目的:探讨玫瑰痤疮患者采用低能量Pixel调Q像束激光与米诺环素联合治疗后红斑情况及面部功能改善情况。方法:研究对象选自于2020年3月-2023年7月在上海交通大学医学院苏州九龙医院接受治疗的玫瑰痤疮患者110例,并分为对照组和观察组,每...目的:探讨玫瑰痤疮患者采用低能量Pixel调Q像束激光与米诺环素联合治疗后红斑情况及面部功能改善情况。方法:研究对象选自于2020年3月-2023年7月在上海交通大学医学院苏州九龙医院接受治疗的玫瑰痤疮患者110例,并分为对照组和观察组,每组例数均为55例,分组方法为随机数字表法。对照组给予盐酸米诺环素片,在对照组患者治疗的基础上,采用低能量Pixel调Q像束激光对观察组患者进行治疗。两组治疗时间均为6周。比较两组临床疗效(治疗6周后),玫瑰痤疮情况、整体病情、p38丝裂原活化蛋白激酶(p38 mitogen activated protein kinase,p38MAPK)通路蛋白、生活质量、红斑情况、面部功能、炎性因子(治疗前、治疗6周后),不良反应(治疗期间)。结果:治疗6周后,观察组总有效率高于对照组(76.36%vs.54.55%,P<0.05)。与治疗前比较,两组治疗6周后的玫瑰痤疮医师全球评分(Patient's global assessment,PGA)、整体病情评估(Investigator global assessment,IGA)、皮肤病生活质量量表(Dermatology life quality index,DLQI)评分、红斑评估量表(Clinician′s erythema assessment,CEA)评分、皮损区红斑指数(Erythema index,EI)、经皮水分丢失(Trans epidermal water loss,TEWL)、皮肤酸碱度(Pondus Hydrogenii,pH)值、炎性因子及p38MAPK通路蛋白相关因子水平均降低,且相比于对照组,观察组更低;两组角质层含水量均升高,且相比于对照组,观察组更高(P<0.05)。观察组和对照组治疗期间的不良反应发生率比较差异无统计学意义(P>0.05)。结论:玫瑰痤疮患者经低能量Pixel调Q像束激光联合米诺环素治疗后,其相关临床症状可得到有效缓解,炎症反应得以减轻,并可调节p38MAPK信号通路蛋白的表达,进一步可促进患者红斑情况及面部功能的改善,进而促使患者生活质量及临床疗效得以提高,且具有良好的安全性。展开更多
Brazil’s deforestation monitoring integrates accuracy and current monitoring for land use and land cover applications.Regular monitoring of deforestation and non-deforestation requires Sentinel-2 multispectral satell...Brazil’s deforestation monitoring integrates accuracy and current monitoring for land use and land cover applications.Regular monitoring of deforestation and non-deforestation requires Sentinel-2 multispectral satellite images of several bands at various frequencies,the mix of high-and low-resolution images that make object classification difficult because of the mixed pixel problem.Accuracy is impacted by the mixed pixel problem,which occurs when pixels belong to different classes and makes detection challenging.To identify mixed pixels,Band Math is used to merge numerous bands to generate a new band NDVI.Thresholding is used to analyze the edges of deforested and non-deforested areas.Segmentation is then used to analyze the pixels which helps to identify the number of mixed pixels to compute the deforested and non-deforested areas.Segmented image pixels are used to categorize the deforestation of the Brazilian Amazon Forest between 2019 and 2023.Verify how many pixels are mixed to improve accuracy and identify mixed pixel issues;compare the mixed and pure pixels of fuzzy clustering with the subtracted morphological image pixels.With the help of segmentation and clustering researchers effectively validate mixed pixels in a specific area.The proposed methodology is easy to analyze and helpful for an appropriate calculation of deforested and non-deforested areas.展开更多
Maritime target recognition and image perception enhancement are gradually being promoted and applied in ocean engineering. This paper proposes the attentional multi-pixel fusion(AMF) algorithm for the intelligent nav...Maritime target recognition and image perception enhancement are gradually being promoted and applied in ocean engineering. This paper proposes the attentional multi-pixel fusion(AMF) algorithm for the intelligent navigation of unmanned surface vessels(USVs). The algorithm preprocesses the image pixel matrix in blocks, computes the mapping between regional and full-pixel matrices, and adaptively equalizes the mapping weights via a Gaussian-fuzzy matrix.This approach guarantees the preservation of the target contour and texture information. Compared with five classic enhancement algorithms, the AMF algorithm improves the peak signal-to-noise ratio(PSNR) and structural similarity index(SSIM). Experimental validation via YOLOv8 for maritime target detection demonstrates 2.1% and 2.4%improvements in the evaluation indices over training on 4000 original images, with shorter training times and lower confusion rates. In maritime target ranging, the AMF algorithm, coupled with the ISR method, exhibits the lowest improved stereo ranging mean absolute error and standard deviation values and higher similarity between the regional and full-pixel matrices. In summary, the AMF algorithm excels in target detection and ranging, offering promising applications in ocean engineering, such as marine resource exploitation, path planning, and intelligent collaboration among unmanned vessels.展开更多
The types and structures of inorganic pores are key factors in evaluations of the reservoir space and distribution characteristics of shale oil and gas.However,quantitative identification methods for pores of differen...The types and structures of inorganic pores are key factors in evaluations of the reservoir space and distribution characteristics of shale oil and gas.However,quantitative identification methods for pores of different inorganic components have not yet been fully developed.For this reason,a quantitative characterization method of inorganic pores using pixel information was proposed in this study.A machine learning algorithm was used to assist the field emission scanning electron microscopy(FE-SEM)image processing of shale to realize the accurate identification and quantitative characterization of inorganic pores on the surface of high-precision images of shale with a small view.Moreover,large-view image splicing technology,combined with quantitative evaluation of minerals by scanning electron microscopy(QEMSCAN)image joint characterization technology,was used to accurately analyze the distribution characteristics of inorganic pores under different mineral components.The quantitative methods of pore characteristics of different inorganic components under the pixel information of shale were studied.The results showed that(1)the Waikato Environment for Knowledge Analysis(WEKA)machine learning model can effectively identify and extract shale mineral components and inorganic pore distribution,and the large-view FE-SEM images are representative of samples at the 200μm×200μm view scale,meeting statistical requirements and eliminating the influence of heterogeneity;(2)the pores developed by different mineral components of shale had obvious differences,indicating that the development of inorganic pores is highly correlated with the properties of shale minerals themselves;and(3)the pore-forming ability of different mineral components is calculated by the quantitative method of single component pore-forming coefficient.Chlorite showed the highest pore-forming ability,followed by(in descending order)illite,pyrite,calcite,dolomite,albite,orthoclase,quartz,and apatite.This study contributes to advancing our understanding of inorganic pore characteristics in shale.展开更多
