travel routes from sparse,implicit feedback poses a significant challenge,as conventional systems often struggle with information overload and fail to capture the complex,sequential nature of user preferences.To address this,we propose a Conditional Generative Adversarial Network(CGAN)that generates diverse and highly relevant itineraries.Our approach begins by constructing a conditional vector that encapsulates a user’s profile.This vector uniquely fuses embeddings from a Heterogeneous Information Network(HIN)to model complex user-place-route relationships,a Recurrent Neural Network(RNN)to capture sequential path dynamics,and Neural Collaborative Filtering(NCF)to incorporate collaborative signals from the wider user base.This comprehensive condition,further enhanced with features representing user interaction confidence and uncertainty,steers a CGAN stabilized by spectral normalization to generate high-fidelity latent route representations,effectively mitigating the data sparsity problem.Recommendations are then formulated using an Anchor-and-Expand algorithm,which selects relevant starting Points of Interest(POI)based on user history,then expands routes through latent similarity matching and geographic coherence optimization,culminating in Traveling Salesman Problem(TSP)-based route optimization for practical travel distances.Experiments on a real-world check-in dataset validate our model’s unique generative capability,achieving F1 scores ranging from 0.163 to 0.305,and near-zero pairs−F1 scores between 0.002 and 0.022.These results confirm the model’s success in generating novel travel routes by recommending new locations and sequences rather than replicating users’past itineraries.This work provides a robust solution for personalized travel planning,capable of generating novel and compelling routes for both new and existing users by learning from collective travel intelligence. 展开更多
关键词 Travel route recommendation conditional generative adversarial network heterogeneous information network anchor-and-expand algorithm
在线阅读 下载PDF
A Generative Adversarial Network with an Attention Spatiotemporal Mechanism for Tropical Cyclone Forecasts
12
作者 Xiaohui LI Xinhai HAN +5 位作者 Jingsong YANG Jiuke WANG Guoqi HAN Jun DING Hui SHEN Jun YAN 《Advances in Atmospheric Sciences》 2025年第1期67-78,共12页
Tropical cyclones(TCs)are complex and powerful weather systems,and accurately forecasting their path,structure,and intensity remains a critical focus and challenge in meteorological research.In this paper,we propose a... Tropical cyclones(TCs)are complex and powerful weather systems,and accurately forecasting their path,structure,and intensity remains a critical focus and challenge in meteorological research.In this paper,we propose an Attention Spatio-Temporal predictive Generative Adversarial Network(AST-GAN)model for predicting the temporal and spatial distribution of TCs.The model forecasts the spatial distribution of TC wind speeds for the next 15 hours at 3-hour intervals,emphasizing the cyclone's center,high wind-speed areas,and its asymmetric structure.To effectively capture spatiotemporal feature transfer at different time steps,we employ a channel attention mechanism for feature selection,enhancing model performance and reducing parameter redundancy.We utilized High-Resolution Weather Research and Forecasting(HWRF)data to train our model,allowing it to assimilate a wide range of TC motion patterns.The model is versatile and can be applied to various complex scenarios,such as multiple TCs moving simultaneously or TCs approaching landfall.Our proposed model demonstrates superior forecasting performance,achieving a root-mean-square error(RMSE)of 0.71 m s^(-1)for overall wind speed and 2.74 m s^(-1)for maximum wind speed when benchmarked against ground truth data from HWRF.Furthermore,the model underwent optimization and independent testing using ERA5reanalysis data,showcasing its stability and scalability.After fine-tuning on the ERA5 dataset,the model achieved an RMSE of 1.33 m s^(-1)for wind speed and 1.75 m s^(-1)for maximum wind speed.The AST-GAN model outperforms other state-of-the-art models in RMSE on both the HWRF and ERA5 datasets,maintaining its superior performance and demonstrating its effectiveness for spatiotemporal prediction of TCs. 展开更多
关键词 tropical cyclones spatiotemporal prediction generative adversarial network attention spatiotemporal mechanism deep learning
在线阅读 下载PDF
Ground Motion Simulation Via Generative Adversarial Network
13
作者 Kai Chen Hua Pan +1 位作者 Meng Zhang Zhi-Heng Li 《Applied Geophysics》 2025年第3期684-697,893,894,共16页
