Compared with other methods, the chirp scaling (CS) algorithm is a novel one for compensating the range migration without any interpolation in SAR imaging. However, its resolution ability can't exceed that of Four...Compared with other methods, the chirp scaling (CS) algorithm is a novel one for compensating the range migration without any interpolation in SAR imaging. However, its resolution ability can't exceed that of Fourier transformation. To realize the super-resolution ability in the azimuth direction a chirp scaling Burg (CSB) algorithm is proposed in this paper, which can still reserve the advantage of avoiding any interpolation in the process of the two-dimensional space-variant correlation in the CS algorithm.展开更多
A full-polarimetric super-resolution algorithm with spatial smoothing processing is presented for one-dimensional(1-D)radar imaging.The coherence between scattering centers is minimized by using spatial smoothing pr...A full-polarimetric super-resolution algorithm with spatial smoothing processing is presented for one-dimensional(1-D)radar imaging.The coherence between scattering centers is minimized by using spatial smoothing processing(SSP).Then the range and polarimetric scattering matrix of the scattering centers are estimated.The impact of different lengths of the smoothing window on the imaging quality is mainly analyzed with different signal-to-noise ratios(SNR).Simulation and experimental results show that an improved radar super-resolution range profile and more precise estimation can be obtained by adjusting the length of the smoothing window under different SNR conditions.展开更多
The centralized radio access cellular network infrastructure based on centralized Super Base Station(CSBS) is a promising solution to reduce the high construction cost and energy consumption of conventional cellular n...The centralized radio access cellular network infrastructure based on centralized Super Base Station(CSBS) is a promising solution to reduce the high construction cost and energy consumption of conventional cellular networks. With CSBS, the computing resource for communication protocol processing could be managed flexibly according the protocol load to improve the resource efficiency. Since the protocol load changes frequently and may exceed the capacity of processors, load balancing is needed. However, existing load balancing mechanisms used in data centers cannot satisfy the real-time requirement of the communication protocol processing. Therefore, a new computing resource adjustment scheme is proposed for communication protocol processing in the CSBS architecture. First of all, the main principles of protocol processing resource adjustment is concluded, followed by the analysis on the processing resource outage probability that the computing resource becomes inadequate for protocol processing as load changes. Following the adjustment principles, the proposed scheme is designed to reduce the processing resource outage probability based onthe optimized connected graph which is constructed by the approximate Kruskal algorithm. Simulation re-sults show that compared with the conventional load balancing mechanisms, the proposed scheme can reduce the occurrence number of inadequate processing resource and the additional resource consumption of adjustment greatly.展开更多
The process of producing dissolving pulp with SuperBatch cooking was introduced. The factors that affected the quality of the dissolving pulp and the corresponding operations were investigated.
Some properties of Super-Brownian motion have been approached by Dawson & Hochberg [1], Iscoe [2] & L3], Konno & Shiga [4] and so on. In this paper, we limit our attention to the occupation time processes ...Some properties of Super-Brownian motion have been approached by Dawson & Hochberg [1], Iscoe [2] & L3], Konno & Shiga [4] and so on. In this paper, we limit our attention to the occupation time processes of the Super-Brownian motion,and try to give an intuitive proof for their absolute continuity with respect to the Lebesgue measure on Rd (d≤3) when the initial measure of the Super-Brownian motion has the absolute continuity.展开更多
We introduce a super-Lévy process and study maximal speed of all particles in the range and the support of the super-Lévy process. The state of historical super-Lévy process is a measure on the set of p...We introduce a super-Lévy process and study maximal speed of all particles in the range and the support of the super-Lévy process. The state of historical super-Lévy process is a measure on the set of paths. We study the maximal speed of all particles during a given time period, which turns out to be a function of the packing dimension of the time period. We calculate the Hausdorff dimension of the set of a-fast paths in the support and the range of the historical super-Lévy process.展开更多