Metamaterials have exotic physical properties that rely on the construction of their underlying architecture.However,the physical properties of conventional mechanical metamaterials are permanently programmed into the...Metamaterials have exotic physical properties that rely on the construction of their underlying architecture.However,the physical properties of conventional mechanical metamaterials are permanently programmed into their periodic interconnect configurations,resulting in their lack of modularity,scalable fabrication,and programmability.Mechanical metamaterials typically exhibit a single extraordinary mechanical property or multiple extraordinary properties coupled together,making it difficult to realize multiple independent extraordinary mechanical properties.Here,the pixel mechanics metamaterials(PMMs)with multifunctional and reprogrammable properties are developed by arraying uncoupled constrained individual modular mechanics pixels(MPs).The MPs enable controlled conversion between two extraordinary mechanical properties(multistability and compression-torsion coupling deformation).Each MP exhibits 32 independent and reversible room temperature programming configurations.In addition,the programmability of metamaterials is further enhanced by shape memory polymer(SMP)and 4D printing,greatly enriching the design freedom.For the PMM consisting of m×n MPs,it has 32(m×n)independent room temperature programming configurations.The application prospects of metamaterials in the vibration isolation device and energy absorption device with programmable performance have been demonstrated.The vibration isolation frequencies of the MP before and after programming were[0 Hz-5.86 Hz],[0 Hz-13.67 Hz and 306.64 Hz-365.23 Hz].The total energy absorption of the developed PMM can be adjusted controllably in the range of 1.01 J-3.91 J.Six standard digital logic gates that do not require sustained external force are designed by controlling the closure between the modules.This design paradigm will facilitate the further development of multifunctional and reprogrammable metamaterials.展开更多
Previous research utilizing Cartoon Generative Adversarial Network(CartoonGAN)has encountered limitations in managing intricate outlines and accurately representing lighting effects,particularly in complex scenes requ...Previous research utilizing Cartoon Generative Adversarial Network(CartoonGAN)has encountered limitations in managing intricate outlines and accurately representing lighting effects,particularly in complex scenes requiring detailed shading and contrast.This paper presents a novel Enhanced Pixel Integration(EPI)technique designed to improve the visual quality of images generated by CartoonGAN.Rather than modifying the core model,the EPI approach employs post-processing adjustments that enhance images without significant computational overhead.In this method,images produced by CartoonGAN are converted from Red-Green-Blue(RGB)to Hue-Saturation-Value(HSV)format,allowing for precise adjustments in hue,saturation,and brightness,thereby improving color fidelity.Specific correction values are applied to fine-tune colors,ensuring they closely match the original input while maintaining the characteristic,stylized effect of CartoonGAN.The corrected images are blended with the originals to retain aesthetic appeal and visual distinctiveness,resulting in improved color accuracy and overall coherence.Experimental results demonstrate that EPI significantly increases similarity to original input images compared to the standard CartoonGAN model,achieving a 40.14%enhancement in visual similarity in Learned Perceptual Image Patch Similarity(LPIPS),a 30.21%improvement in structural consistency in Structural Similarity Index Measure(SSIM),and an 11.81%reduction in pixel-level error in Mean Squared Error(MSE).By addressing limitations present in the traditional CartoonGAN pipeline,EPI offers practical enhancements for creative applications,particularly within media and design fields where visual fidelity and artistic style preservation are critical.These improvements align with the goals of Fog and Edge Computing,which also seek to enhance processing efficiency and application performance in sensitive industries such as healthcare,logistics,and education.This research not only resolves key deficiencies in existing CartoonGAN models but also expands its potential applications in image-based content creation,bridging gaps between technical constraints and creative demands.Future studies may explore the adaptability of EPI across various datasets and artistic styles,potentially broadening its impact on visual transformation tasks.展开更多
In recent years,deep learning has been introduced into the field of Single-pixel imaging(SPI),garnering significant attention.However,conventional networks still exhibit limitations in preserving image details.To addr...In recent years,deep learning has been introduced into the field of Single-pixel imaging(SPI),garnering significant attention.However,conventional networks still exhibit limitations in preserving image details.To address this issue,we integrate Large Kernel Convolution(LKconv)into the U-Net framework,proposing an enhanced network structure named U-LKconv network,which significantly enhances the capability to recover image details even under low sampling conditions.展开更多
We present a novel scheme for embedding secret data into a binary image without introducing noticeable artifacts. Unlike some block-based methods, the proposed scheme encodes the secret bits directly into boundary pix...We present a novel scheme for embedding secret data into a binary image without introducing noticeable artifacts. Unlike some block-based methods, the proposed scheme encodes the secret bits directly into boundary pixels by checking each pixel of the cover image in a pseudo-random order for embedding eligibility. A set of rules ensures correct identification of data-carrying pixels in blind extraction. The proposed scheme does not generate isolated dots, and can incorporate various coding methods such as matrix encoding to further improve the embedding performance. It is shown that up to one fourth of the boundary pixels may be used to carry secret data. Experimental results indicate that the method can achieve good visual quality with fairly large data capacity.展开更多
