The presented research introduces a novel hybrid deep learning approach for the dynamic prediction of the attitude and position of super-large diameter shields-a critical consideration for construction safety and tunn...The presented research introduces a novel hybrid deep learning approach for the dynamic prediction of the attitude and position of super-large diameter shields-a critical consideration for construction safety and tunnel lining quality.This study proposes a hybrid deep learning approach for predicting dynamic attitude and position prediction of super-large diameter shield.The approach consists of principal component analysis(PCA)and temporal convolutional network(TCN).The former is used for employing feature level fusion based on features of the shield data to reduce uncertainty,improve accuracy and the data effect,and 9 sets of required principal component characteristic data are obtained.The latter is adopted to process sequence data in predicting the dynamic attitude and position for the advantages and potential of convolution network.The approach’s effectiveness is exemplified using data from a tunnel construction project in China.The obtained results show remarkable accuracy in predicting the global attitude and position,with an average error ratio of less than 2 mm on four shield outputs in 97.30%of cases.Moreover,the approach displays strong performance in accurately predicting sudden fluctuations in shield attitude and position,with an average prediction accuracy of 89.68%.The proposed hybrid model demonstrates superiority over TCN,long short-term memory(LSTM),and recurrent neural network(RNN)in multiple indexes.Shapley additive exPlanations(SHAP)analysis is also performed to investigate the significance of different data features in the prediction process.This study provides a real-time warning for the shield driver to adjust the attitude and position of super-large diameter shields.展开更多
To investigate the deformation characteristics and instability mechanism of the transportation hub underdownward traversal conditions of the double-track super-large diameter shield tunnel, take the example of Beijing...To investigate the deformation characteristics and instability mechanism of the transportation hub underdownward traversal conditions of the double-track super-large diameter shield tunnel, take the example of BeijingEast Sixth Ring Road into the ground reconstruction project. Using the field experimental monitoring method andnumerical simulation method, after verifying the accuracy of the model, this manuscript begins to unfold theanalysis. The results show that, without any deformation prevention and control measures, The basement raft ofthe underground structure of the transportation hub will produce a deformation difference of 18 mm, and thetensile stress is more than 1.43 MPa, the inhomogeneous deformation and structural cracking will lead tostructural instability and groundwater surges, which seriously affects the safe operation of the transportation hubstation. When control measures are taken, the deformation and stress of the base raft slab of the undergroundstructure of the transportation hub are within the prescribed limits, which can ensure the safe operation of thestation. The displacement of the base slab of the underground structure in the horizontal direction of the crosssection is all pointing to the east, and the overall trend is to shift from the first tunnel to the backward tunnel. Thehorizontal displacement of the base slab in the direction of the tunnel axis all points to the beginning of thecrossing, and the displacement of the slab in the vertical direction is distributed as "rising in the middle andsinking in the surroundings". For a two-lane super-large diameter shield tunnel penetrating an undergroundstructure, there are two mechanical effects: unloading rebound and perimeter rock pressure. The above deformation characteristics are the superposition effect produced by the two, and this fine assessment of the deformation of the raft foundation provides a scientific basis for formulating the deformation control countermeasuresof the crossing project. At the same time, it makes up for the blank of the double-track super-large diameter shieldtunnel down through the transportation hub project.展开更多
The performance and price of copper-based micro linear products are determined by the diameter uniformity.How to accurately detect the wire diameter of long-length copper based micro linear products without cutting or...The performance and price of copper-based micro linear products are determined by the diameter uniformity.How to accurately detect the wire diameter of long-length copper based micro linear products without cutting or damage has always been a technical concern for production enterprises.Herein,a novel approach was developed for nondestructive detection of the average diameter at any given segment of a long copper wire by assessing the adsorption capacity of arginine on its surface.The amount of adsorbent on the surface of the copper wire exhibits a positive correlation with the area,which can be detected by extractive electrospray ionization mass spectrometry(EESI-MS)after online elution with ammonia.The experimental results demonstrated that the analysis can be completed within 15 min,with a good linear relationship between copper wires with different diameters and the adsorption capacity of arginine.The linear correlation coefficient R2was 0.995,the relative standard deviation was 1.10%-2.81%,and the detection limit reached 2.5μm(length of segment=4 cm),showing potential applications for facile measurement of the average diameter of various metal wires.展开更多
Carbon nanotubes are uniquely featured by the nanoscale tubular structure with a highly-curved surface and defined chirality.The diameter and chirality fundamentally determine their stability and electrical and therma...Carbon nanotubes are uniquely featured by the nanoscale tubular structure with a highly-curved surface and defined chirality.The diameter and chirality fundamentally determine their stability and electrical and thermal properties.Up to now,the relationship between the intrinsic thermal conductivity and the atomic features of CNTs has not been established,due to the challenges in precise measurements and characterizations.In this work,we develop a micro electro-thermal device enabling simultaneous thermal measurements by Raman spectroscopy and atomic structural characterization by transmission electron microscopy for individual CNTs.The influence of diameter and chirality is systematically investigated.In addition,the temperature dependence of the thermal conductivity was extracted from parameter optimization of finite-element modeling.It is found that the thermal transport of CNTs depends mainly on the diameter,while the chiral angle has no significant influence.Along with increasing diameter,the room temperature thermal conductivity increases and eventually approaches the limit of flat graphene.展开更多
With the increasing development of deepburied engineering projects,rockburst disasters have become a frequent concern.Studies have indicated that tunnel diameter is a critical factor influencing the occurrence of rock...With the increasing development of deepburied engineering projects,rockburst disasters have become a frequent concern.Studies have indicated that tunnel diameter is a critical factor influencing the occurrence of rockbursts.To investigate the influence of tunnel diameter on the deformation and failure characteristics of surrounding rock,large-sized rocklike gypsum specimens were tested using a selfdeveloped true triaxial rockburst loading system containing circular tunnels with three different diameters(D=0.07 m,0.11 m,and 0.15 m).Acoustic emission monitoring,together with a miniature intelligent camera,was employed to analyze the entire process,focusing on macroscopic failure patterns,fragment characteristics,and underlying failure mechanisms.In addition,theoretical analyses were carried out and combined with numerical simulations to investigate the differences in energy evolution associated with rockburst physical models.The results indicate that:(1)The rockburst process with different tunnel diameters consistently evolved through three distinct stages—initial particle ejection,crack propagation accompanied by flake spalling,and,finally,fragment ejection leading to the formation of a‘V'-shaped notch.(2)Increasing tunnel diameter reduces rockburst failure load while increasing surrounding rock damage extent,total mass and average size of ejected fragments.Additionally,shear failure proportion decreases with tensile failure becoming increasingly dominant.(3)Larger tunnel diameters reduce the attenuation rate of elastic strain energy,thereby expanding the zone of elastic strain energy accumulation and disturbance and creating conditions for larger volume rockburst.(4)Larger tunnel diameters result in a smaller principal stress ratio at equivalent distances in the surrounding rock,indicating a higher likelihood of tensile failure.(5)Numerical analyses further reveal that larger tunnel diameters reduce the maximum elastic strain energy density around the tunnel,lowering the energy released per unit volume of rockburst fragments and their ejection velocities.However,both the total failure volume and overall energy release from rockburst increase.Model experiments with different tunnel diameters are of great significance for optimizing engineering design and parameter selection,as well as guiding tunnel construction under complex geological conditions.展开更多