Suppose X is a super-α-stable process in R^d, (0 〈 α〈 2), whose branching rate function is dr, and branching mechanism is of the form ψ(z) = z^1+β (0 〈0 〈β ≤1). Let Xγ and Yγ denote the exit measur...Suppose X is a super-α-stable process in R^d, (0 〈 α〈 2), whose branching rate function is dr, and branching mechanism is of the form ψ(z) = z^1+β (0 〈0 〈β ≤1). Let Xγ and Yγ denote the exit measure and the total weighted occupation time measure of X in a bounded smooth domain D, respectively. The absolute continuities of Xγ and Yγ are discussed.展开更多
In this paper, we investigate advanced digital signal process ing (DSP) at the transmitter and receiver side for signal pre equalization and postequalization in order to improve spec trum efficiency (SE) and trans...In this paper, we investigate advanced digital signal process ing (DSP) at the transmitter and receiver side for signal pre equalization and postequalization in order to improve spec trum efficiency (SE) and transmission distance in an optical access network. A novel DSP scheme for this optical super Nyquist filtering 9 Quadrature Amplitude Modulation (9 QAM) like signals based on muhimodulus equalization with out post filtering is proposed. This scheme recovers the Ny quist filtered Quadrature PhaseShift Keying (QPSK) signal to a 9QAMlike one. With this technique, SE can be increased to 4 b/s/Hz for QPSK signals. A novel digital superNyquist signal generation scheme is also proposed to further suppress the Nyquist signal bandwidth and reduce channel crosstalk without the need for optical prefiltering. Only optical cou plers are needed for superNyquist wavelengthdivisionmulti plexing (WDM) channel multiplexing. We extend the DSP for shorthaul optical transmission networks by using highorder QAMs. We propose a highspeed Can'ierless Amplitude/Phase 64 QAM (CAP64 QAM) system using directly modulated la ser (DML) based on direct detection and digital equalization. Decisiondirected least mean square is used to equalize the CAP64QAM. Using this scheme, we generate and transmit up to 60 Gbit/s CAP64QAM over 20 km standard single mode fiber based on the DML and direct detection. Finally, several key problems are solved for real time orthogonalfre quencydivisionmultiplexing (OFDM) signal transmission aml processing. With coherent detection, up to 100 Glfit/s 16 QAMOFDM realtime transmission is possible.展开更多
Wastewater from super viscous oil processing cannot be effectively treated by conventional wastewater treatment plants in refineries because of its high concentration of various organic pollutants. In order to resolve...Wastewater from super viscous oil processing cannot be effectively treated by conventional wastewater treatment plants in refineries because of its high concentration of various organic pollutants. In order to resolve this problem, a number of investigations were conducted in our work to understand the physicochemical properties, sedimentation, demulsification and pretreatment of such super viscous oil refinery wastewater. The results showed that the key issues for pretreatment of this wastewater were: (1) Optimized process parameters were used in the sedimentation and demulsification processes for oil removal to effectively recover oil and remove scum from wastewater; (2) A suitable flocculation process was selected to minimize oil, suspended solids (SS) and chemical oxygen demand (CODcr). A pretreatment process including three continuous steps: oil removal by sedimentation, oil removal by demulsification, and flotation separation, was proposed and applied in Liaohe Petrochemical Company, PetroChina and the oil content in effluents was less than 200 mg/L and CODcr less than 2,500 mg/L, which completely met the requirement for influent of the conventional wastewater treatment plant, and the recovered super viscous oil reached 5,873 tons in the initial year in Liaohe Petrochemical Company, PetroChina.展开更多