1.Objective A graphite deposit has been discovered in Sujiquan, Xinjiang in 1980s,which provides detailed geological settings for the super-large graphite deposit discovered in Huangyangshan pluton with total reserves...1.Objective A graphite deposit has been discovered in Sujiquan, Xinjiang in 1980s,which provides detailed geological settings for the super-large graphite deposit discovered in Huangyangshan pluton with total reserves up to 7.264×10^9 t in 2017.Outcrops of igneous rocks in the study area include Middle Devonian plagioclase granite and Late Carboniferous alkali feldspar granite that is referred to the Huangyangshan pluton,which includes the Lower Carboniferous Heishantou Formation and Jiangbasi Formation,both of which consist of volcanic-sedimentary rocks (Fig.1).Sujiquan fault provided passage for the migration of volcanic intrusions.Graphite deposits are usually hosted by metamorphic rocks,but Huangyanshan deposits are hosted by granite rocks,which are rarely known.The Huangyangshan graphite deposit hosted by granite pluton at Huangyangshan area was discovered by Xinjiang Branch of China National Geological Exploration Center of Building Materials Industry since 2015.展开更多
The stability control of surrounding rock for large or super-large section chamber is a difficult technical problem in deep mining condition.Based on the in-site geological conditions of Longgu coal mine,this paper us...The stability control of surrounding rock for large or super-large section chamber is a difficult technical problem in deep mining condition.Based on the in-site geological conditions of Longgu coal mine,this paper used the dynamic module of FLAC3D to study the response characteristics of deep super-large section chamber under dynamic and static combined loading condition.Results showed that under the static loading condition,the maximum vertical stress,deformation and failure range are large,where the stress concentration coefficient is 1.64.The maximum roof-to-floor and two-sides deformations are 54.6 mm and 53.1 mm,respectively.Then,under the dynamic and static combined loading condition:(1)The influence of dynamic load frequency on the two-sides is more obvious;(2)The dynamic load amplitude has the greatest influence on the stress concentration degree,and the plastic failure tends to develop to the deeper;(3)With the dynamic load source distance increase,the response of surrounding rock is gradually attenuated.On this basis,empirical equations for each dynamic load conditions were obtained by using regression analysis method,and all correlation coefficients are greater than 0.99.This research provided reference for the supporting design of deep super-large section chamber under same or similar conditions.展开更多
The stress concentration and failure at chamber intersections in coal mine are intense,especially in deepburied,super-large section conditions.In this paper,the plastic radius of super-large section chamber under uneq...The stress concentration and failure at chamber intersections in coal mine are intense,especially in deepburied,super-large section conditions.In this paper,the plastic radius of super-large section chamber under unequal pressure was corrected on the basis of the size effect.Then,stress and failure evolution of intersections under different crossing angles and equivalent angular bisectors were revealed.Furthermore,2 trajectory curves of failure and stress were analytically expressed,which divided the intersection into 5 influencing zones in the light of stress superposition degree.After determining instability trigger point and instability path,instability energy criterion of intersection can be obtained as K>1,which means that the external energy is greater than the sum of energy consumed by surrounding rock instability and supporting structure failure.Taking coal-gangue separation system of Longgu Coal Mine as example,it was found that there was instability risk under original parameters.For long-term stability,an optimization design method was proposed by considering safety factor,and optimal support scheme was obtained.Field monitoring showed intersections deformations were relatively small with the maximum of 125 mm,which verified the rationality of theoretical analysis.This study provides guidance for the stability control of the intersections under the same or similar conditions.展开更多
Bainiuchang silver-polymetallic ore deposit is located in the southeast Yunnan tin-polymetallic metallogenic belt.The probable reserves and inferred resources of the deposit are of 6 470 t Ag and 1.10 Mt Pb and 1.72 M...Bainiuchang silver-polymetallic ore deposit is located in the southeast Yunnan tin-polymetallic metallogenic belt.The probable reserves and inferred resources of the deposit are of 6 470 t Ag and 1.10 Mt Pb and 1.72 Mt Zn and 86 kt Sn.Orebodies of the deposit occur in clastic-carbonate rocks of Tianpeng Formation and Longha Formation of the middle Cambrian System above the Bainiuchang concealed granite of the late Yanshan period.The concealed granite has the characteristics of tin-bearing granites.Abundance of the mineralization elements Sn,Cu,Zn,Pb,Ag and Sb is high in the granitic rocks.Sulphur isotope data of the metal sulphides indicate that most sulphur is derived from the magmas.The ores are similar in rare earth element(REE)patterns to the granitic rocks.The granitic magma activity results in ore-bearing structures.Rocks of the Middle Cambrian System above the concealed intrusion suffer from skarnization,hornfelsing,marbleization,siliconizing and carbonatization.The mineralization elements Sn,Cu,Zn,Pb,Ag and Sb successively appear from the top of the granite to surrounding rocks.These evidences indicate that the granitic magmatism is the principal mineralization factor.The opinion that the south Bainiuchang ore field and the north Awei ore block are tin and copper potential exploration areas was put forward and was verified by drilling tests.展开更多
