期刊文献+
共找到987篇文章
< 1 2 50 >
每页显示 20 50 100
基于WGAN-GP和Super Learner算法的小样本碳纳米管海水淡化性能预测
1
作者 吴斌 陈鹏杰 魏明杰 《环境工程学报》 北大核心 2025年第9期2341-2350,共10页
针对小样本场景下碳纳米管(carbon nanotubes,CNTs)海水淡化性能预测中存在的数据少、预测精度低等问题,本研究提出了一种梯度惩罚Wasserstein生成对抗网络(wasserstein generative adversarial network with gradient penalty,WGAN-GP... 针对小样本场景下碳纳米管(carbon nanotubes,CNTs)海水淡化性能预测中存在的数据少、预测精度低等问题,本研究提出了一种梯度惩罚Wasserstein生成对抗网络(wasserstein generative adversarial network with gradient penalty,WGAN-GP)与超级学习器(super learner,SL)融合的预测算法框架。通过引入WGAN-GP数据增强机制,生成与原始数据分布高度一致的合成数据集,有效扩充了训练样本量。在此基础上,采用集成多种基学习器的SL算法进行海水淡化性能预测。结果表明,所提出SL算法成功实现了对CNTs水渗透率和离子截留率的高精度预测。在生成数据上,SL算法的R^(2)值在所有目标变量上均达到93%以上,其中对变量k_H_(2)O预测精度R^(2)高达95%,且均方误差MSE仅为0.04,显著优于其他传统算法。此外,孔径(σ)和亲水性系数(ε)对水渗透率和离子截留率具有显著影响。以上研究结果可为小样本场景下CNTs的设计与优化提供新思路。 展开更多
关键词 碳纳米管 海水淡化 对抗生成模型 超级学习器 小样本学习
原文传递
基于Super Peer的P2P e-Learning模型 被引量:1
2
作者 陈金儿 王让定 《计算机工程与应用》 CSCD 北大核心 2007年第11期204-207,共4页
在分析各种P2P网络特点的基础上,提出了分布式环境中基于超节点的P2P e-Learning模型。对特定peer组中超节点的加入和超节点的服务进行了具体描述。针对e-Learning的特性,给出了模型中的数据抽象和本体描述,并对该P2P网络模型在文件传... 在分析各种P2P网络特点的基础上,提出了分布式环境中基于超节点的P2P e-Learning模型。对特定peer组中超节点的加入和超节点的服务进行了具体描述。针对e-Learning的特性,给出了模型中的数据抽象和本体描述,并对该P2P网络模型在文件传输方面的性能做了分析。 展开更多
关键词 超节点 PEER to Peer(P2P) 远程教育
在线阅读 下载PDF
Super learning market——打造理想中的开放大学
3
作者 张二烨 黄传慧 《辽宁广播电视大学学报》 2008年第4期35-36,共2页
随着总结性评估的结束,开放教育已经成为广播电视大学的一种常规办学形式。如何适应时代发展需求,打造理想中的开放大学,实现真正意义上的开放,已是摆在我们面前的一个新的发展问题。本文作者从工作实践出发,结合相关理论,提出了理想中... 随着总结性评估的结束,开放教育已经成为广播电视大学的一种常规办学形式。如何适应时代发展需求,打造理想中的开放大学,实现真正意义上的开放,已是摆在我们面前的一个新的发展问题。本文作者从工作实践出发,结合相关理论,提出了理想中的开放大学应是建立在"终身教育"和"以学生为中心"的理念之上的Super learning market(学习超市),并以此提出了开放教育应转向非学历教育发展,为建设学习型社会做出新的贡献。 展开更多
关键词 开放教育 super learning market(学习超市) 开放大学
在线阅读 下载PDF
Research on Interactive Teaching Strategies of College English Teaching-Based on Super Star Learning Platform
4
作者 李冬梅 《海外英语》 2020年第22期279-280,共2页
Super Star Learning Platform is a learning platform which meets the needs of interactive teaching mode both in and out of the classroom.This paper analyzes the advantages of interactive teaching strategies and the exi... Super Star Learning Platform is a learning platform which meets the needs of interactive teaching mode both in and out of the classroom.This paper analyzes the advantages of interactive teaching strategies and the existing problems to be solved.Super Star Learning Platform can effectively improve teaching efficiency by enhancing the interaction between teachers and students and motivating students’interest in learning. 展开更多
关键词 super Star learning Platform college English interactive strategy
在线阅读 下载PDF
Data Matching of Solar Images Super-Resolution Based on Deep Learning 被引量:2
5
作者 Liu Xiangchun Chen Zhan +2 位作者 Song Wei Li Fenglei Yang Yanxing 《Computers, Materials & Continua》 SCIE EI 2021年第9期4017-4029,共13页