This study explores the magnetohydrodynamic(MHD)boundary layer flow of a water-based Boger nanofluid over a stretching sheet,with particular focus on the influences of nanoparticle diameter,nanolayer effects,and therm...This study explores the magnetohydrodynamic(MHD)boundary layer flow of a water-based Boger nanofluid over a stretching sheet,with particular focus on the influences of nanoparticle diameter,nanolayer effects,and thermal radiation.The primary aim is to examine how variations in nanoparticle size and nanolayer thickness affect the hydrothermal behavior of the nanofluid.The model also incorporates the contributions of viscous dissipation and Joule heating within the heat transfer equation.The governing momentum and energy equations are converted into dimensionless partial differential equations(PDEs)using appropriate similarity variables and are numerically solved using the finite element method(FEM)implemented in MATLAB.Extensive validation of this method confirms its reliability and accuracy in numerical solutions.The findings reveal that increasing the diameter of copper nanoparticles significantly enhances the velocity profile,with a more pronounced effect observed at wider inter-particle spacings.A higher solvent volume fraction leads to decreased velocity and temperature distributions,while a greater relaxation time ratio improves velocity and temperature profiles due to the increased elastic response of the fluid.Moreover,enhancements in the magnetic parameter,thermal radiation,and Eckert number lead to an elevation in temperature profiles.Furthermore,higher nanolayer thickness reduces the temperature profile,whereas particle radius yields the opposite outcome.展开更多
To elucidate the relationship between pipeline erosion and wear during slurry transportation,this study considers three key influencing parameters,namely,the ratio of inlet to outlet pipe diameter,the length of the va...To elucidate the relationship between pipeline erosion and wear during slurry transportation,this study considers three key influencing parameters,namely,the ratio of inlet to outlet pipe diameter,the length of the variable diameter section,and the roughness of the pipe wall.The impact of these factors on pipeline erosion and wear is analyzed using a single-factor analysis approach.In particular,the Fluent software is employed to conduct the required numerical simulations for variable diameter elbows of varying morphologies.The results indicate that as the inlet to outlet diameter ratio increases,the wear on the pipe inlet and the outer wall of the elbow becomes increasingly pronounced.Notably,when the diameter ratio exceeds 0.8,there is a significant escalation in wear on both the inner and outer elbow walls.Initially,the maximum erosion rate decreases sharply with increasing diameter ratio before a stable condition is attained.Erosion wear in the variable diameter section exhibits a distinct layered distribution pattern.In this region,the wear range for a 40 mm length of the pipe body is relatively small;however,once this length exceeds 40 mm,the wear range expands,ultimately covering the entire pipe section.The length of the variable diameter section significantly influences the maximum erosion rate of the pipeline,with sections shorter than 80 mm experiencing the most severe effects,and showing an exponential decline in erosion rate.As the wall roughness gradually increases,the wear area on both cheeks of the bend section rapidly expands and tends to deepen further.When the roughness reaches 4 mm,the pipeline wear experiences a dramatic shift,resulting in extensive“spot-like”wear patterns emerging at the bottom and sides of the horizontal flow section,which previously exhibited no wear.展开更多
Closed thoracic drainage can be performed using a steel-needle-guided chest tube to treat pleural effusion or pneumothorax in clinics.However,the puncture procedure during surgery is invisible,increasing the risk of s...Closed thoracic drainage can be performed using a steel-needle-guided chest tube to treat pleural effusion or pneumothorax in clinics.However,the puncture procedure during surgery is invisible,increasing the risk of surgical failure.Therefore,it is necessary to design a visualization system for closed thoracic drainage.Augmented reality(AR)technology can assist in visualizing the internal anatomical structure and determining the insertion point on the body surface.The structure of the currently used steel-needle-guided chest tube was modified by integrating it with an ultrafine diameter camera to provide real-time visualization of the puncture process.After simulation experiments,the overall registration error of the AR method was measured to be within(3.59±0.53)mm,indicating its potential for clinical application.The ultrafine diameter camera module and improved steel-needle-guided chest tube can timely reflect the position of the needle tip in the human body.A comparative experiment showed that video guidance could improve the safety of the puncture process compared to the traditional method.Finally,a qualitative evaluation of the usability of the system was conducted through a questionnaire.This system facilitates the visualization of closed thoracic drainage puncture procedure and pro-vides an implementation scheme to enhance the accuracy and safety of the operative step,which is conducive to reducing the learning curve and improving the proficiency of the doctors.展开更多
AIM:To present the 1-year results of a prospective cohort study investigating the efficacy,potential mechanism,and safety of orthokeratology(ortho-k)with different back optic zone diameters(BOZD)for myopia control in ...AIM:To present the 1-year results of a prospective cohort study investigating the efficacy,potential mechanism,and safety of orthokeratology(ortho-k)with different back optic zone diameters(BOZD)for myopia control in children.METHODS:This randomized clinical study was performed between Dec.2020 and Dec.2021.Participants were randomly assigned to three groups wearing ortho-k:5 mm BOZD(5-MM group),5.5 mm BOZD(5.5-MM group),and 6 mm BOZD(6-MM group).The 1-year data were recorded,including axial length,relative peripheral refraction(RPR,measured by multispectral refractive topography,MRT),and visual quality.The contrast sensitivity(CS)was evaluated by CSV-1000 instrument with spatial frequencies of 3,6,12,and 18 cycles/degree(c/d);the corneal higher-order aberrations(HOAs)were measured by iTrace aberration analyzer.The one-way ANOVA was performed to assess the differences between the three groups.The correlation between the change in AL and RPR was calculated by Pearson’s correlation coefficient.RESULTS:The 1-year results of 20,21,and 21 subjects in the 5-MM,5.5-MM,and 6-MM groups,respectively,were presented.There were no statistical differences in baseline age,sex,or ocular parameters between the three groups(all P>0.05).At the 1-year visit,the 5-MM group had lower axial elongation than the 6-MM group(0.07±0.09 vs 0.18±0.11 mm,P=0.001).The 5-MM group had more myopic total RPR(TRPR,P=0.014),with RPR in the 15°–30°(RPR 15–30,P=0.015),30°–45°(RPR 30–45,P=0.011),temporal(RPR-T,P=0.008),and nasal area(RPR-N,P<0.001)than the 6-MM group.RPR 15–30 in the 5.5-MM group was more myopic than that in the 6-MM group(P=0.002),and RPR-N in the 5-MM group was more myopic than that in the 5.5-MM group(P<0.001).There were positive correlations between the axial elongation and the change in TRPR(r=0.756,P<0.001),RPR 15–30(r=0.364,P=0.004),RPR 30–45(r=0.306,P=0.016),and RPR-N(r=0.253,P=0.047).The CS decreased at 3 c/d(P<0.001),and the corneal HOAs increased in the 5-MM group(P=0.030).CONCLUSION:Ortho-k with 5 mm BOZD can control myopia progression more effectively.The mechanism may be associated with greater myopic shifts in RPR.展开更多
BACKGROUND:As advocated in advanced trauma life support and prehospital trauma life support protocols,cervical immobilization is applied until cervical spine injury is excluded.This study aimed to show the difference ...BACKGROUND:As advocated in advanced trauma life support and prehospital trauma life support protocols,cervical immobilization is applied until cervical spine injury is excluded.This study aimed to show the difference in optic nerve sheath diameter(ONSD)between patients with and without a cervical collar using computed tomography(CT).METHODS:This was a single-center,retrospective study examining trauma patients who presented to the emergency department between January 1,2021,and December 31,2021.The ONSD on brain CT of the trauma patients was measured and analyzed to determine whether there was a difference between the ONSD with and without the cervical collar.RESULTS:The study population consisted of 169 patients.On CT imaging of patients with(n=66)and without(n=103)cervical collars,the mean ONSD in the axial plane were 5.43±0.50 mm and 5.04±0.46 mm respectively for the right eye and 5.50±0.52 mm and 5.11±0.46 mm respectively for the left eye.The results revealed an association between the presence of a cervical collar and the mean ONSD,which was statistically significant(P<0.001)for both the right and left eyes.CONCLUSION:A cervical collar may be associated with increased ONSD.The effect of this increase in the ONSD on clinical outcomes needs to be investigated,and the actual need for cervical collar in the emergency department should be evaluated on a case-by-case basis.展开更多