Objective The Songpan-Garze Fold Belt(SGFB),located in the eastern part of the Tibet Plateau and west of the Sichuan Basin,is an important pegmatite province in China.Some famous pegmatite type deposits occur in the S...Objective The Songpan-Garze Fold Belt(SGFB),located in the eastern part of the Tibet Plateau and west of the Sichuan Basin,is an important pegmatite province in China.Some famous pegmatite type deposits occur in the SGFB,including the Xuebaoding,Jiajika,Keeryin rare metal deposits and Danba muscovite deposit(Li Jiankang et al.,2015).The newly discovered super-large Lijiagou展开更多
Objective The Huashi Village in Xinglong County of Hebei Province is located in the Yanshan subsidence zone in the central eastern North China Plate, which is 137 km away from Beijing City (Fig. la). This area has ...Objective The Huashi Village in Xinglong County of Hebei Province is located in the Yanshan subsidence zone in the central eastern North China Plate, which is 137 km away from Beijing City (Fig. la). This area has undergone large -scale magmatic intrusion affected by the tectonic compression of the Pacific Plate in the Mesozoic (known as the Yanshanian movement) to form many alkaline rocks such as the Wulingshan rock mass. Previous studies have conducted petrological research and reconnaissance survey of rare metal ores in this area (Tian Shuzhang and Guo Zongshan, 1981; Xu Baoling et al., 1996). In 2016, the Qinhuangdao Mineral and Hydrology Engineering Geological Brigade of Hebei Bureau of Geology and Mineral Resources Exploration implemented the project of Reconnaissance of Rare Metal Ores Including Rubidium in Huashi Village of Xinglong County, Hebei Province, and discovered super-large rare metal deposits of rubidium and biobium in the Madi alkali feldspar granite bodies in the Huashi Village to achieve great breakthrough of rare metal ore prospecting.展开更多
Traditional gust load factor(GLF)method,inertial wind load(IWL)method and tri-component method(LRC+IWL)cannot accurately analyze the wind-induced responses of super-large cooling towers,so the real combination formula...Traditional gust load factor(GLF)method,inertial wind load(IWL)method and tri-component method(LRC+IWL)cannot accurately analyze the wind-induced responses of super-large cooling towers,so the real combination formulas of fluctuating wind-induced responses and equivalent static wind loads(ESWLSs)were derived based on structural dynamics and random vibration theory.The consistent coupled method(CCM)was presented to compensate the coupled term between background and resonant response.Taking the super-large cooling tower(H=215 m)of nuclear power plant in Jiangxi Province,China,which is the highest and largest in China,as the example,based on modified equivalent beam-net design method,the aero-elastic model for simultaneous pressure and vibration measurement of super-large cooling tower is firstly carried out.Then,combining wind tunnel test and CCM,the effects of self-excited force on the surface pressures and wind-induced responses are discussed,and the wind-induced response characteristics of background component,resonant component,coupled term between background and resonant response,fluctuating responses,and wind vibration coefficients are discussed.It can be concluded that wind-induced response mechanism must be understood to direct the wind resistant design for super-large cooling towers.展开更多
During 2015, gold prospecting in Laizhou City of Shandong Peninsula in China has achieved a major breakthrough. Deposits containing 470 and 389 tons of gold metal were discovered in the northern sea area of Sanshandao...During 2015, gold prospecting in Laizhou City of Shandong Peninsula in China has achieved a major breakthrough. Deposits containing 470 and 389 tons of gold metal were discovered in the northern sea area of Sanshandao and the Shaling area, respectively. As a result, the gold prospective resources in the entire Jiaodong Peninsula have now exceeded 4000 tons, fully indicative of the super-large prospecting potential of the Jiaojia-type deposits.展开更多
Rare metal ore reserves are an important strategic resource, and their metallogenic mechanism and mineralization studies have also been received widespread international attention.
By using the MOS-based model established in this paper, the physical process of photoelectron generation, transfer,and storage in the four-transistor active pixel sensor(4 T-APS) pixels can be simulated in SPICE envir...By using the MOS-based model established in this paper, the physical process of photoelectron generation, transfer,and storage in the four-transistor active pixel sensor(4 T-APS) pixels can be simulated in SPICE environment. The variable capacitance characteristics of double junctions in pinned photodiodes(PPDs) and the threshold voltage difference formed by channel nonuniform doping in transfer gates(TGs) are considered with this model. The charge transfer process of photogenerated electrons from PPDs to the floating diffusion(FD) is analyzed, and the function of nonuniform doping of TGs in suppressing charge injection back to PPDs is represented with the model. The optical and electrical characteristics of all devices in the pixel are effectively combined with the model. Moreover, the charge transfer efficiency and the voltage variation in PPD can be described with the model. Compared with the hybrid simulation in TCAD and the Verilog-A simulation in SPICE, this model has higher simulation efficiency and accuracy, respectively. The effectiveness of the MOS-based model is experimentally verified in a 3 μm test pixel designed in 0.11 μm CIS process.展开更多
To improve the full-well capacity and linear dynamic range of CMOS image sensor,a special finger-shaped pinned photodiode(PPD)is designed.In terms of process,the first N-type ion implantation of the PPD N buried layer...To improve the full-well capacity and linear dynamic range of CMOS image sensor,a special finger-shaped pinned photodiode(PPD)is designed.In terms of process,the first N-type ion implantation of the PPD N buried layer is extended under the transfer gate,thereby increasing the PPD capacitance.Based on TCAD simulation,the width and spacing of PPD were precisely adjusted.A high full-well capacity pixel design with a pixel size of 6×6μm^2 is realized based on the 0.18μm CMOS process.The simulation results indicate that the pixel with the above structure and process has a depletion depth of 2.8μm and a charge transfer efficiency of 100%.The measurement results of the test chip show that the full-well capacity can reach 68650 e–.Compared with the conventional structure,the proposed PPD structure can effectively improve the full well capacity of the pixel.展开更多