The images captured by different observation station have different resolutions.The Helioseismic and Magnetic Imager(HMI:a part of the NASA Solar Dynamics Observatory SDO)has low-precision but wide coverage.And the Go... The images captured by different observation station have different resolutions.The Helioseismic and Magnetic Imager(HMI:a part of the NASA Solar Dynamics Observatory SDO)has low-precision but wide coverage.And the Goode Solar Telescope(GST,formerly known as the New Solar Telescope)at Big Bear Solar Observatory(BBSO)solar images has high precision but small coverage.The super-resolution can make the captured images become clearer,so it is wildly used in solar image processing.The traditional super-resolution methods,such as interpolation,often use single image’s feature to improve the image’s quality.The methods based on deep learning-based super-resolution image reconstruction algorithms have better quality,but small-scale features often become ambiguous.To solve this problem,a transitional amplification network structure is proposed.The network can use the two types images relationship to make the images clear.By adding a transition image with almost no difference between the source image and the target image,the transitional amplification training procedure includes three parts:transition image acquisition,transition network training with source images and transition images,and amplification network training with transition images and target images.In addition,the traditional evaluation indicators based on structural similarity(SSIM)and peak signal-to-noise ratio(PSNR)calculate the difference in pixel values and perform poorly in cross-type image reconstruction.The method based on feature matching can effectively evaluate the similarity and clarity of features.The experimental results show that the quality index of the reconstructed image is consistent with the visual effect. 展开更多
关键词 super resolution transition amplification transfer learning
在线阅读 下载PDF
Deep Learning Based Single Image Super-resolution:A Survey 被引量:27
6
作者 Viet Khanh Ha Jin-Chang Ren +4 位作者 Xin-Ying Xu Sophia Zhao Gang Xie Valentin Masero Amir Hussain 《International Journal of Automation and computing》 EI CSCD 2019年第4期413-426,共14页
Single image super-resolution has attracted increasing attention and has a wide range of applications in satellite imaging, medical imaging, computer vision, security surveillance imaging, remote sensing, objection de... Single image super-resolution has attracted increasing attention and has a wide range of applications in satellite imaging, medical imaging, computer vision, security surveillance imaging, remote sensing, objection detection, and recognition. Recently, deep learning techniques have emerged and blossomed, producing " the state-of-the-art” in many domains. Due to their capability in feature extraction and mapping, it is very helpful to predict high-frequency details lost in low-resolution images. In this paper, we give an overview of recent advances in deep learning-based models and methods that have been applied to single image super-resolution tasks. We also summarize, compare and discuss various models from the past and present for comprehensive understanding and finally provide open problems and possible directions for future research. 展开更多