BACKGROUND The maximum outer diameter(MOD)of the appendix is an essential parameter for diagnosing acute appendicitis,but there is space for improvement in ultrasound(US)diagnostic performance.AIM To investigate wheth...BACKGROUND The maximum outer diameter(MOD)of the appendix is an essential parameter for diagnosing acute appendicitis,but there is space for improvement in ultrasound(US)diagnostic performance.AIM To investigate whether combining the ratio of the cross diameters(RATIO)of the appendix with MOD of the appendix can enhance the diagnostic performance of acute appendicitis.METHODS A retrospective study was conducted,and medical records of 233 patients with acute appendicitis and 112 patients with a normal appendix were reviewed.The MOD and RATIO of the appendix were calculated and tested for their diagnostic performance of acute appendicitis,both individually and in combination.RESULTS The RATIO for a normal appendix was 1.32±0.16,while for acute appendicitis it was 1.09±0.07.The cut-off value for RATIO was determined to be≤1.18.The area under the receiver operating characteristic curve(AUC)for diagnosing acute appendicitis using RATIO≤1.18 and MOD>6 mm was 0.870 and 0.652,respectively.There was a significant difference in AUC between RATIO≤1.18 and MOD>6 mm(P<0.0001).When comparing the combination of RATIO≤1.18 and MOD>6 mm with MOD>6 mm alone,the combination showed increased specificity,positive predictive value(PPV),and AUC.However,the sensitivity and negative predictive value decreased.CONCLUSION Combining RATIO of the appendix≤1.18 and MOD>6 mm can significantly improve the specificity,PPV,and AUC in the US diagnosis of acute appendicitis.展开更多
Microvasculature of the retina is considered an alternative marker of cerebral vascular risk in healthy populations.However,the ability of retinal vasculature changes,specifically focusing on retinal vessel diameter,t...Microvasculature of the retina is considered an alternative marker of cerebral vascular risk in healthy populations.However,the ability of retinal vasculature changes,specifically focusing on retinal vessel diameter,to predict the recurrence of cerebrovascular events in patients with ischemic stroke has not been determined comprehensively.While previous studies have shown a link between retinal vessel diameter and recurrent cerebrovascular events,they have not incorporated this information into a predictive model.Therefore,this study aimed to investigate the relationship between retinal vessel diameter and subsequent cerebrovascular events in patients with acute ischemic stroke.Additionally,we sought to establish a predictive model by combining retinal veessel diameter with traditional risk factors.We performed a prospective observational study of 141 patients with acute ischemic stroke who were admitted to the First Affiliated Hospital of Jinan University.All of these patients underwent digital retinal imaging within 72 hours of admission and were followed up for 3 years.We found that,after adjusting for related risk factors,patients with acute ischemic stroke with mean arteriolar diameter within 0.5-1.0 disc diameters of the disc margin(MAD_(0.5-1.0DD))of≥74.14μm and mean venular diameter within 0.5-1.0 disc diameters of the disc margin(MVD_(0.5-1.0DD))of≥83.91μm tended to experience recurrent cerebrovascular events.We established three multivariate Cox proportional hazard regression models:model 1 included traditional risk factors,model 2 added MAD_(0.5-1.0DD)to model 1,and model 3 added MVD0.5-1.0DD to model 1.Model 3 had the greatest potential to predict subsequent cerebrovascular events,followed by model 2,and finally model 1.These findings indicate that combining retinal venular or arteriolar diameter with traditional risk factors could improve the prediction of recurrent cerebrovascular events in patients with acute ischemic stroke,and that retinal imaging could be a useful and non-invasive method for identifying high-risk patients who require closer monitoring and more aggressive management.展开更多
BACKGROUND Liver cirrhosis is the end stage of progressive liver fibrosis as a consequence of chronic liver inflammation,wherein the standard hepatic architecture is replaced by regenerative hepatic nodules,which even...BACKGROUND Liver cirrhosis is the end stage of progressive liver fibrosis as a consequence of chronic liver inflammation,wherein the standard hepatic architecture is replaced by regenerative hepatic nodules,which eventually lead to liver failure.Cirrhosis without any symptoms is referred to as compensated cirrhosis.Complications such as ascites,variceal bleeding,and hepatic encephalopathy indicate the onset of decompensated cirrhosis.Gastroesophageal varices are the hallmark of clini-cally significant portal hypertension.AIM To determine the accuracy of the platelet count-to-spleen diameter(PC/SD)ratio to evaluate esophageal varices(EV)in patients with cirrhosis.METHODS This retrospective observational study was conducted at Tikur Anbessa Specia-lized Hospital and Adera Medical Center from January 1,2019,to December 30,2023.Data were collected via chart review and direct patient interviews using structured questionnaires.The data were exported to the SPSS software version 26 for analysis and clearance.A receiver operating characteristic curve was plotted for splenic diameter,platelet count,and PC/SD ratio to obtain sensitivity,speci-ficity,positive predictive value,negative predictive value,positive likelihood ratio,and negative likelihood ratio.RESULTS Of the 140 participants,67%were men.Hepatitis B(38%)was the most common cause of cirrhosis,followed by cryptogenic cirrhosis(28%)and hepatitis C(16%).Approximately 83.6%of the participants had endoscopic evidence of EV,whereas 51.1%had gastric varices.Decompensated cirrhosis and PC were associated with the presence of EV with adjusted odds ratios of 12.63(95%CI:3.16-67.58,P=0.001)and 0.14(95%CI:0.037-0.52,P=0.004),respectively.A PC/SD ratio<1119 had a sensitivity of 86.32%and specificity of 70%with area under the curve of 0.835(95%CI:0.736-0.934,P<0.001).CONCLUSION A PC/SD ratio<1119 predicts EV in patients with cirrhosis.It is a valuable,noninvasive tool for EV risk assess-ment in resource-limited settings.展开更多
A t-container Ct(u,v)is a set of t internally disjoint paths between two distinct vertices u and v in a graph G,i.e.,Ct(u,v)={P_(1),P_(2),···,Pt}.Moreover,if V(P_(1))∪V(P_(2))∪···∪V(Pt...A t-container Ct(u,v)is a set of t internally disjoint paths between two distinct vertices u and v in a graph G,i.e.,Ct(u,v)={P_(1),P_(2),···,Pt}.Moreover,if V(P_(1))∪V(P_(2))∪···∪V(Pt)=V(G)then Ct(u,v)is called a spanning t-container,denoted by C_(t)^(sc)(u,v).The length of C_(t)^(sc)(u,v)={P_(1),P_(2),···,Pt}is l(C_(t)^(sc)(u,v))=max{l(P_(i))|1≤i≤t}.A graph G is spanning t-connected if there exists a spanning t-container between any two distinct vertices u and v in G.Assume that u and v are two distinct vertices in a spanning t-connected graph G.Let D_(t)^(sc)(u,v)be the collection of all C_(t)^(sc)(u,v)’s.Define the spanning t-wide distance between u and v in G,d_(t)^(sc)(u,v)=min{l(C_(t)^(sc)(u,v))|C_(t)^(sc)(u,v)∈D_(t)^(sc)(u,v)},and the spanning t-wide diameter of G,D_(t)^(sc)(G)=max{d_(t)^(sc)(u,v)|u,v∈V(G)}.In particular,the spanning wide diameter of G is D_(κ)^(sc)(G),whereκis the connectivity of G.In the paper we provide the upper and lower bounds of the spanning wide diameter of a graph,and show that the bounds are best possible.We also determine the exact values of wide diameters of some well known graphs including Harary graphs and generalized Petersen graphs et al..展开更多