文摘目的:探讨玫瑰痤疮患者采用低能量Pixel调Q像束激光与米诺环素联合治疗后红斑情况及面部功能改善情况。方法:研究对象选自于2020年3月-2023年7月在上海交通大学医学院苏州九龙医院接受治疗的玫瑰痤疮患者110例,并分为对照组和观察组,每组例数均为55例,分组方法为随机数字表法。对照组给予盐酸米诺环素片,在对照组患者治疗的基础上,采用低能量Pixel调Q像束激光对观察组患者进行治疗。两组治疗时间均为6周。比较两组临床疗效(治疗6周后),玫瑰痤疮情况、整体病情、p38丝裂原活化蛋白激酶(p38 mitogen activated protein kinase,p38MAPK)通路蛋白、生活质量、红斑情况、面部功能、炎性因子(治疗前、治疗6周后),不良反应(治疗期间)。结果:治疗6周后,观察组总有效率高于对照组(76.36%vs.54.55%,P<0.05)。与治疗前比较,两组治疗6周后的玫瑰痤疮医师全球评分(Patient's global assessment,PGA)、整体病情评估(Investigator global assessment,IGA)、皮肤病生活质量量表(Dermatology life quality index,DLQI)评分、红斑评估量表(Clinician′s erythema assessment,CEA)评分、皮损区红斑指数(Erythema index,EI)、经皮水分丢失(Trans epidermal water loss,TEWL)、皮肤酸碱度(Pondus Hydrogenii,pH)值、炎性因子及p38MAPK通路蛋白相关因子水平均降低,且相比于对照组,观察组更低;两组角质层含水量均升高,且相比于对照组,观察组更高(P<0.05)。观察组和对照组治疗期间的不良反应发生率比较差异无统计学意义(P>0.05)。结论:玫瑰痤疮患者经低能量Pixel调Q像束激光联合米诺环素治疗后,其相关临床症状可得到有效缓解,炎症反应得以减轻,并可调节p38MAPK信号通路蛋白的表达,进一步可促进患者红斑情况及面部功能的改善,进而促使患者生活质量及临床疗效得以提高,且具有良好的安全性。
文摘Brazil’s deforestation monitoring integrates accuracy and current monitoring for land use and land cover applications.Regular monitoring of deforestation and non-deforestation requires Sentinel-2 multispectral satellite images of several bands at various frequencies,the mix of high-and low-resolution images that make object classification difficult because of the mixed pixel problem.Accuracy is impacted by the mixed pixel problem,which occurs when pixels belong to different classes and makes detection challenging.To identify mixed pixels,Band Math is used to merge numerous bands to generate a new band NDVI.Thresholding is used to analyze the edges of deforested and non-deforested areas.Segmentation is then used to analyze the pixels which helps to identify the number of mixed pixels to compute the deforested and non-deforested areas.Segmented image pixels are used to categorize the deforestation of the Brazilian Amazon Forest between 2019 and 2023.Verify how many pixels are mixed to improve accuracy and identify mixed pixel issues;compare the mixed and pure pixels of fuzzy clustering with the subtracted morphological image pixels.With the help of segmentation and clustering researchers effectively validate mixed pixels in a specific area.The proposed methodology is easy to analyze and helpful for an appropriate calculation of deforested and non-deforested areas.
基金financially supported by the Foundation of Shanxi Key Laboratory of Machine Vision and Virtual Reality (Grant No.447-110103)the Science and Technology Innovation Plan of Shanghai Science and Technology Commission (Grant No. 22dz1204000)。
文摘Maritime target recognition and image perception enhancement are gradually being promoted and applied in ocean engineering. This paper proposes the attentional multi-pixel fusion(AMF) algorithm for the intelligent navigation of unmanned surface vessels(USVs). The algorithm preprocesses the image pixel matrix in blocks, computes the mapping between regional and full-pixel matrices, and adaptively equalizes the mapping weights via a Gaussian-fuzzy matrix.This approach guarantees the preservation of the target contour and texture information. Compared with five classic enhancement algorithms, the AMF algorithm improves the peak signal-to-noise ratio(PSNR) and structural similarity index(SSIM). Experimental validation via YOLOv8 for maritime target detection demonstrates 2.1% and 2.4%improvements in the evaluation indices over training on 4000 original images, with shorter training times and lower confusion rates. In maritime target ranging, the AMF algorithm, coupled with the ISR method, exhibits the lowest improved stereo ranging mean absolute error and standard deviation values and higher similarity between the regional and full-pixel matrices. In summary, the AMF algorithm excels in target detection and ranging, offering promising applications in ocean engineering, such as marine resource exploitation, path planning, and intelligent collaboration among unmanned vessels.
基金supported by the National Natural Science Foundation of China(42372144)the Natural Science Foundation of Xinjiang Uygur Autonomous Region(2024D01E09)the Strategic Cooperation Technology Projects of CNPC and CUPB(ZLZX2020-01-05).
文摘The types and structures of inorganic pores are key factors in evaluations of the reservoir space and distribution characteristics of shale oil and gas.However,quantitative identification methods for pores of different inorganic components have not yet been fully developed.For this reason,a quantitative characterization method of inorganic pores using pixel information was proposed in this study.A machine learning algorithm was used to assist the field emission scanning electron microscopy(FE-SEM)image processing of shale to realize the accurate identification and quantitative characterization of inorganic pores on the surface of high-precision images of shale with a small view.Moreover,large-view image splicing technology,combined with quantitative evaluation of minerals by scanning electron microscopy(QEMSCAN)image joint characterization technology,was used to accurately analyze the distribution characteristics of inorganic pores under different mineral components.The quantitative methods of pore characteristics of different inorganic components under the pixel information of shale were studied.The results showed that(1)the Waikato Environment for Knowledge Analysis(WEKA)machine learning model can effectively identify and extract shale mineral components and inorganic pore distribution,and the large-view FE-SEM images are representative of samples at the 200μm×200μm view scale,meeting statistical requirements and eliminating the influence of heterogeneity;(2)the pores developed by different mineral components of shale had obvious differences,indicating that the development of inorganic pores is highly correlated with the properties of shale minerals themselves;and(3)the pore-forming ability of different mineral components is calculated by the quantitative method of single component pore-forming coefficient.Chlorite showed the highest pore-forming ability,followed by(in descending order)illite,pyrite,calcite,dolomite,albite,orthoclase,quartz,and apatite.This study contributes to advancing our understanding of inorganic pore characteristics in shale.