关键词 IMAGE super-RESOLUTION convolutional NEURAL network HIGH-RESOLUTION IMAGE low-resolution IMAGE deep learning
原文传递
Face Super-resolution Reconstruction and Recognition Using Non-local Similarity Dictionary Learning Based Algorithm 被引量:3
7
作者 Ningbo Hao Haibin Liao +1 位作者 Yiming Qiu Jie Yang 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI 2016年第2期213-224,共12页
One of the challenges of face recognition in surveillance is the low resolution of face region. Therefore many superresolution (SR) face reconstruction methods are proposed to produce a high-resolution face image from... One of the challenges of face recognition in surveillance is the low resolution of face region. Therefore many superresolution (SR) face reconstruction methods are proposed to produce a high-resolution face image from one or a set of low-resolution face images. However, existing dictionary learning based algorithms are sensitive to noise and very time-consuming. In this paper, we define and prove the multi-scale linear combination consistency. In order to improve the performance of SR, we propose a novel SR face reconstruction method based on nonlocal similarity and multi-scale linear combination consistency (NLS-MLC). We further proposed a new recognition approach for very low resolution face images based on resolution scale invariant feature (RSIF). A series of experiments are conducted on two public face image databases to test feasibility of our proposed methods. Experimental results show that the proposed SR method is more robust and computationally effective in face hallucination, and the recognition accuracy of RSIF is higher than some state-of-art algorithms. © 2014 Chinese Association of Automation. 展开更多
关键词 ALGORITHMS learning algorithms Optical resolving power
在线阅读 下载PDF
Fast image super-resolution algorithm based on multi-resolution dictionary learning and sparse representation 被引量:3
8
作者 ZHAO Wei BIAN Xiaofeng +2 位作者 HUANG Fang WANG Jun ABIDI Mongi A. 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2018年第3期471-482,共12页
Sparse representation has attracted extensive attention and performed well on image super-resolution(SR) in the last decade. However, many current image SR methods face the contradiction of detail recovery and artif... Sparse representation has attracted extensive attention and performed well on image super-resolution(SR) in the last decade. However, many current image SR methods face the contradiction of detail recovery and artifact suppression. We propose a multi-resolution dictionary learning(MRDL) model to solve this contradiction, and give a fast single image SR method based on the MRDL model. To obtain the MRDL model, we first extract multi-scale patches by using our proposed adaptive patch partition method(APPM). The APPM divides images into patches of different sizes according to their detail richness. Then, the multiresolution dictionary pairs, which contain structural primitives of various resolutions, can be trained from these multi-scale patches.Owing to the MRDL strategy, our SR algorithm not only recovers details well, with less jag and noise, but also significantly improves the computational efficiency. Experimental results validate that our algorithm performs better than other SR methods in evaluation metrics and visual perception. 展开更多