This study addresses the pressing challenge of generating realistic strong ground motion data for simulating earthquakes,a crucial component in pre-earthquake risk assessments and post-earthquake disaster evaluations,... This study addresses the pressing challenge of generating realistic strong ground motion data for simulating earthquakes,a crucial component in pre-earthquake risk assessments and post-earthquake disaster evaluations,particularly suited for regions with limited seismic data.Herein,we report a generative adversarial network(GAN)framework capable of simulating strong ground motions under various environmental conditions using only a small set of real earthquake records.The constructed GAN model generates ground motions based on continuous physical variables such as source distance,site conditions,and magnitude,effectively capturing the complexity and diversity of ground motions under different scenarios.This capability allows the proposed model to approximate real seismic data,making it applicable to a wide range of engineering purposes.Using the Shandong Pingyuan earthquake as an example,a specialized dataset was constructed based on regional real ground motion records.The response spectrum at target locations was obtained through inverse distance-weighted interpolation of actual response spectra,followed by continuous wavelet transform to derive the ground motion time histories at these locations.Through iterative parameter adjustments,the constructed GAN model learned the probability distribution of strong-motion data for this event.The trained model generated three-component ground-motion time histories with clear P-wave and S-wave characteristics,accurately reflecting the non-stationary nature of seismic records.Statistical comparisons between synthetic and real response spectra,waveform envelopes,and peak ground acceleration show a high degree of similarity,underscoring the effectiveness of the model in replicating both the statistical and physical characteristics of real ground motions.These findings validate the feasibility of GANs for generating realistic earthquake data in data-scarce regions,providing a reliable approach for enriching regional ground motion databases.Additionally,the results suggest that GAN-based networks are a powerful tool for building predictive models in seismic hazard analysis. 展开更多
关键词 Ground motion simulation Machine learning generative adversarial networks Wavelet transform
在线阅读 下载PDF
Infrared Single Pixel Imaging Based on Generative Adversarial Network
14
作者 JIANG Yilin ZHANG Yilong ZHANG Fangyuan 《Journal of Shanghai Jiaotong university(Science)》 2025年第6期1114-1124,共11页
In the field of imaging,the image resolution is required to be higher.There is always a contradiction between the sensitivity and resolution of the seeker in the infrared guidance system.This work uses the rosette sca... In the field of imaging,the image resolution is required to be higher.There is always a contradiction between the sensitivity and resolution of the seeker in the infrared guidance system.This work uses the rosette scanning mode for physical compression imaging in order to improve the resolution of the image as much as possible under the high-sensitivity infrared rosette point scanning mode and complete the missing information that is not scanned.It is effective to use optical lens instead of traditional optical reflection system,which can reduce the loss in optical path transmission.At the same time,deep learning neural network is used for control.An infrared single pixel imaging system that integrates sparse algorithm and recovery algorithm through the improved generative adversarial networks is trained.The experiment on the infrared aerial target dataset shows that when the input is sparse image after rose sampling,the system finally can realize the single pixel recovery imaging of the infrared image,which improves the resolution of the image while ensuring high sensitivity. 展开更多
关键词 image resolution rose sampling generative adversarial networks single pixel imaging
原文传递
Unsupervised Satellite Low-Light Image Enhancement Based on the Improved Generative Adversarial Network
15
作者 Ming Chen Yanfei Niu +1 位作者 Ping Qi Fucheng Wang 《Computers, Materials & Continua》 2025年第12期5015-5035,共21页
This research addresses the critical challenge of enhancing satellite images captured under low-light conditions,which suffer from severely degraded quality,including a lack of detail,poor contrast,and low usability.O... This research addresses the critical challenge of enhancing satellite images captured under low-light conditions,which suffer from severely degraded quality,including a lack of detail,poor contrast,and low usability.Overcoming this limitation is essential for maximizing the value of satellite imagery in downstream computer vision tasks(e.g.,spacecraft on-orbit connection,spacecraft surface repair,space debris capture)that rely on clear visual information.Our key novelty lies in an unsupervised generative adversarial network featuring two main contributions:(1)an improved U-Net(IU-Net)generator with multi-scale feature fusion in the contracting path for richer semantic feature extraction,and(2)a Global Illumination Attention Module(GIA)at the end of the contracting path to couple local and global information,significantly improving detail recovery and illumination adjustment.The proposed algorithm operates in an unsupervised manner.It is trained and evaluated on our self-constructed,unpaired Spacecraft Dataset for Detection,Enforcement,and Parts Recognition(SDDEP),designed specifically for low-light enhancement tasks.Extensive experiments demonstrate that our method outperforms the baseline EnlightenGAN,achieving improvements of 2.7%in structural similarity(SSIM),4.7%in peak signal-to-noise ratio(PSNR),6.3%in learning perceptual image patch similarity(LPIPS),and 53.2%in DeltaE 2000.Qualitatively,the enhanced images exhibit higher overall and local brightness,improved contrast,and more natural visual effects. 展开更多