基金the financial support provided by the National Key R&D Program of China(2022YFB3805700)the National Natural Science Foundation of China(Grant Nos.12072094 and 12172106)+2 种基金the China Postdoctoral Science Foundation(Grant No.2023M730869)the Heilongjiang Natural Science Foundation Joint Guidance Project(Grant No.LH2023A004)the Postdoctoral Fellowship Program of CPSF(Grant No.GZB20230959)。
文摘Metamaterials have exotic physical properties that rely on the construction of their underlying architecture.However,the physical properties of conventional mechanical metamaterials are permanently programmed into their periodic interconnect configurations,resulting in their lack of modularity,scalable fabrication,and programmability.Mechanical metamaterials typically exhibit a single extraordinary mechanical property or multiple extraordinary properties coupled together,making it difficult to realize multiple independent extraordinary mechanical properties.Here,the pixel mechanics metamaterials(PMMs)with multifunctional and reprogrammable properties are developed by arraying uncoupled constrained individual modular mechanics pixels(MPs).The MPs enable controlled conversion between two extraordinary mechanical properties(multistability and compression-torsion coupling deformation).Each MP exhibits 32 independent and reversible room temperature programming configurations.In addition,the programmability of metamaterials is further enhanced by shape memory polymer(SMP)and 4D printing,greatly enriching the design freedom.For the PMM consisting of m×n MPs,it has 32(m×n)independent room temperature programming configurations.The application prospects of metamaterials in the vibration isolation device and energy absorption device with programmable performance have been demonstrated.The vibration isolation frequencies of the MP before and after programming were[0 Hz-5.86 Hz],[0 Hz-13.67 Hz and 306.64 Hz-365.23 Hz].The total energy absorption of the developed PMM can be adjusted controllably in the range of 1.01 J-3.91 J.Six standard digital logic gates that do not require sustained external force are designed by controlling the closure between the modules.This design paradigm will facilitate the further development of multifunctional and reprogrammable metamaterials.
基金supported by the National Research Foundation of Korea(NRF)under Grant RS-2022-NR-069955(2022R1A2C1092178).
文摘Previous research utilizing Cartoon Generative Adversarial Network(CartoonGAN)has encountered limitations in managing intricate outlines and accurately representing lighting effects,particularly in complex scenes requiring detailed shading and contrast.This paper presents a novel Enhanced Pixel Integration(EPI)technique designed to improve the visual quality of images generated by CartoonGAN.Rather than modifying the core model,the EPI approach employs post-processing adjustments that enhance images without significant computational overhead.In this method,images produced by CartoonGAN are converted from Red-Green-Blue(RGB)to Hue-Saturation-Value(HSV)format,allowing for precise adjustments in hue,saturation,and brightness,thereby improving color fidelity.Specific correction values are applied to fine-tune colors,ensuring they closely match the original input while maintaining the characteristic,stylized effect of CartoonGAN.The corrected images are blended with the originals to retain aesthetic appeal and visual distinctiveness,resulting in improved color accuracy and overall coherence.Experimental results demonstrate that EPI significantly increases similarity to original input images compared to the standard CartoonGAN model,achieving a 40.14%enhancement in visual similarity in Learned Perceptual Image Patch Similarity(LPIPS),a 30.21%improvement in structural consistency in Structural Similarity Index Measure(SSIM),and an 11.81%reduction in pixel-level error in Mean Squared Error(MSE).By addressing limitations present in the traditional CartoonGAN pipeline,EPI offers practical enhancements for creative applications,particularly within media and design fields where visual fidelity and artistic style preservation are critical.These improvements align with the goals of Fog and Edge Computing,which also seek to enhance processing efficiency and application performance in sensitive industries such as healthcare,logistics,and education.This research not only resolves key deficiencies in existing CartoonGAN models but also expands its potential applications in image-based content creation,bridging gaps between technical constraints and creative demands.Future studies may explore the adaptability of EPI across various datasets and artistic styles,potentially broadening its impact on visual transformation tasks.
文摘In recent years,deep learning has been introduced into the field of Single-pixel imaging(SPI),garnering significant attention.However,conventional networks still exhibit limitations in preserving image details.To address this issue,we integrate Large Kernel Convolution(LKconv)into the U-Net framework,proposing an enhanced network structure named U-LKconv network,which significantly enhances the capability to recover image details even under low sampling conditions.
基金Project supported by the National Natural Science Foundation of China (Grant Nos.60372090, 60502039), and the Key Project of Shanghai Municipality for Basic Research (Grant No.04JC14037)
文摘We present a novel scheme for embedding secret data into a binary image without introducing noticeable artifacts. Unlike some block-based methods, the proposed scheme encodes the secret bits directly into boundary pixels by checking each pixel of the cover image in a pseudo-random order for embedding eligibility. A set of rules ensures correct identification of data-carrying pixels in blind extraction. The proposed scheme does not generate isolated dots, and can incorporate various coding methods such as matrix encoding to further improve the embedding performance. It is shown that up to one fourth of the boundary pixels may be used to carry secret data. Experimental results indicate that the method can achieve good visual quality with fairly large data capacity.