The hot deformation behavior and microstructure evolution of an Fe–30Cr–2Mo ultra-pure super ferritic stainless steel were investigated at the temperature range of 950–1150℃ and strain rate varying from 0.01 to 10...The hot deformation behavior and microstructure evolution of an Fe–30Cr–2Mo ultra-pure super ferritic stainless steel were investigated at the temperature range of 950–1150℃ and strain rate varying from 0.01 to 10 s^(−1).A strain compensated constitutive equation based on the Arrhenius-type model was established to predict the flow stress.The hot processing map based on the dynamic materials model was achieved to identify the optimum processing parameters.In addition,the features of microstructure evolution combined with the processing map were systematically investigated.The experimental results revealed that the flow stress increased with decreasing deformation temperature or increasing strain rate.Dynamic recovery was confirmed to be the predominant softening mechanism.The values of flow stress predicted by the strain compensated constitutive equation agreed well with the experimental values.The extent of dynamic recrystallization and recrystallized grain size increased with increasing deformation temperature or decreasing strain rate,and the continuous dynamic recrystallization was attributed to be the predominant mechanism of recrystallization during hot deformation.The optimum hot working parameters were determined to be the deformation temperature of 1070–1150℃ and strain rate of 0.1–1 s^(−1) with a peak power dissipation efficiency of 42%.展开更多
In this paper, the super spectral viscosity (SSV) method is developed by introducing a spectrally small amount of high order regularization which is only activated on high frequencies. The resulting SSV approximatio...In this paper, the super spectral viscosity (SSV) method is developed by introducing a spectrally small amount of high order regularization which is only activated on high frequencies. The resulting SSV approximation is stable and convergent to the exact entropy solution. A Gegenbauer-Chebyshev post-processing for the SSV solution is proposed to remove the spurious oscillations at the disconti-nuities and recover accuracy from the spectral approximation. The ssv method is applied to the scahr periodic Burgers equation and the one-dimensional system of Euler equations of gas dynamics. The numerical results exhibit high accuracy and resolution to the exact entropy solution,展开更多
To achieve restoration of high frequency information for an undersampled and degraded low-resolution image, a nonlinear and real-time processing method-the radial basis function (RBF) neural network based super-resolu...To achieve restoration of high frequency information for an undersampled and degraded low-resolution image, a nonlinear and real-time processing method-the radial basis function (RBF) neural network based super-resolution method of restoration is proposed. The RBF network configuration and processing method is suitable for a high resolution restoration from an undersampled low-resolution image. The soft-competition learning scheme based on the k-means algorithm is used, and can achieve higher mapping approximation accuracy without increase in the network size. Experiments showed that the proposed algorithm can achieve a super-resolution restored image from an undersampled and degraded low-resolution image, and requires a shorter training time when compared with the multiplayer perception (MLP) network.展开更多
At the transition from normal to superconducting states there were anomalies of ultrasonic attenuation in single-phased specimens Bi_(2-x)Pb_(x)Sr_(2)CaCu_(2)O_(y)(T_(cmid)=80K);and as the temperature was lowered belo...At the transition from normal to superconducting states there were anomalies of ultrasonic attenuation in single-phased specimens Bi_(2-x)Pb_(x)Sr_(2)CaCu_(2)O_(y)(T_(cmid)=80K);and as the temperature was lowered below Tcmid,the attenuation decreased rapidly.At the temperature about 135K there was a relatively high peak,which may be due to a certain relaxation process.展开更多
Image or video resources are often received in poor condition, mostly with noise or defects making the resources hard to read. We propose an effective algorithm based on digital image inpainting. The mechanism can be ...Image or video resources are often received in poor condition, mostly with noise or defects making the resources hard to read. We propose an effective algorithm based on digital image inpainting. The mechanism can be used in restoring images or video frames with very high noise or defect ratio (e.g., 90%). The algorithm is based on the concept of image subdivision and estimation of color variations. Noises inside blocks of different sizes are inpainted with different levels of surrounding information. The results showed that an almost unrecognizable image can be recovered with visually good result. The algorithm can be further extended for processing motion picture with high percentage of noise.展开更多