The reverse J-shaped diameter distribution is considered an inherent attribute of natural forests,cru-cial for forest resource utilization and community stability.However,in karst regions,intense habitat heterogeneity...The reverse J-shaped diameter distribution is considered an inherent attribute of natural forests,cru-cial for forest resource utilization and community stability.However,in karst regions,intense habitat heterogeneity might alter species composition,spatial distribution,growth,biomass allocation,and mortality processes,yet its impact on diameter structure remains unclear.A fixed plot of 200 m×110 m was established in the Nanpan River Basin,Southwest China,within an old-growth oak forest(>300 years old),and the influence of site substrates(i.e.,rock and soil),topographic factors,sample area,and orientation on diameter distribution was analyzed.Trees on both rock and soil exhibited a reverse-J shape,quantifiable Project funding:This work was supported by the National Natural Science Foundation of China(32060340 and 31400542),the Scientific Research Capacity Building Project for Laibin Jinxiu Dayaoshan Forest Ecosystem Observation and Research Station of Guangxi(22-035-130-01).through the Weibull function.The substrates had a similar density,approximately 2100 plants/ha.However,the average and range of diameter of trees on rock were smaller than those on soil,suggesting that rock constrains tree growth.The diameter distribution of trees across microtopography also displayed a reverse-J shape.Yet,higher elevations and sunny slopes showed a greater curvature of diameter classes compared to lower elevations and shady slopes,indicating habitat preferences in karst trees.Sample area and orientation had minimal effects on diameter class curve that reached stability when the plot size was 6000 m2.These results suggest that the reverse J-shaped diameter distribution prevails at small scales in karst old-growth forests,encompassing multiple curvatures and spanning forest ecosystems.展开更多
BACKGROUND Neuromonitoring in medical intensive care units is challenging as most patients are unfit for invasive intracranial pressure(ICP)modalities or unstable to transport for imaging.Ultrasonography-based optic n...BACKGROUND Neuromonitoring in medical intensive care units is challenging as most patients are unfit for invasive intracranial pressure(ICP)modalities or unstable to transport for imaging.Ultrasonography-based optic nerve sheath diameter(ONSD)is an attractive option as it is reliable,repeatable and easily performed at the bedside.It has been sufficiently validated in traumatic brain injury(TBI)to be incorporated into the guidelines.However,currently the data for non-TBI patients is inconsistent for a scientific recommendation to be made.AIM To compile the existing evidence for understanding the scope of ONSD in measuring ICP in adult non-traumatic neuro-critical patients.METHODS PubMed,Google Scholar and research citation analysis databases were searched for studies in adult patients with non-traumatic causes of raised ICP.Studies from 2010 to 2024 in English languages were included.RESULTS We found 37 articles relevant to our search.The cutoff for ONSD in predicting ICP varied from 4.1 to 6.3 mm.Most of the articles used cerebrospinal fluid opening pressure followed by raised ICP on computed tomography/magnetic resonance imaging as the comparator parameter.ONSD was also found to be a reliable outcome measure in cases of acute ischaemic stroke,intracerebral bleeding and intracranial infection.However,ONSD is of doubtful utility in septic metabolic encephalopathy,dysnatremias and aneurysmal subarachnoid haemorrhage.CONCLUSION ONSD is a useful tool for the diagnosis of raised ICP in non-traumatic neuro-critically ill patients and may also have a role in the prognostication of a subset of patients.展开更多
The design of the loading path is one of the important research contents of the tube hydroforming process.Optimization of loading paths using optimization algorithms has received attention due to the inefficiency of o...The design of the loading path is one of the important research contents of the tube hydroforming process.Optimization of loading paths using optimization algorithms has received attention due to the inefficiency of only finite element optimization.In this paper,the hydroforming process of 5A02 aluminum alloy variable diameter tube was as the research object.Fuzzy control was used to optimize the loading path,and the fuzzy rule base was established based on FEM.The minimum wall thickness and wall thickness reduction rate were determined as input membership functions,and the axial feeds variable value of the next step was used as output membership functions.The results show that the optimized loading path greatly improves the uniformity of wall thickness and the forming effect compared with the linear loading path.The round corner lamination rate of the tube is 91.2%under the fuzzy control optimized loading path,which was increased by 47.1%and 22.6%compared with linear loading Path 1 and Path 2,respectively.Based on the optimized loading path in the experiment,the minimum wall thickness of the variable diameter tube was 1.32 mm and the maximum thinning rate was 12.4%.The experimental results were consistent with the simulation results,which verified the accuracy of fuzzy control.The research results provide a reference for improving the forming quality of thin-walled tubes and plates.展开更多
Based on the investigation data of 12 Haloxylon ammodendron plots in the south edge of Gurbantunggut Desert, Fuzzy distribution was introduced into the study of Haloxylon ammodendron base diameter structure fitting ac...Based on the investigation data of 12 Haloxylon ammodendron plots in the south edge of Gurbantunggut Desert, Fuzzy distribution was introduced into the study of Haloxylon ammodendron base diameter structure fitting according to the consistency between the characteristics of Fuzzy distribution function and the distribution series of cumulative percentage of stand base diameter, and the fitting precision and effect of Fuzzy distribution function were discussed. The root mean square error RMSE and determination coefficient R<sup>2</sup> values showed that Fuzzy-Γ<sub>1</sub>, Fuzzy-Γ<sub>2</sub>, Fuzzy-Γ<sub>3</sub>, Fuzzy-Γ<sub>4</sub> had good fitting performance, among which Fuzzy-Γ<sub>1</sub> had relatively high fitting precision, and its parameters were closely related to stand age and density, Fuzzy-Γ<sub>2</sub> distribution function was the second, and Fuzzy-Γ<sub>4</sub> distribution function had the worst fitting effect. By introducing a parameter c from the similarity of four distribution function formulas, a generalized Fuzzy distribution function Fuzzy-Γ<sub>5</sub> is obtained. This function shows the highest fitting accuracy. Most of the values of parameter c are near 1 or 2, which shows that the diameter distribution is mainly approximate to Fuzzy-Γ<sub>1</sub> and Fuzzy-Γ<sub>2</sub>.展开更多
Objective:Vesicoureteral reflux(VUR)index is a simple,validated tool that reliably predicts significant improvement and spontaneous resolution of primary reflux in children.The aim of this study was to evaluate and co...Objective:Vesicoureteral reflux(VUR)index is a simple,validated tool that reliably predicts significant improvement and spontaneous resolution of primary reflux in children.The aim of this study was to evaluate and compare the ureter diameter ratio(UDR)and VUR index(VURx)of patients treated with endoscopic injection(EI)and ureteroneocystostomy(UNC)methods in the pediatric age group due to primary VUR.Methods:Patients under the age of 18 years old who underwent EI and UNC with the diagnosis of primary VUR between January 2011 and September 2021 were determined as the participants.The UDR was assessed using voiding cystourethrography,and the VURx score was determined prior to treatment based on hospital records included in the study.Results:A total of 255 patients,60(23.5%)boys and 195(76.5%)girls,with a mean age of 76.5(range 13.0e204.0)months,were included in the study.EI was applied to 130(51.0%)patients and UNC was applied to 125(49.0%)patients due to primary VUR.The optimum cut-off for the distal UDR was obtained as 0.17 with sensitivity and specificity of 73.0%and 63.0%,respectively.The positive and negative predictive values were 66.0%and 70.0%,respectively.Conclusion:When the UDR and VURx score are evaluated together for the surgical treatment of primary VUR in the pediatric age group,it is thought that it may be useful in predicting the clinical course of the disease and evaluating surgical treatment options.展开更多
This work consists of evaluating the quality of the mechanical parameters of large-diameter steels, i.e. 20, 25, 28 and 32, through a process of recycling scrap metal that fills garages, rubbish dumps, gutters and oth...This work consists of evaluating the quality of the mechanical parameters of large-diameter steels, i.e. 20, 25, 28 and 32, through a process of recycling scrap metal that fills garages, rubbish dumps, gutters and other abandoned sites, as well as imported concrete reinforcing steel sold in the Republic of Guinea. To carry out this important work, a number of mechanical tensile and bending tests and a microscopic analysis combining two devices, an electron microscope and a photographic camera, were carried out. The samples were taken from sampling areas in the major communes of Conakry, namely: Casse Sonfonia, Matoto and Kagbélen. The tensile strength values of the large dimensions 20, 25, 28 and 32 are given in the tables.展开更多
基金financially supported by the National Natural Science Foundation of China(Grant Nos.52078304,51938008,52090084,and 52208354)Guangdong Province Key Field R&D Program Project(Grant Nos.2019B111108001 and 2022B0101070001)+1 种基金Shenzhen Fundamental Research(Grant No.20220525163716003)the Pearl River Delta Water Resources Allocation Project(CD88-GC022020-0038).