关键词 single image super-resolution(SR) sparse representation multi-resolution dictionary learning(MRDL) adaptive patch partition method(APPM)
在线阅读 下载PDF
Meta-Learning Multi-Scale Radiology Medical Image Super-Resolution
9
作者 Liwei Deng Yuanzhi Zhang +2 位作者 Xin Yang Sijuan Huang Jing Wang 《Computers, Materials & Continua》 SCIE EI 2023年第5期2671-2684,共14页
High-resolution medical images have important medical value,but are difficult to obtain directly.Limited by hardware equipment and patient’s physical condition,the resolution of directly acquired medical images is of... High-resolution medical images have important medical value,but are difficult to obtain directly.Limited by hardware equipment and patient’s physical condition,the resolution of directly acquired medical images is often not high.Therefore,many researchers have thought of using super-resolution algorithms for secondary processing to obtain high-resolution medical images.However,current super-resolution algorithms only work on a single scale,and multiple networks need to be trained when super-resolution images of different scales are needed.This definitely raises the cost of acquiring high-resolution medical images.Thus,we propose a multi-scale superresolution algorithm using meta-learning.The algorithm combines a metalearning approach with an enhanced depth of residual super-resolution network to design a meta-upscale module.The meta-upscale module utilizes the weight prediction property of meta-learning and is able to perform the super-resolution task of medical images at any scale.Meanwhile,we design a non-integer mapping relation for super-resolution,which allows the network to be trained under non-integer magnification requirements.Compared to the state-of-the-art single-image super-resolution algorithm on computed tomography images of the pelvic region.The meta-learning multiscale superresolution algorithm obtained a surpassing of about 2%at a smaller model volume.Testing on different parts proves the high generalizability of our algorithm.Multi-scale super-resolution algorithms using meta-learning can compensate for hardware device defects and reduce secondary harm to patients while obtaining high-resolution medical images.It can be of great use in imaging related fields. 展开更多
关键词 super resolution deep learning meta learning computed tomography
在线阅读 下载PDF
Performance Evaluation of Super-Resolution Methods Using Deep-Learning and Sparse-Coding for Improving the Image Quality of Magnified Images in Chest Radiographs
10
作者 Kensuke Umehara Junko Ota +4 位作者 Naoki Ishimaru Shunsuke Ohno Kentaro Okamoto Takanori Suzuki Takayuki Ishida 《Open Journal of Medical Imaging》 2017年第3期100-111,共12页