Isothermal hot compression tests on the as-cast high-Cr ultra-super-critical rotor steel with columnar grains were carried out in the temperature range from 1223 to 1523Kand at strain rates from 0.001 to 1s^(-1).The...Isothermal hot compression tests on the as-cast high-Cr ultra-super-critical rotor steel with columnar grains were carried out in the temperature range from 1223 to 1523Kand at strain rates from 0.001 to 1s^(-1).The compression direction was parallel to the longitudinal direction of columnar grains.The constitutive equation based on Arrhenius model was presented,and the processing maps based on the dynamic material model were developed,correlating with microstructure observation.The main softening mechanism was dynamic recovery at 1223 Kunder strain rates from 0.1to 1s^(-1),whereas it was dynamic recrystallization under other deformation conditions.The constitutive equation modified by strain compensation reasonably predicted the flow stresses.The processing maps and microstructure evolution mechanism schematic indicated that the optimum hot working parameters lay in the zone defined by the temperature range from 1423 to 1473Kand the strain rate range from 0.001 to 1s^(-1).展开更多
文摘Compared with other methods, the chirp scaling (CS) algorithm is a novel one for compensating the range migration without any interpolation in SAR imaging. However, its resolution ability can't exceed that of Fourier transformation. To realize the super-resolution ability in the azimuth direction a chirp scaling Burg (CSB) algorithm is proposed in this paper, which can still reserve the advantage of avoiding any interpolation in the process of the two-dimensional space-variant correlation in the CS algorithm.
基金Supported by the National Naturral Science Foundation of China(61301191)
文摘A full-polarimetric super-resolution algorithm with spatial smoothing processing is presented for one-dimensional(1-D)radar imaging.The coherence between scattering centers is minimized by using spatial smoothing processing(SSP).Then the range and polarimetric scattering matrix of the scattering centers are estimated.The impact of different lengths of the smoothing window on the imaging quality is mainly analyzed with different signal-to-noise ratios(SNR).Simulation and experimental results show that an improved radar super-resolution range profile and more precise estimation can be obtained by adjusting the length of the smoothing window under different SNR conditions.
基金supported in part by the National Science Foundationof China under Grant number 61431001the Beijing Talents Fund under Grant number 2015000021223ZK31
文摘The centralized radio access cellular network infrastructure based on centralized Super Base Station(CSBS) is a promising solution to reduce the high construction cost and energy consumption of conventional cellular networks. With CSBS, the computing resource for communication protocol processing could be managed flexibly according the protocol load to improve the resource efficiency. Since the protocol load changes frequently and may exceed the capacity of processors, load balancing is needed. However, existing load balancing mechanisms used in data centers cannot satisfy the real-time requirement of the communication protocol processing. Therefore, a new computing resource adjustment scheme is proposed for communication protocol processing in the CSBS architecture. First of all, the main principles of protocol processing resource adjustment is concluded, followed by the analysis on the processing resource outage probability that the computing resource becomes inadequate for protocol processing as load changes. Following the adjustment principles, the proposed scheme is designed to reduce the processing resource outage probability based onthe optimized connected graph which is constructed by the approximate Kruskal algorithm. Simulation re-sults show that compared with the conventional load balancing mechanisms, the proposed scheme can reduce the occurrence number of inadequate processing resource and the additional resource consumption of adjustment greatly.
文摘The process of producing dissolving pulp with SuperBatch cooking was introduced. The factors that affected the quality of the dissolving pulp and the corresponding operations were investigated.
文摘Some properties of Super-Brownian motion have been approached by Dawson & Hochberg [1], Iscoe [2] & L3], Konno & Shiga [4] and so on. In this paper, we limit our attention to the occupation time processes of the Super-Brownian motion,and try to give an intuitive proof for their absolute continuity with respect to the Lebesgue measure on Rd (d≤3) when the initial measure of the Super-Brownian motion has the absolute continuity.