文摘The presented research introduces a novel hybrid deep learning approach for the dynamic prediction of the attitude and position of super-large diameter shields-a critical consideration for construction safety and tunnel lining quality.This study proposes a hybrid deep learning approach for predicting dynamic attitude and position prediction of super-large diameter shield.The approach consists of principal component analysis(PCA)and temporal convolutional network(TCN).The former is used for employing feature level fusion based on features of the shield data to reduce uncertainty,improve accuracy and the data effect,and 9 sets of required principal component characteristic data are obtained.The latter is adopted to process sequence data in predicting the dynamic attitude and position for the advantages and potential of convolution network.The approach’s effectiveness is exemplified using data from a tunnel construction project in China.The obtained results show remarkable accuracy in predicting the global attitude and position,with an average error ratio of less than 2 mm on four shield outputs in 97.30%of cases.Moreover,the approach displays strong performance in accurately predicting sudden fluctuations in shield attitude and position,with an average prediction accuracy of 89.68%.The proposed hybrid model demonstrates superiority over TCN,long short-term memory(LSTM),and recurrent neural network(RNN)in multiple indexes.Shapley additive exPlanations(SHAP)analysis is also performed to investigate the significance of different data features in the prediction process.This study provides a real-time warning for the shield driver to adjust the attitude and position of super-large diameter shields.
文摘To investigate the deformation characteristics and instability mechanism of the transportation hub underdownward traversal conditions of the double-track super-large diameter shield tunnel, take the example of BeijingEast Sixth Ring Road into the ground reconstruction project. Using the field experimental monitoring method andnumerical simulation method, after verifying the accuracy of the model, this manuscript begins to unfold theanalysis. The results show that, without any deformation prevention and control measures, The basement raft ofthe underground structure of the transportation hub will produce a deformation difference of 18 mm, and thetensile stress is more than 1.43 MPa, the inhomogeneous deformation and structural cracking will lead tostructural instability and groundwater surges, which seriously affects the safe operation of the transportation hubstation. When control measures are taken, the deformation and stress of the base raft slab of the undergroundstructure of the transportation hub are within the prescribed limits, which can ensure the safe operation of thestation. The displacement of the base slab of the underground structure in the horizontal direction of the crosssection is all pointing to the east, and the overall trend is to shift from the first tunnel to the backward tunnel. Thehorizontal displacement of the base slab in the direction of the tunnel axis all points to the beginning of thecrossing, and the displacement of the slab in the vertical direction is distributed as "rising in the middle andsinking in the surroundings". For a two-lane super-large diameter shield tunnel penetrating an undergroundstructure, there are two mechanical effects: unloading rebound and perimeter rock pressure. The above deformation characteristics are the superposition effect produced by the two, and this fine assessment of the deformation of the raft foundation provides a scientific basis for formulating the deformation control countermeasuresof the crossing project. At the same time, it makes up for the blank of the double-track super-large diameter shieldtunnel down through the transportation hub project.
基金supported by the National Natural Science Foundation of China(No.22422402)National Key Research and Development Program of China(No.2022YFF0705300)Key Research and Development Program of Jiangxi Province(No.20232BBG70004)。
文摘The performance and price of copper-based micro linear products are determined by the diameter uniformity.How to accurately detect the wire diameter of long-length copper based micro linear products without cutting or damage has always been a technical concern for production enterprises.Herein,a novel approach was developed for nondestructive detection of the average diameter at any given segment of a long copper wire by assessing the adsorption capacity of arginine on its surface.The amount of adsorbent on the surface of the copper wire exhibits a positive correlation with the area,which can be detected by extractive electrospray ionization mass spectrometry(EESI-MS)after online elution with ammonia.The experimental results demonstrated that the analysis can be completed within 15 min,with a good linear relationship between copper wires with different diameters and the adsorption capacity of arginine.The linear correlation coefficient R2was 0.995,the relative standard deviation was 1.10%-2.81%,and the detection limit reached 2.5μm(length of segment=4 cm),showing potential applications for facile measurement of the average diameter of various metal wires.
基金financially supported by the National Key Research and Development Program of China(Grant No.2022YFA1203302)the National Natural Science Foundation of China(Grant Nos.52130209,52188101)+4 种基金the JSPS Kakenhi(Grant Nos.JP25820336,JP20K05281,and JP23H01796)the JST-FOREST Program(Grant No.JPMJFR223T)the WPI-MANA“Challenging Research Program(CRP)”the National Institute for Materials Science(NIMS)“Support system for curiosity-driven research”the“Advanced Research Infrastructure for Materials and Nanotechnology in Japan(ARIM)”of the Ministry of Education,Culture,Sports,Science and Technology(MEXT)(Grant No.JPMXP1223NM5306).
文摘Carbon nanotubes are uniquely featured by the nanoscale tubular structure with a highly-curved surface and defined chirality.The diameter and chirality fundamentally determine their stability and electrical and thermal properties.Up to now,the relationship between the intrinsic thermal conductivity and the atomic features of CNTs has not been established,due to the challenges in precise measurements and characterizations.In this work,we develop a micro electro-thermal device enabling simultaneous thermal measurements by Raman spectroscopy and atomic structural characterization by transmission electron microscopy for individual CNTs.The influence of diameter and chirality is systematically investigated.In addition,the temperature dependence of the thermal conductivity was extracted from parameter optimization of finite-element modeling.It is found that the thermal transport of CNTs depends mainly on the diameter,while the chiral angle has no significant influence.Along with increasing diameter,the room temperature thermal conductivity increases and eventually approaches the limit of flat graphene.
基金funded by the National Natural Science Foundation of China(Nos.42077228,52174085)。
文摘With the increasing development of deepburied engineering projects,rockburst disasters have become a frequent concern.Studies have indicated that tunnel diameter is a critical factor influencing the occurrence of rockbursts.To investigate the influence of tunnel diameter on the deformation and failure characteristics of surrounding rock,large-sized rocklike gypsum specimens were tested using a selfdeveloped true triaxial rockburst loading system containing circular tunnels with three different diameters(D=0.07 m,0.11 m,and 0.15 m).Acoustic emission monitoring,together with a miniature intelligent camera,was employed to analyze the entire process,focusing on macroscopic failure patterns,fragment characteristics,and underlying failure mechanisms.In addition,theoretical analyses were carried out and combined with numerical simulations to investigate the differences in energy evolution associated with rockburst physical models.The results indicate that:(1)The rockburst process with different tunnel diameters consistently evolved through three distinct stages—initial particle ejection,crack propagation accompanied by flake spalling,and,finally,fragment ejection leading to the formation of a‘V'-shaped notch.(2)Increasing tunnel diameter reduces rockburst failure load while increasing surrounding rock damage extent,total mass and average size of ejected fragments.Additionally,shear failure proportion decreases with tensile failure becoming increasingly dominant.(3)Larger tunnel diameters reduce the attenuation rate of elastic strain energy,thereby expanding the zone of elastic strain energy accumulation and disturbance and creating conditions for larger volume rockburst.(4)Larger tunnel diameters result in a smaller principal stress ratio at equivalent distances in the surrounding rock,indicating a higher likelihood of tensile failure.(5)Numerical analyses further reveal that larger tunnel diameters reduce the maximum elastic strain energy density around the tunnel,lowering the energy released per unit volume of rockburst fragments and their ejection velocities.However,both the total failure volume and overall energy release from rockburst increase.Model experiments with different tunnel diameters are of great significance for optimizing engineering design and parameter selection,as well as guiding tunnel construction under complex geological conditions.