Purpose: To detect small diagnostic signals such as lung nodules in chest radiographs, radiologists magnify a region-of-interest using linear interpolation methods. However, such methods tend to generate over-smoothed... Purpose: To detect small diagnostic signals such as lung nodules in chest radiographs, radiologists magnify a region-of-interest using linear interpolation methods. However, such methods tend to generate over-smoothed images with artifacts that can make interpretation difficult. The purpose of this study was to investigate the effectiveness of super-resolution methods for improving the image quality of magnified chest radiographs. Materials and Methods: A total of 247 chest X-rays were sampled from the JSRT database, then divided into 93 training cases with non-nodules and 154 test cases with lung nodules. We first trained two types of super-resolution methods, sparse-coding super-resolution (ScSR) and super-resolution convolutional neural network (SRCNN). With the trained super-resolution methods, the high-resolution image was then reconstructed using the super-resolution methods from a low-resolution image that was down-sampled from the original test image. We compared the image quality of the super-resolution methods and the linear interpolations (nearest neighbor and bilinear interpolations). For quantitative evaluation, we measured two image quality metrics: peak signal-to-noise ratio (PSNR) and structural similarity (SSIM). For comparative evaluation of the super-resolution methods, we measured the computation time per image. Results: The PSNRs and SSIMs for the ScSR and the SRCNN schemes were significantly higher than those of the linear interpolation methods (p p p Conclusion: Super-resolution methods provide significantly better image quality than linear interpolation methods for magnified chest radiograph images. Of the two tested schemes, the SRCNN scheme processed the images fastest;thus, SRCNN could be clinically superior for processing radiographs in terms of both image quality and processing speed. 展开更多
关键词 Deep learning super-RESOLUTION super-RESOLUTION Convolutional NEURAL Network (SRCNN) Sparse-Coding super-RESOLUTION (ScSR) CHEST X-Ray
在线阅读 下载PDF
基于深度强化学习的Super Mario Bros游戏智能训练
11
作者 车景平 王强 吉凡 《周口师范学院学报》 2025年第2期60-64,共5页
近年来,深度强化学习在复杂决策和控制任务中得到了广泛应用,并在游戏AI领域展现了卓越性能。基于双重深度Q网络的方法,提出一种通过智能体与Super Mario Bros环境的持续交互、逐步学习并优化游戏策略。首先,利用gym-super-mario-bros... 近年来,深度强化学习在复杂决策和控制任务中得到了广泛应用,并在游戏AI领域展现了卓越性能。基于双重深度Q网络的方法,提出一种通过智能体与Super Mario Bros环境的持续交互、逐步学习并优化游戏策略。首先,利用gym-super-mario-bros框架构建训练环境,并通过帧跳、灰度转换和图像缩放等技术提升训练效率。其次,智能体采用DDQN架构结合卷积神经网络进行特征提取,并通过经验回放和目标网络减少Q值波动。最后,通过衰减的epsilon-greedy策略平衡探索与利用。实验结果表明,该方法能有效提升智能体表现。 展开更多
关键词 深度强化学习 DDQN super Mario Bros游戏训练
在线阅读 下载PDF
Markov链与Q-Learning算法的超轻度混动汽车模型预测控制 被引量:5
12
作者 尹燕莉 马永娟 +5 位作者 周亚伟 王瑞鑫 詹森 马什鹏 黄学江 张鑫新 《汽车安全与节能学报》 CAS CSCD 北大核心 2021年第4期557-569,共13页