文摘1.Objective A graphite deposit has been discovered in Sujiquan, Xinjiang in 1980s,which provides detailed geological settings for the super-large graphite deposit discovered in Huangyangshan pluton with total reserves up to 7.264×10^9 t in 2017.Outcrops of igneous rocks in the study area include Middle Devonian plagioclase granite and Late Carboniferous alkali feldspar granite that is referred to the Huangyangshan pluton,which includes the Lower Carboniferous Heishantou Formation and Jiangbasi Formation,both of which consist of volcanic-sedimentary rocks (Fig.1).Sujiquan fault provided passage for the migration of volcanic intrusions.Graphite deposits are usually hosted by metamorphic rocks,but Huangyanshan deposits are hosted by granite rocks,which are rarely known.The Huangyangshan graphite deposit hosted by granite pluton at Huangyangshan area was discovered by Xinjiang Branch of China National Geological Exploration Center of Building Materials Industry since 2015.
基金Project(2018YFC0604703)supported by the National Key R&D Program of ChinaProjects(51804181,51874190)supported by the National Natural Science Foundation of China+3 种基金Project(ZR2018QEE002)supported by the Shandong Province Natural Science Fund,ChinaProject(ZR2018ZA0603)supported by the Major Program of Shandong Province Natural Science Foundation,ChinaProject(2019GSF116003)supported by the Key R&D Project of Shandong Province,ChinaProject(SDKDYC190234)supported by the Shandong University of Science and Technology,Graduate Student Technology Innovation Project,China。
文摘The stability control of surrounding rock for large or super-large section chamber is a difficult technical problem in deep mining condition.Based on the in-site geological conditions of Longgu coal mine,this paper used the dynamic module of FLAC3D to study the response characteristics of deep super-large section chamber under dynamic and static combined loading condition.Results showed that under the static loading condition,the maximum vertical stress,deformation and failure range are large,where the stress concentration coefficient is 1.64.The maximum roof-to-floor and two-sides deformations are 54.6 mm and 53.1 mm,respectively.Then,under the dynamic and static combined loading condition:(1)The influence of dynamic load frequency on the two-sides is more obvious;(2)The dynamic load amplitude has the greatest influence on the stress concentration degree,and the plastic failure tends to develop to the deeper;(3)With the dynamic load source distance increase,the response of surrounding rock is gradually attenuated.On this basis,empirical equations for each dynamic load conditions were obtained by using regression analysis method,and all correlation coefficients are greater than 0.99.This research provided reference for the supporting design of deep super-large section chamber under same or similar conditions.
基金The authors gratefully acknowledge the financial support from the National Natural Science Foundation of China(Nos.52174122,52074168 and 51874190)Climbing Project of Taishan Scholar in Shandong Province(No.tspd20210313).
文摘The stress concentration and failure at chamber intersections in coal mine are intense,especially in deepburied,super-large section conditions.In this paper,the plastic radius of super-large section chamber under unequal pressure was corrected on the basis of the size effect.Then,stress and failure evolution of intersections under different crossing angles and equivalent angular bisectors were revealed.Furthermore,2 trajectory curves of failure and stress were analytically expressed,which divided the intersection into 5 influencing zones in the light of stress superposition degree.After determining instability trigger point and instability path,instability energy criterion of intersection can be obtained as K>1,which means that the external energy is greater than the sum of energy consumed by surrounding rock instability and supporting structure failure.Taking coal-gangue separation system of Longgu Coal Mine as example,it was found that there was instability risk under original parameters.For long-term stability,an optimization design method was proposed by considering safety factor,and optimal support scheme was obtained.Field monitoring showed intersections deformations were relatively small with the maximum of 125 mm,which verified the rationality of theoretical analysis.This study provides guidance for the stability control of the intersections under the same or similar conditions.
基金Project(40072032) supported by the National Natural Science Foundation of ChinaProject(2004YX06) supported by the Yunnan Province-Institutes/Universities’ Science and Technology Cooperation Project Item
文摘Bainiuchang silver-polymetallic ore deposit is located in the southeast Yunnan tin-polymetallic metallogenic belt.The probable reserves and inferred resources of the deposit are of 6 470 t Ag and 1.10 Mt Pb and 1.72 Mt Zn and 86 kt Sn.Orebodies of the deposit occur in clastic-carbonate rocks of Tianpeng Formation and Longha Formation of the middle Cambrian System above the Bainiuchang concealed granite of the late Yanshan period.The concealed granite has the characteristics of tin-bearing granites.Abundance of the mineralization elements Sn,Cu,Zn,Pb,Ag and Sb is high in the granitic rocks.Sulphur isotope data of the metal sulphides indicate that most sulphur is derived from the magmas.The ores are similar in rare earth element(REE)patterns to the granitic rocks.The granitic magma activity results in ore-bearing structures.Rocks of the Middle Cambrian System above the concealed intrusion suffer from skarnization,hornfelsing,marbleization,siliconizing and carbonatization.The mineralization elements Sn,Cu,Zn,Pb,Ag and Sb successively appear from the top of the granite to surrounding rocks.These evidences indicate that the granitic magmatism is the principal mineralization factor.The opinion that the south Bainiuchang ore field and the north Awei ore block are tin and copper potential exploration areas was put forward and was verified by drilling tests.