关键词 Global illumination attention generative adversarial networks low-light enhancement global-local discriminator multi-scale feature fusion
在线阅读 下载PDF
A solution framework for the experimental data shortage problem of lithium-ion batteries:Generative adversarial network-based data augmentation for battery state estimation
16
作者 Jinghua Sun Ankun Gu Josef Kainz 《Journal of Energy Chemistry》 2025年第4期476-497,共22页
In order to address the widespread data shortage problem in battery research,this paper proposes a generative adversarial network model that combines it with deep convolutional networks,the Wasserstein distance,and th... In order to address the widespread data shortage problem in battery research,this paper proposes a generative adversarial network model that combines it with deep convolutional networks,the Wasserstein distance,and the gradient penalty to achieve data augmentation.To lower the threshold for implementing the proposed method,transfer learning is further introduced.The W-DC-GAN-GP-TL framework is thereby formed.This framework is evaluated on 3 different publicly available datasets to judge the quality of generated data.Through visual comparisons and the examination of two visualization methods(probability density function(PDF)and principal component analysis(PCA)),it is demonstrated that the generated data is hard to distinguish from the real data.The application of generated data for training a battery state model using transfer learning is further evaluated.Specifically,Bi-GRU-based and Transformer-based methods are implemented on 2 separate datasets for estimating state of health(SOH)and state of charge(SOC),respectively.The results indicate that the proposed framework demonstrates satisfactory performance in different scenarios:for the data replacement scenario,where real data are removed and replaced with generated data,the state estimator accuracy decreases only slightly;for the data enhancement scenario,the estimator accuracy is further improved.The estimation accuracy of SOH and SOC is as low as 0.69%and 0.58%root mean square error(RMSE)after applying the proposed framework.This framework provides a reliable method for enriching battery measurement data.It is a generalized framework capable of generating a variety of time series data. 展开更多
关键词 Lithium-ion battery generative adversarial network Data augmentation State of health State of charge Data shortage
在线阅读 下载PDF
Randomly generating realistic calcareous sand for directional seepage simulation using deep convolutional generative adversarial networks
17
作者 Dou Chen Wei Zhang +4 位作者 Chenghao Li Linjian Ma Xiaoqing Shi Haiyang Li Honghu Zhu 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第11期7297-7312,共16页
The issues of seepage in calcareous sand foundations and backfillshave a potentially detrimental effect on the stability and safety of superstructures.Simplifying calcareous sand grains as spheres or ellipsoids in num... The issues of seepage in calcareous sand foundations and backfillshave a potentially detrimental effect on the stability and safety of superstructures.Simplifying calcareous sand grains as spheres or ellipsoids in numerical simulations may lead to significantinaccuracies.In this paper,we present a novel intelligence framework based on a deep convolutional generative adversarial network(DCGAN).A DCGAN model was trained using a training dataset comprising 11,625 real particles for the random generation of three-dimensional calcareous sand particles.Subsequently,3800 realistic calcareous sand particles with intra-particle voids were generated.Generative fidelityand validity of the DCGAN model were well verifiedby the consistency of the statistical values of nine morphological parameters of both the training dataset and the generated dataset.Digital calcareous sand columns were obtained through gravitational deposition simulation of the generated particles.Directional seepage simulations were conducted,and the vertical permeability values of the sand columns were found to be in accordance with the objective law.The results demonstrate the potential of the proposed framework for stochastic modeling and multi-scale simulation of the seepage behaviors in calcareous sand foundations and backfills. 展开更多