基金supported by the Fundamental Research Funds for the Central Universities(Grant No.D5000230061)the Guangdong Basic and Applied Basic Research Foundation(Grant No.2025A1515011192).
文摘This study explores the magnetohydrodynamic(MHD)boundary layer flow of a water-based Boger nanofluid over a stretching sheet,with particular focus on the influences of nanoparticle diameter,nanolayer effects,and thermal radiation.The primary aim is to examine how variations in nanoparticle size and nanolayer thickness affect the hydrothermal behavior of the nanofluid.The model also incorporates the contributions of viscous dissipation and Joule heating within the heat transfer equation.The governing momentum and energy equations are converted into dimensionless partial differential equations(PDEs)using appropriate similarity variables and are numerically solved using the finite element method(FEM)implemented in MATLAB.Extensive validation of this method confirms its reliability and accuracy in numerical solutions.The findings reveal that increasing the diameter of copper nanoparticles significantly enhances the velocity profile,with a more pronounced effect observed at wider inter-particle spacings.A higher solvent volume fraction leads to decreased velocity and temperature distributions,while a greater relaxation time ratio improves velocity and temperature profiles due to the increased elastic response of the fluid.Moreover,enhancements in the magnetic parameter,thermal radiation,and Eckert number lead to an elevation in temperature profiles.Furthermore,higher nanolayer thickness reduces the temperature profile,whereas particle radius yields the opposite outcome.
基金supported by the project of the Educational Department of Liaoning Province(No.LJKMZ20220825)the National Natural Science Foundation of China(51774199).
文摘To elucidate the relationship between pipeline erosion and wear during slurry transportation,this study considers three key influencing parameters,namely,the ratio of inlet to outlet pipe diameter,the length of the variable diameter section,and the roughness of the pipe wall.The impact of these factors on pipeline erosion and wear is analyzed using a single-factor analysis approach.In particular,the Fluent software is employed to conduct the required numerical simulations for variable diameter elbows of varying morphologies.The results indicate that as the inlet to outlet diameter ratio increases,the wear on the pipe inlet and the outer wall of the elbow becomes increasingly pronounced.Notably,when the diameter ratio exceeds 0.8,there is a significant escalation in wear on both the inner and outer elbow walls.Initially,the maximum erosion rate decreases sharply with increasing diameter ratio before a stable condition is attained.Erosion wear in the variable diameter section exhibits a distinct layered distribution pattern.In this region,the wear range for a 40 mm length of the pipe body is relatively small;however,once this length exceeds 40 mm,the wear range expands,ultimately covering the entire pipe section.The length of the variable diameter section significantly influences the maximum erosion rate of the pipeline,with sections shorter than 80 mm experiencing the most severe effects,and showing an exponential decline in erosion rate.As the wall roughness gradually increases,the wear area on both cheeks of the bend section rapidly expands and tends to deepen further.When the roughness reaches 4 mm,the pipeline wear experiences a dramatic shift,resulting in extensive“spot-like”wear patterns emerging at the bottom and sides of the horizontal flow section,which previously exhibited no wear.
基金the Shanghai Municipal Education Commission-Gaofeng Clinical Medicine Grant(No.20172005)。
文摘Closed thoracic drainage can be performed using a steel-needle-guided chest tube to treat pleural effusion or pneumothorax in clinics.However,the puncture procedure during surgery is invisible,increasing the risk of surgical failure.Therefore,it is necessary to design a visualization system for closed thoracic drainage.Augmented reality(AR)technology can assist in visualizing the internal anatomical structure and determining the insertion point on the body surface.The structure of the currently used steel-needle-guided chest tube was modified by integrating it with an ultrafine diameter camera to provide real-time visualization of the puncture process.After simulation experiments,the overall registration error of the AR method was measured to be within(3.59±0.53)mm,indicating its potential for clinical application.The ultrafine diameter camera module and improved steel-needle-guided chest tube can timely reflect the position of the needle tip in the human body.A comparative experiment showed that video guidance could improve the safety of the puncture process compared to the traditional method.Finally,a qualitative evaluation of the usability of the system was conducted through a questionnaire.This system facilitates the visualization of closed thoracic drainage puncture procedure and pro-vides an implementation scheme to enhance the accuracy and safety of the operative step,which is conducive to reducing the learning curve and improving the proficiency of the doctors.
基金Supported by Education Department Foundation of Sichuan Province(No.15ZA0262).
文摘AIM:To present the 1-year results of a prospective cohort study investigating the efficacy,potential mechanism,and safety of orthokeratology(ortho-k)with different back optic zone diameters(BOZD)for myopia control in children.METHODS:This randomized clinical study was performed between Dec.2020 and Dec.2021.Participants were randomly assigned to three groups wearing ortho-k:5 mm BOZD(5-MM group),5.5 mm BOZD(5.5-MM group),and 6 mm BOZD(6-MM group).The 1-year data were recorded,including axial length,relative peripheral refraction(RPR,measured by multispectral refractive topography,MRT),and visual quality.The contrast sensitivity(CS)was evaluated by CSV-1000 instrument with spatial frequencies of 3,6,12,and 18 cycles/degree(c/d);the corneal higher-order aberrations(HOAs)were measured by iTrace aberration analyzer.The one-way ANOVA was performed to assess the differences between the three groups.The correlation between the change in AL and RPR was calculated by Pearson’s correlation coefficient.RESULTS:The 1-year results of 20,21,and 21 subjects in the 5-MM,5.5-MM,and 6-MM groups,respectively,were presented.There were no statistical differences in baseline age,sex,or ocular parameters between the three groups(all P>0.05).At the 1-year visit,the 5-MM group had lower axial elongation than the 6-MM group(0.07±0.09 vs 0.18±0.11 mm,P=0.001).The 5-MM group had more myopic total RPR(TRPR,P=0.014),with RPR in the 15°–30°(RPR 15–30,P=0.015),30°–45°(RPR 30–45,P=0.011),temporal(RPR-T,P=0.008),and nasal area(RPR-N,P<0.001)than the 6-MM group.RPR 15–30 in the 5.5-MM group was more myopic than that in the 6-MM group(P=0.002),and RPR-N in the 5-MM group was more myopic than that in the 5.5-MM group(P<0.001).There were positive correlations between the axial elongation and the change in TRPR(r=0.756,P<0.001),RPR 15–30(r=0.364,P=0.004),RPR 30–45(r=0.306,P=0.016),and RPR-N(r=0.253,P=0.047).The CS decreased at 3 c/d(P<0.001),and the corneal HOAs increased in the 5-MM group(P=0.030).CONCLUSION:Ortho-k with 5 mm BOZD can control myopia progression more effectively.The mechanism may be associated with greater myopic shifts in RPR.