为了同时兼顾能量管理策略的全局最优性与运算实时性,本文提出了基于Markov链与Q-Learning算法的超轻度混合动力汽车模型预测控制能量管理策略。采用多步Markov模型预测加速度变化过程,计算得出混合动力汽车未来需求功率;以等效燃油消... 为了同时兼顾能量管理策略的全局最优性与运算实时性,本文提出了基于Markov链与Q-Learning算法的超轻度混合动力汽车模型预测控制能量管理策略。采用多步Markov模型预测加速度变化过程,计算得出混合动力汽车未来需求功率;以等效燃油消耗最小与动力电池荷电状态(SOC)局部平衡为目标函数,建立能量管理策略优化模型;采用Q-Learning算法对预测时域内的优化问题进行求解,得到最优转矩分配序列。基于MATLAB/Simulink平台,对于ECE_EUDC+UDDS循环工况进行仿真分析。结果表明:采用Q-Learning求解的控制策略比基于动态规划(DP)求解的控制策略,在保证燃油经济性基本保持一致的前提下,仿真时间缩短了4 s,明显地提高了运行效率,实时性更好。 展开更多
关键词 超轻度混合动力汽车 模型预测控制 Markov链(Markov chain) Q-learning算法 多步Markov模型 能量管理
在线阅读 下载PDF
基于Super Learner集成学习模型对脑卒中的预测研究 被引量:2
13
作者 孙浩浩 章剑林 +1 位作者 张子蓥 黄可欣 《杭州师范大学学报(自然科学版)》 CAS 2023年第6期590-597,610,共9页
使用索马里医院提供的脑卒中患者数据集,通过四分位距(interquartile range, IQR)方法和合成少数类过采样技术(synthetic minority oversampling technique, SMOTE)算法进行数据预处理,采用特征工程中的嵌入式方法对数据集进行特征分析... 使用索马里医院提供的脑卒中患者数据集,通过四分位距(interquartile range, IQR)方法和合成少数类过采样技术(synthetic minority oversampling technique, SMOTE)算法进行数据预处理,采用特征工程中的嵌入式方法对数据集进行特征分析,确定脑卒中诱发因素.以随机森林(random forest, RF)、极端梯度提升(extreme gradient boosting, XGB)和自适应提升(adaptive boosting, AdB)算法为第一层,高斯朴素贝叶斯(Gaussian naive bayes, GaNB)和支持向量机(support vector machine, SVM)为第二层,逻辑回归(logistic regression, LR)为元学习器构建超级学习者(super learner, SL)集成学习模型.仿真实验结果表明,相较于6种基础算法,SL模型预测效果最优,可为脑卒中的预测分析提供新的选择. 展开更多
关键词 脑卒中 特征分析 super learner 机器学习 预测
在线阅读 下载PDF
Deep Learned Singular Residual Network for Super Resolution Reconstruction
14
作者 Gunnam Suryanarayana D.Bhavana +2 位作者 P.E.S.N.Krishna Prasad M.M.K.Narasimha Reddy Md Zia Ur Rahman 《Computers, Materials & Continua》 SCIE EI 2023年第1期1123-1137,共15页
Single image super resolution(SISR)techniques produce images of high resolution(HR)as output from input images of low resolution(LR).Motivated by the effectiveness of deep learning methods,we provide a framework based... Single image super resolution(SISR)techniques produce images of high resolution(HR)as output from input images of low resolution(LR).Motivated by the effectiveness of deep learning methods,we provide a framework based on deep learning to achieve super resolution(SR)by utilizing deep singular-residual neural network(DSRNN)in training phase.Residuals are obtained from the difference between HR and LR images to generate LR-residual example pairs.Singular value decomposition(SVD)is applied to each LR-residual image pair to decompose into subbands of low and high frequency components.Later,DSRNN is trained on these subbands through input and output channels by optimizing the weights and biases of the network.With fewer layers in DSRNN,the influence of exploding gradients is reduced.This speeds up the learning process and also improves accuracy by using skip connections.The trained DSRNN parameters yield residuals to recover the HR subbands in the testing phase.Experimental analysis shows that the proposed method results in superior performance to existingmethods in terms of subjective quality.Extensive testing results on popular benchmark datasets such as set5,set14,and urban100 for a scaling factor of 4 show the effectiveness of the proposed method across different qualitative evaluation metrics. 展开更多