关键词 Calcareous sand Random generation generative adversarial networks Discrete element modeling Signed distance field Vertical permeability
在线阅读 下载PDF
Non-Deterministic Symmetric Encryption Communication System Based on Generative Adversarial Networks
18
作者 Wu Xuguang Han Yiliang +2 位作者 Zhang Minqing Zhu Shuaishuai Li Yu 《China Communications》 2025年第5期273-284,共12页
Symmetric encryption algorithms learned by the previous proposed end-to-end adversarial network encryption communication systems are deterministic.With the same key and same plaintext,the deterministic algorithm will ... Symmetric encryption algorithms learned by the previous proposed end-to-end adversarial network encryption communication systems are deterministic.With the same key and same plaintext,the deterministic algorithm will lead to the same ciphertext.This means that the key in the deterministic encryption algorithm can only be used once,thus the encryption is not practical.To solve this problem,a nondeterministic symmetric encryption end-to-end communication system based on generative adversarial networks is proposed.We design a nonce-based adversarial neural network model,where a“nonce”standing for“number used only once”is passed to communication participants,and does not need to be secret.Moreover,we optimize the network structure through adding Batch Normalization(BN)to the CNNs(Convolutional Neural Networks),selecting the appropriate activation functions,and setting appropriate CNNs parameters.Results of experiments and analysis show that our system can achieve non-deterministic symmetric encryption,where Alice encrypting the same plaintext with the key twice will generate different ciphertexts,and Bob can decrypt all these different ciphertexts of the same plaintext to the correct plaintext.And our proposed system has fast convergence and the correct rate of decryption when the plaintext length is 256 or even longer. 展开更多
关键词 end-to-end communication systems generative adversarial networks symmetric encryption
在线阅读 下载PDF
SC-GAN:A Spectrum Cartography with Satellite Internet Based on Pix2Pix Generative Adversarial Network
19
作者 Zhen Pan Zhang Bangning +2 位作者 Wang Heng MaWenfeng Guo Daoxing 《China Communications》 2025年第2期47-61,共15页
The increasing demand for radioauthorized applications in the 6G era necessitates enhanced monitoring and management of radio resources,particularly for precise control over the electromagnetic environment.The radio m... The increasing demand for radioauthorized applications in the 6G era necessitates enhanced monitoring and management of radio resources,particularly for precise control over the electromagnetic environment.The radio map serves as a crucial tool for describing signal strength distribution within the current electromagnetic environment.However,most existing algorithms rely on sparse measurements of radio strength,disregarding the impact of building information.In this paper,we propose a spectrum cartography(SC)algorithm that eliminates the need for relying on sparse ground-based radio strength measurements by utilizing a satellite network to collect data on buildings and transmitters.Our algorithm leverages Pix2Pix Generative Adversarial Network(GAN)to construct accurate radio maps using transmitter information within real geographical environments.Finally,simulation results demonstrate that our algorithm exhibits superior accuracy compared to previously proposed methods. 展开更多
关键词 electromagnetic situation Pix2Pix generative adversarial network radio map satellite internet spectrum cartography
在线阅读 下载PDF
Handling class imbalance of radio frequency interference in deep learning-based fast radio burst search pipelines using a deep convolutional generative adversarial network
20
作者 Wenlong Du Yanling Liu Maozheng Chen 《Astronomical Techniques and Instruments》 2025年第1期10-15,共6页
This paper addresses the performance degradation issue in a fast radio burst search pipeline based on deep learning.This issue is caused by the class imbalance of the radio frequency interference samples in the traini... This paper addresses the performance degradation issue in a fast radio burst search pipeline based on deep learning.This issue is caused by the class imbalance of the radio frequency interference samples in the training dataset,and one solution is applied to improve the distribution of the training data by augmenting minority class samples using a deep convolutional generative adversarial network.Experi.mental results demonstrate that retraining the deep learning model with the newly generated dataset leads to a new fast radio burst classifier,which effectively reduces false positives caused by periodic wide-band impulsive radio frequency interference,thereby enhancing the performance of the search pipeline. 展开更多
关键词 Fast radio burst Deep convolutional generative adversarial network Class imbalance Radio frequency interference Deep learning
在线阅读 下载PDF
上一页 1 2 220 下一页 到第
使用帮助 返回顶部