文摘BACKGROUND:As advocated in advanced trauma life support and prehospital trauma life support protocols,cervical immobilization is applied until cervical spine injury is excluded.This study aimed to show the difference in optic nerve sheath diameter(ONSD)between patients with and without a cervical collar using computed tomography(CT).METHODS:This was a single-center,retrospective study examining trauma patients who presented to the emergency department between January 1,2021,and December 31,2021.The ONSD on brain CT of the trauma patients was measured and analyzed to determine whether there was a difference between the ONSD with and without the cervical collar.RESULTS:The study population consisted of 169 patients.On CT imaging of patients with(n=66)and without(n=103)cervical collars,the mean ONSD in the axial plane were 5.43±0.50 mm and 5.04±0.46 mm respectively for the right eye and 5.50±0.52 mm and 5.11±0.46 mm respectively for the left eye.The results revealed an association between the presence of a cervical collar and the mean ONSD,which was statistically significant(P<0.001)for both the right and left eyes.CONCLUSION:A cervical collar may be associated with increased ONSD.The effect of this increase in the ONSD on clinical outcomes needs to be investigated,and the actual need for cervical collar in the emergency department should be evaluated on a case-by-case basis.
文摘BACKGROUND The maximum outer diameter(MOD)of the appendix is an essential parameter for diagnosing acute appendicitis,but there is space for improvement in ultrasound(US)diagnostic performance.AIM To investigate whether combining the ratio of the cross diameters(RATIO)of the appendix with MOD of the appendix can enhance the diagnostic performance of acute appendicitis.METHODS A retrospective study was conducted,and medical records of 233 patients with acute appendicitis and 112 patients with a normal appendix were reviewed.The MOD and RATIO of the appendix were calculated and tested for their diagnostic performance of acute appendicitis,both individually and in combination.RESULTS The RATIO for a normal appendix was 1.32±0.16,while for acute appendicitis it was 1.09±0.07.The cut-off value for RATIO was determined to be≤1.18.The area under the receiver operating characteristic curve(AUC)for diagnosing acute appendicitis using RATIO≤1.18 and MOD>6 mm was 0.870 and 0.652,respectively.There was a significant difference in AUC between RATIO≤1.18 and MOD>6 mm(P<0.0001).When comparing the combination of RATIO≤1.18 and MOD>6 mm with MOD>6 mm alone,the combination showed increased specificity,positive predictive value(PPV),and AUC.However,the sensitivity and negative predictive value decreased.CONCLUSION Combining RATIO of the appendix≤1.18 and MOD>6 mm can significantly improve the specificity,PPV,and AUC in the US diagnosis of acute appendicitis.
基金supported by the Youth Fund of Fundamental Research Fund for the Central Universities of Jinan University,No.11622303(to YZ).
文摘Microvasculature of the retina is considered an alternative marker of cerebral vascular risk in healthy populations.However,the ability of retinal vasculature changes,specifically focusing on retinal vessel diameter,to predict the recurrence of cerebrovascular events in patients with ischemic stroke has not been determined comprehensively.While previous studies have shown a link between retinal vessel diameter and recurrent cerebrovascular events,they have not incorporated this information into a predictive model.Therefore,this study aimed to investigate the relationship between retinal vessel diameter and subsequent cerebrovascular events in patients with acute ischemic stroke.Additionally,we sought to establish a predictive model by combining retinal veessel diameter with traditional risk factors.We performed a prospective observational study of 141 patients with acute ischemic stroke who were admitted to the First Affiliated Hospital of Jinan University.All of these patients underwent digital retinal imaging within 72 hours of admission and were followed up for 3 years.We found that,after adjusting for related risk factors,patients with acute ischemic stroke with mean arteriolar diameter within 0.5-1.0 disc diameters of the disc margin(MAD_(0.5-1.0DD))of≥74.14μm and mean venular diameter within 0.5-1.0 disc diameters of the disc margin(MVD_(0.5-1.0DD))of≥83.91μm tended to experience recurrent cerebrovascular events.We established three multivariate Cox proportional hazard regression models:model 1 included traditional risk factors,model 2 added MAD_(0.5-1.0DD)to model 1,and model 3 added MVD0.5-1.0DD to model 1.Model 3 had the greatest potential to predict subsequent cerebrovascular events,followed by model 2,and finally model 1.These findings indicate that combining retinal venular or arteriolar diameter with traditional risk factors could improve the prediction of recurrent cerebrovascular events in patients with acute ischemic stroke,and that retinal imaging could be a useful and non-invasive method for identifying high-risk patients who require closer monitoring and more aggressive management.
文摘BACKGROUND Liver cirrhosis is the end stage of progressive liver fibrosis as a consequence of chronic liver inflammation,wherein the standard hepatic architecture is replaced by regenerative hepatic nodules,which eventually lead to liver failure.Cirrhosis without any symptoms is referred to as compensated cirrhosis.Complications such as ascites,variceal bleeding,and hepatic encephalopathy indicate the onset of decompensated cirrhosis.Gastroesophageal varices are the hallmark of clini-cally significant portal hypertension.AIM To determine the accuracy of the platelet count-to-spleen diameter(PC/SD)ratio to evaluate esophageal varices(EV)in patients with cirrhosis.METHODS This retrospective observational study was conducted at Tikur Anbessa Specia-lized Hospital and Adera Medical Center from January 1,2019,to December 30,2023.Data were collected via chart review and direct patient interviews using structured questionnaires.The data were exported to the SPSS software version 26 for analysis and clearance.A receiver operating characteristic curve was plotted for splenic diameter,platelet count,and PC/SD ratio to obtain sensitivity,speci-ficity,positive predictive value,negative predictive value,positive likelihood ratio,and negative likelihood ratio.RESULTS Of the 140 participants,67%were men.Hepatitis B(38%)was the most common cause of cirrhosis,followed by cryptogenic cirrhosis(28%)and hepatitis C(16%).Approximately 83.6%of the participants had endoscopic evidence of EV,whereas 51.1%had gastric varices.Decompensated cirrhosis and PC were associated with the presence of EV with adjusted odds ratios of 12.63(95%CI:3.16-67.58,P=0.001)and 0.14(95%CI:0.037-0.52,P=0.004),respectively.A PC/SD ratio<1119 had a sensitivity of 86.32%and specificity of 70%with area under the curve of 0.835(95%CI:0.736-0.934,P<0.001).CONCLUSION A PC/SD ratio<1119 predicts EV in patients with cirrhosis.It is a valuable,noninvasive tool for EV risk assess-ment in resource-limited settings.
基金supported by the National Natural Science Foundation of the People's Republic of China“On disjoint path covers of graphs and related problems”(12261085)Natural Science Foundation of Xinjiang Uygur Autonomous Region of China“On spanning wide diameter and spanning cycle ability of interconnection networks”(2021D01C116)。
文摘A t-container Ct(u,v)is a set of t internally disjoint paths between two distinct vertices u and v in a graph G,i.e.,Ct(u,v)={P_(1),P_(2),···,Pt}.Moreover,if V(P_(1))∪V(P_(2))∪···∪V(Pt)=V(G)then Ct(u,v)is called a spanning t-container,denoted by C_(t)^(sc)(u,v).The length of C_(t)^(sc)(u,v)={P_(1),P_(2),···,Pt}is l(C_(t)^(sc)(u,v))=max{l(P_(i))|1≤i≤t}.A graph G is spanning t-connected if there exists a spanning t-container between any two distinct vertices u and v in G.Assume that u and v are two distinct vertices in a spanning t-connected graph G.Let D_(t)^(sc)(u,v)be the collection of all C_(t)^(sc)(u,v)’s.Define the spanning t-wide distance between u and v in G,d_(t)^(sc)(u,v)=min{l(C_(t)^(sc)(u,v))|C_(t)^(sc)(u,v)∈D_(t)^(sc)(u,v)},and the spanning t-wide diameter of G,D_(t)^(sc)(G)=max{d_(t)^(sc)(u,v)|u,v∈V(G)}.In particular,the spanning wide diameter of G is D_(κ)^(sc)(G),whereκis the connectivity of G.In the paper we provide the upper and lower bounds of the spanning wide diameter of a graph,and show that the bounds are best possible.We also determine the exact values of wide diameters of some well known graphs including Harary graphs and generalized Petersen graphs et al..