关键词 Deep learning image reconstruction residual network singular values super resolution
在线阅读 下载PDF
Asymmetric Loss Based on Image Properties for Deep Learning-Based Image Restoration
15
作者 Linlin Zhu Yu Han +5 位作者 Xiaoqi Xi Zhicun Zhang Mengnan Liu Lei Li Siyu Tan Bin Yan 《Computers, Materials & Continua》 SCIE EI 2023年第12期3367-3386,共20页
Deep learning techniques have significantly improved image restoration tasks in recent years.As a crucial compo-nent of deep learning,the loss function plays a key role in network optimization and performance enhancem... Deep learning techniques have significantly improved image restoration tasks in recent years.As a crucial compo-nent of deep learning,the loss function plays a key role in network optimization and performance enhancement.However,the currently prevalent loss functions assign equal weight to each pixel point during loss calculation,which hampers the ability to reflect the roles of different pixel points and fails to exploit the image’s characteristics fully.To address this issue,this study proposes an asymmetric loss function based on the image and data characteristics of the image recovery task.This novel loss function can adjust the weight of the reconstruction loss based on the grey value of different pixel points,thereby effectively optimizing the network training by differentially utilizing the grey information from the original image.Specifically,we calculate a weight factor for each pixel point based on its grey value and combine it with the reconstruction loss to create a new loss function.This ensures that pixel points with smaller grey values receive greater attention,improving network recovery.In order to verify the effectiveness of the proposed asymmetric loss function,we conducted experimental tests in the image super-resolution task.The experimental results show that the model with the introduction of asymmetric loss weights improves all the indexes of the processing results without increasing the training time.In the typical super-resolution network SRCNN,by introducing asymmetric weights,it is possible to improve the peak signal-to-noise ratio(PSNR)by up to about 0.5%,the structural similarity index(SSIM)by up to about 0.3%,and reduce the root-mean-square error(RMSE)by up to about 1.7%with essentially no increase in training time.In addition,we also further tested the performance of the proposed method in the denoising task to verify the potential applicability of the method in the image restoration task. 展开更多
关键词 Deep learning image restoration loss function image properties super resolution image denoising
在线阅读 下载PDF
SANAA的转身——比较法视点下劳力士研修中心(Rolex Learning Center)之“变”
16
作者 梅涛 秦乐 曹亮功 《建筑师》 2010年第4期48-52,共5页
本文从分析Rolex Learning Center的创作背景入手,透视出其在"Super Flat"思潮影响下的建筑手法与反映、表现"不确定性"的建筑观。基于上述理论比较近期几个作品,讨论SANAA提供新建筑形制和体验的思考过程,揭示了&q... 本文从分析Rolex Learning Center的创作背景入手,透视出其在"Super Flat"思潮影响下的建筑手法与反映、表现"不确定性"的建筑观。基于上述理论比较近期几个作品,讨论SANAA提供新建筑形制和体验的思考过程,揭示了"不确定性"在SANAA和库哈斯间的交集与差异,以及SANAA手法之变背后恒定不变的价值观。 展开更多
关键词 SANAA 劳力士研修中心 超平 不确定性场所 一体化空间 多维空间 比较法