基金funded by the Natural Science Foundation of China (grant No. 41702074)Sichuan Education Department Foundation (grant No. 17ZA0039)+2 种基金Young and Middle-Aged Teacher Foster Program of Chengdu University of Technology (grant No. JXGG201701)Opening Foundation of Key Laboratory of Tectonic Controls on Mineralization and Hydrocarbon Accumulation, Ministry of Land and Resources (grant No. gzck2018003)Guangxi Key Laboratory of Hidden Metallic Ore Deposits Exploration in Guilin University of Technology (grant No. 12-071-20)
文摘Objective The Songpan-Garze Fold Belt(SGFB),located in the eastern part of the Tibet Plateau and west of the Sichuan Basin,is an important pegmatite province in China.Some famous pegmatite type deposits occur in the SGFB,including the Xuebaoding,Jiajika,Keeryin rare metal deposits and Danba muscovite deposit(Li Jiankang et al.,2015).The newly discovered super-large Lijiagou
基金financially supported by the project of Reconnaissance of Rare Metal Ores Including Rubidium in Huashi Village of Xinglong County, Hebei Province from the Hebei Bureau of Geology and Mineral Resources Exploration (grant No.2015017)
文摘Objective The Huashi Village in Xinglong County of Hebei Province is located in the Yanshan subsidence zone in the central eastern North China Plate, which is 137 km away from Beijing City (Fig. la). This area has undergone large -scale magmatic intrusion affected by the tectonic compression of the Pacific Plate in the Mesozoic (known as the Yanshanian movement) to form many alkaline rocks such as the Wulingshan rock mass. Previous studies have conducted petrological research and reconnaissance survey of rare metal ores in this area (Tian Shuzhang and Guo Zongshan, 1981; Xu Baoling et al., 1996). In 2016, the Qinhuangdao Mineral and Hydrology Engineering Geological Brigade of Hebei Bureau of Geology and Mineral Resources Exploration implemented the project of Reconnaissance of Rare Metal Ores Including Rubidium in Huashi Village of Xinglong County, Hebei Province, and discovered super-large rare metal deposits of rubidium and biobium in the Madi alkali feldspar granite bodies in the Huashi Village to achieve great breakthrough of rare metal ore prospecting.
基金Projects(50978203,51208254)supported by the National Natural Science Foundation of ChinaProject(BK2012390)supported by Natural Science Foundation of Jiangsu Province,ChinaProject supported by the Priority Academic Program Development of Jiangsu Higher Education Institutions,China
文摘Traditional gust load factor(GLF)method,inertial wind load(IWL)method and tri-component method(LRC+IWL)cannot accurately analyze the wind-induced responses of super-large cooling towers,so the real combination formulas of fluctuating wind-induced responses and equivalent static wind loads(ESWLSs)were derived based on structural dynamics and random vibration theory.The consistent coupled method(CCM)was presented to compensate the coupled term between background and resonant response.Taking the super-large cooling tower(H=215 m)of nuclear power plant in Jiangxi Province,China,which is the highest and largest in China,as the example,based on modified equivalent beam-net design method,the aero-elastic model for simultaneous pressure and vibration measurement of super-large cooling tower is firstly carried out.Then,combining wind tunnel test and CCM,the effects of self-excited force on the surface pressures and wind-induced responses are discussed,and the wind-induced response characteristics of background component,resonant component,coupled term between background and resonant response,fluctuating responses,and wind vibration coefficients are discussed.It can be concluded that wind-induced response mechanism must be understood to direct the wind resistant design for super-large cooling towers.
文摘During 2015, gold prospecting in Laizhou City of Shandong Peninsula in China has achieved a major breakthrough. Deposits containing 470 and 389 tons of gold metal were discovered in the northern sea area of Sanshandao and the Shaling area, respectively. As a result, the gold prospective resources in the entire Jiaodong Peninsula have now exceeded 4000 tons, fully indicative of the super-large prospecting potential of the Jiaojia-type deposits.
基金financially supported by the National Natural Science Foundation of China(grant No.41302061)
文摘Rare metal ore reserves are an important strategic resource, and their metallogenic mechanism and mineralization studies have also been received widespread international attention.
基金Project supported by the National Natural Science Foundation of China (Grant No. 61874085)the Postdoctoral Research Funding Project of Shaanxi Province,China (Grant No. 2018BSHEDZZ41)。
文摘By using the MOS-based model established in this paper, the physical process of photoelectron generation, transfer,and storage in the four-transistor active pixel sensor(4 T-APS) pixels can be simulated in SPICE environment. The variable capacitance characteristics of double junctions in pinned photodiodes(PPDs) and the threshold voltage difference formed by channel nonuniform doping in transfer gates(TGs) are considered with this model. The charge transfer process of photogenerated electrons from PPDs to the floating diffusion(FD) is analyzed, and the function of nonuniform doping of TGs in suppressing charge injection back to PPDs is represented with the model. The optical and electrical characteristics of all devices in the pixel are effectively combined with the model. Moreover, the charge transfer efficiency and the voltage variation in PPD can be described with the model. Compared with the hybrid simulation in TCAD and the Verilog-A simulation in SPICE, this model has higher simulation efficiency and accuracy, respectively. The effectiveness of the MOS-based model is experimentally verified in a 3 μm test pixel designed in 0.11 μm CIS process.
基金supported by the Tianjin Key Laboratory of Imaging and Sensing Microelectronic Technology。
文摘To improve the full-well capacity and linear dynamic range of CMOS image sensor,a special finger-shaped pinned photodiode(PPD)is designed.In terms of process,the first N-type ion implantation of the PPD N buried layer is extended under the transfer gate,thereby increasing the PPD capacitance.Based on TCAD simulation,the width and spacing of PPD were precisely adjusted.A high full-well capacity pixel design with a pixel size of 6×6μm^2 is realized based on the 0.18μm CMOS process.The simulation results indicate that the pixel with the above structure and process has a depletion depth of 2.8μm and a charge transfer efficiency of 100%.The measurement results of the test chip show that the full-well capacity can reach 68650 e–.Compared with the conventional structure,the proposed PPD structure can effectively improve the full well capacity of the pixel.