基金supported by the National Natural Science Foundation of China(32060340 and 31400542)the Scientific Research Capacity Building Project for Laibin Jinxiu Dayaoshan Forest Ecosystem Observation and Research Station of Guangxi(22-035-130-01).
文摘The reverse J-shaped diameter distribution is considered an inherent attribute of natural forests,cru-cial for forest resource utilization and community stability.However,in karst regions,intense habitat heterogeneity might alter species composition,spatial distribution,growth,biomass allocation,and mortality processes,yet its impact on diameter structure remains unclear.A fixed plot of 200 m×110 m was established in the Nanpan River Basin,Southwest China,within an old-growth oak forest(>300 years old),and the influence of site substrates(i.e.,rock and soil),topographic factors,sample area,and orientation on diameter distribution was analyzed.Trees on both rock and soil exhibited a reverse-J shape,quantifiable Project funding:This work was supported by the National Natural Science Foundation of China(32060340 and 31400542),the Scientific Research Capacity Building Project for Laibin Jinxiu Dayaoshan Forest Ecosystem Observation and Research Station of Guangxi(22-035-130-01).through the Weibull function.The substrates had a similar density,approximately 2100 plants/ha.However,the average and range of diameter of trees on rock were smaller than those on soil,suggesting that rock constrains tree growth.The diameter distribution of trees across microtopography also displayed a reverse-J shape.Yet,higher elevations and sunny slopes showed a greater curvature of diameter classes compared to lower elevations and shady slopes,indicating habitat preferences in karst trees.Sample area and orientation had minimal effects on diameter class curve that reached stability when the plot size was 6000 m2.These results suggest that the reverse J-shaped diameter distribution prevails at small scales in karst old-growth forests,encompassing multiple curvatures and spanning forest ecosystems.
文摘BACKGROUND Neuromonitoring in medical intensive care units is challenging as most patients are unfit for invasive intracranial pressure(ICP)modalities or unstable to transport for imaging.Ultrasonography-based optic nerve sheath diameter(ONSD)is an attractive option as it is reliable,repeatable and easily performed at the bedside.It has been sufficiently validated in traumatic brain injury(TBI)to be incorporated into the guidelines.However,currently the data for non-TBI patients is inconsistent for a scientific recommendation to be made.AIM To compile the existing evidence for understanding the scope of ONSD in measuring ICP in adult non-traumatic neuro-critical patients.METHODS PubMed,Google Scholar and research citation analysis databases were searched for studies in adult patients with non-traumatic causes of raised ICP.Studies from 2010 to 2024 in English languages were included.RESULTS We found 37 articles relevant to our search.The cutoff for ONSD in predicting ICP varied from 4.1 to 6.3 mm.Most of the articles used cerebrospinal fluid opening pressure followed by raised ICP on computed tomography/magnetic resonance imaging as the comparator parameter.ONSD was also found to be a reliable outcome measure in cases of acute ischaemic stroke,intracerebral bleeding and intracranial infection.However,ONSD is of doubtful utility in septic metabolic encephalopathy,dysnatremias and aneurysmal subarachnoid haemorrhage.CONCLUSION ONSD is a useful tool for the diagnosis of raised ICP in non-traumatic neuro-critically ill patients and may also have a role in the prognostication of a subset of patients.
基金supported by the Shenyang Science and Technology Program(grant number 22-301-1-10).
文摘The design of the loading path is one of the important research contents of the tube hydroforming process.Optimization of loading paths using optimization algorithms has received attention due to the inefficiency of only finite element optimization.In this paper,the hydroforming process of 5A02 aluminum alloy variable diameter tube was as the research object.Fuzzy control was used to optimize the loading path,and the fuzzy rule base was established based on FEM.The minimum wall thickness and wall thickness reduction rate were determined as input membership functions,and the axial feeds variable value of the next step was used as output membership functions.The results show that the optimized loading path greatly improves the uniformity of wall thickness and the forming effect compared with the linear loading path.The round corner lamination rate of the tube is 91.2%under the fuzzy control optimized loading path,which was increased by 47.1%and 22.6%compared with linear loading Path 1 and Path 2,respectively.Based on the optimized loading path in the experiment,the minimum wall thickness of the variable diameter tube was 1.32 mm and the maximum thinning rate was 12.4%.The experimental results were consistent with the simulation results,which verified the accuracy of fuzzy control.The research results provide a reference for improving the forming quality of thin-walled tubes and plates.
文摘Based on the investigation data of 12 Haloxylon ammodendron plots in the south edge of Gurbantunggut Desert, Fuzzy distribution was introduced into the study of Haloxylon ammodendron base diameter structure fitting according to the consistency between the characteristics of Fuzzy distribution function and the distribution series of cumulative percentage of stand base diameter, and the fitting precision and effect of Fuzzy distribution function were discussed. The root mean square error RMSE and determination coefficient R<sup>2</sup> values showed that Fuzzy-Γ<sub>1</sub>, Fuzzy-Γ<sub>2</sub>, Fuzzy-Γ<sub>3</sub>, Fuzzy-Γ<sub>4</sub> had good fitting performance, among which Fuzzy-Γ<sub>1</sub> had relatively high fitting precision, and its parameters were closely related to stand age and density, Fuzzy-Γ<sub>2</sub> distribution function was the second, and Fuzzy-Γ<sub>4</sub> distribution function had the worst fitting effect. By introducing a parameter c from the similarity of four distribution function formulas, a generalized Fuzzy distribution function Fuzzy-Γ<sub>5</sub> is obtained. This function shows the highest fitting accuracy. Most of the values of parameter c are near 1 or 2, which shows that the diameter distribution is mainly approximate to Fuzzy-Γ<sub>1</sub> and Fuzzy-Γ<sub>2</sub>.
文摘Objective:Vesicoureteral reflux(VUR)index is a simple,validated tool that reliably predicts significant improvement and spontaneous resolution of primary reflux in children.The aim of this study was to evaluate and compare the ureter diameter ratio(UDR)and VUR index(VURx)of patients treated with endoscopic injection(EI)and ureteroneocystostomy(UNC)methods in the pediatric age group due to primary VUR.Methods:Patients under the age of 18 years old who underwent EI and UNC with the diagnosis of primary VUR between January 2011 and September 2021 were determined as the participants.The UDR was assessed using voiding cystourethrography,and the VURx score was determined prior to treatment based on hospital records included in the study.Results:A total of 255 patients,60(23.5%)boys and 195(76.5%)girls,with a mean age of 76.5(range 13.0e204.0)months,were included in the study.EI was applied to 130(51.0%)patients and UNC was applied to 125(49.0%)patients due to primary VUR.The optimum cut-off for the distal UDR was obtained as 0.17 with sensitivity and specificity of 73.0%and 63.0%,respectively.The positive and negative predictive values were 66.0%and 70.0%,respectively.Conclusion:When the UDR and VURx score are evaluated together for the surgical treatment of primary VUR in the pediatric age group,it is thought that it may be useful in predicting the clinical course of the disease and evaluating surgical treatment options.
文摘This work consists of evaluating the quality of the mechanical parameters of large-diameter steels, i.e. 20, 25, 28 and 32, through a process of recycling scrap metal that fills garages, rubbish dumps, gutters and other abandoned sites, as well as imported concrete reinforcing steel sold in the Republic of Guinea. To carry out this important work, a number of mechanical tensile and bending tests and a microscopic analysis combining two devices, an electron microscope and a photographic camera, were carried out. The samples were taken from sampling areas in the major communes of Conakry, namely: Casse Sonfonia, Matoto and Kagbélen. The tensile strength values of the large dimensions 20, 25, 28 and 32 are given in the tables.