原文传递
基于super learner算法的集成学习及其在纵向删失数据预测建模中的应用 被引量:1
17
作者 杨嵛惠 王静娴 +2 位作者 赵芃 李业棉 陈方尧 《中国医院统计》 2021年第1期86-90,共5页
目的集成学习是近年来机器学习领域中被广泛应用的一种新的、用来提高学习精度的算法。本文旨在介绍基于super learner算法的集成学习方法在纵向删失数据预测建模中的应用及其R语言实现。方法本文介绍了super learner算法的基本原理及... 目的集成学习是近年来机器学习领域中被广泛应用的一种新的、用来提高学习精度的算法。本文旨在介绍基于super learner算法的集成学习方法在纵向删失数据预测建模中的应用及其R语言实现。方法本文介绍了super learner算法的基本原理及其在纵向删失数据建模中的应用,以及如何在R语言中实现该算法的建模。其次,应用TCGA数据库中的肿瘤生存数据进行实例分析,展示其在实际数据分析中的应用效果。结果基于super learner算法的集成学习方法在建模时,模型参数估计方法的选择和算法参数的定义均较为灵活。在实际数据分析中,super learner算法可以充分利用所获得的数据建立模型,模型的预测准确度为0.8737(95%CI:0.7897~0.9330),C-index为0.883,预测准确性较高。结论基于super learner算法的集成学习方法为纵向删失数据的预测建模分析提供了新的选择。 展开更多
关键词 集成学习 super learner 预测模型 纵向删失数据 R语言
暂未订购
基于复数域卷积神经网络的ISAR包络对齐方法研究 被引量:1
18
作者 王勇 夏浩然 刘明帆 《信号处理》 北大核心 2025年第3期409-425,共17页
在逆合成孔径雷达(Inverse Synthetic Aperture Radar,ISAR)成像领域,运动补偿是确保高质量图像生成的关键环节。包络对齐(Range Alignment,RA)作为运动补偿的首要步骤,对于校正由平动分量引起的回波信号包络偏移至关重要。本文提出了... 在逆合成孔径雷达(Inverse Synthetic Aperture Radar,ISAR)成像领域,运动补偿是确保高质量图像生成的关键环节。包络对齐(Range Alignment,RA)作为运动补偿的首要步骤,对于校正由平动分量引起的回波信号包络偏移至关重要。本文提出了一种基于复数域卷积神经网络(Complex-Valued Convolutional Neural Network,CVCNN)的包络对齐新方法,旨在通过深度学习策略提升包络对齐的精度与计算效率。本文所提方法利用了卷积神经网络强大的特征学习能力,构建了一个能够映射一维距离像与包络补偿量之间复杂关系的模型。通过将传统的实值卷积神经网络拓展至复数域,不仅完整保留了回波信号中的相位信息,而且有效引入了复数域残差块及线性连接机制,进一步精细化了网络结构设计。这种架构改进使得所提算法能实现低信噪比(Signal-to-Noise Ratio,SNR)条件下对ISAR距离像的高效包络对齐。在数据生成方面,本文基于雷达仿真参数,通过成像模拟仿真构建了ISAR回波数据集。该数据集经过归一化处理后,输入网络进行训练,使网络能够学习从未对齐回波到对应补偿量的映射关系。本文所提方法采用迁移学习策略,对基于仿真数据预训练的模型进行微调,以适应实测数据。这一策略不仅增强了结果的可靠性,同时也大幅缩短了模型的迭代周期。在实验验证方面,本文采用仿真与实测数据进行综合测试,以包络对齐精度、成像结果质量和计算效率为评价指标,全面验证了算法的有效性。实验结果表明,在不同信噪比条件下,本文所提方法均展现出了优越的包络对齐性能,进而可以实现高质量成像,同时在计算效率上也具有显著优势。 展开更多
关键词 逆合成孔径雷达 包络对齐 复数域卷积神经网络 有监督学习
在线阅读 下载PDF
基于集成机器学习的测井曲线大尺度差异超分辨 被引量:2
19
作者 曹志民 丁璐 +1 位作者 韩建 郝乐川 《吉林大学学报(地球科学版)》 北大核心 2025年第2期670-685,共16页
精细储层描述一直是非常规油气资源开发和生产的重点,但常规测井曲线的纵向分辨率难以满足对厘米级甚至毫米级储层的有效识别。针对这一问题,本文以集成机器学习技术为核心,从多视多尺度的角度出发,提出了一种两级知识迁移的测井曲线大... 精细储层描述一直是非常规油气资源开发和生产的重点,但常规测井曲线的纵向分辨率难以满足对厘米级甚至毫米级储层的有效识别。针对这一问题,本文以集成机器学习技术为核心,从多视多尺度的角度出发,提出了一种两级知识迁移的测井曲线大尺度差异超分辨方法提高测井曲线的纵向分辨率,实现低成本情况下的储层精细描述;选取地层反映较好的微球电阻率、自然伽马、声波时差曲线作为目标曲线,实现高分辨成像电阻率曲线信息到目标测井曲线映射模型的构建,进而实现目标测井曲线的大尺度差异超分辨,并将超分辨结果与不同超分辨方法进行对比。结果表明,本文方法得到的超分辨曲线与真实高分辨曲线相关系数大于0.9,与对比方法相比提高了3.6%~16.0%,均方误差、均方根误差、平均绝对误差、平均绝对百分比误差、对称平均绝对百分比误差分别降低了28.9%~90.8%、15.7%~69.8%、24.4%~74.7%、25.0%~74.2%、25.2%~77.4%。本文方法能够在一定程度上实现现有常规测井曲线的毫米级超分辨处理,得到的超分辨曲线能够大致地捕捉到地层的变化,降低了精细储层有效识别问题的难度。 展开更多
关键词 精细储层描述 测井曲线 集成机器学习 大尺度 超分辨
在线阅读 下载PDF
基于混合注意力的遥感图像超分辨率重建 被引量:1
20
作者 姚善化 潘品杨 王仲根 《安徽理工大学学报(自然科学版)》 2025年第1期64-73,98,共11页
目的为改善遥感图像局部区域模糊、部分细节信息重建丢失等问题。方法提出一种基于空洞卷积和混合注意力的遥感图像超分辨率重建算法。首先经过浅层特征提取模块得到浅层特征图,再利用卷积与空洞卷积以及非线性激活块相结合,扩大了整体... 目的为改善遥感图像局部区域模糊、部分细节信息重建丢失等问题。方法提出一种基于空洞卷积和混合注意力的遥感图像超分辨率重建算法。首先经过浅层特征提取模块得到浅层特征图,再利用卷积与空洞卷积以及非线性激活块相结合,扩大了整体感受野,提升了训练过程的稳定性,从而增强深层特征表达能力;其次,使用级联的空间注意力与通道注意力模块来改善高频信息缺失问题;最后,对所提取的特征进行上采样和重建获得高分辨率图像。结果在NWPU RESISC45和UCMerced-LandUse数据集上,仿真结果分析表明,该算法的峰值信噪比与结构相似性两项评价指标均优于所对比算法,在主观视觉效果上,重建图像也更能突出纹理细节信息。结论所提算法拥有更好的重建效果,提升了遥感图像的质量和可用性。 展开更多
关键词 超分辨率重建 遥感图像 空洞卷积 注意力机制 深度学习
在线阅读 下载PDF
上一页 1 2 50 下一页 到第
使用帮助 返回顶部