基金Project supported by the National Natural Science Foundation of China(No.10571159)the Ph.D.Programs Foundation of Ministry of Education of China(No.20060335032)and the Foundation of Hangzhou Dianzi University(No.KYS091506042)
文摘We introduce a super-Lévy process and study maximal speed of all particles in the range and the support of the super-Lévy process. The state of historical super-Lévy process is a measure on the set of paths. We study the maximal speed of all particles during a given time period, which turns out to be a function of the packing dimension of the time period. We calculate the Hausdorff dimension of the set of a-fast paths in the support and the range of the historical super-Lévy process.
基金Supported by NNSF of China (10001020 and 10471003), Foundation for Authors Awarded Excellent Ph.D.Dissertation
文摘Suppose X is a super-α-stable process in R^d, (0 〈 α〈 2), whose branching rate function is dr, and branching mechanism is of the form ψ(z) = z^1+β (0 〈0 〈β ≤1). Let Xγ and Yγ denote the exit measure and the total weighted occupation time measure of X in a bounded smooth domain D, respectively. The absolute continuities of Xγ and Yγ are discussed.
基金supported by the High Technology Research and Development Program of China("863"Program)under Grant No.2012AA011303 and 2013AA010501National Nature Science Foundation of China under Grant No.61325002
文摘In this paper, we investigate advanced digital signal process ing (DSP) at the transmitter and receiver side for signal pre equalization and postequalization in order to improve spec trum efficiency (SE) and transmission distance in an optical access network. A novel DSP scheme for this optical super Nyquist filtering 9 Quadrature Amplitude Modulation (9 QAM) like signals based on muhimodulus equalization with out post filtering is proposed. This scheme recovers the Ny quist filtered Quadrature PhaseShift Keying (QPSK) signal to a 9QAMlike one. With this technique, SE can be increased to 4 b/s/Hz for QPSK signals. A novel digital superNyquist signal generation scheme is also proposed to further suppress the Nyquist signal bandwidth and reduce channel crosstalk without the need for optical prefiltering. Only optical cou plers are needed for superNyquist wavelengthdivisionmulti plexing (WDM) channel multiplexing. We extend the DSP for shorthaul optical transmission networks by using highorder QAMs. We propose a highspeed Can'ierless Amplitude/Phase 64 QAM (CAP64 QAM) system using directly modulated la ser (DML) based on direct detection and digital equalization. Decisiondirected least mean square is used to equalize the CAP64QAM. Using this scheme, we generate and transmit up to 60 Gbit/s CAP64QAM over 20 km standard single mode fiber based on the DML and direct detection. Finally, several key problems are solved for real time orthogonalfre quencydivisionmultiplexing (OFDM) signal transmission aml processing. With coherent detection, up to 100 Glfit/s 16 QAMOFDM realtime transmission is possible.
文摘Wastewater from super viscous oil processing cannot be effectively treated by conventional wastewater treatment plants in refineries because of its high concentration of various organic pollutants. In order to resolve this problem, a number of investigations were conducted in our work to understand the physicochemical properties, sedimentation, demulsification and pretreatment of such super viscous oil refinery wastewater. The results showed that the key issues for pretreatment of this wastewater were: (1) Optimized process parameters were used in the sedimentation and demulsification processes for oil removal to effectively recover oil and remove scum from wastewater; (2) A suitable flocculation process was selected to minimize oil, suspended solids (SS) and chemical oxygen demand (CODcr). A pretreatment process including three continuous steps: oil removal by sedimentation, oil removal by demulsification, and flotation separation, was proposed and applied in Liaohe Petrochemical Company, PetroChina and the oil content in effluents was less than 200 mg/L and CODcr less than 2,500 mg/L, which completely met the requirement for influent of the conventional wastewater treatment plant, and the recovered super viscous oil reached 5,873 tons in the initial year in Liaohe Petrochemical Company, PetroChina.
基金This work is supported by the Liaoning Province Programs of Science and Technology Development(No.2019JH2/10100009).
文摘The hot deformation behavior and microstructure evolution of an Fe–30Cr–2Mo ultra-pure super ferritic stainless steel were investigated at the temperature range of 950–1150℃ and strain rate varying from 0.01 to 10 s^(−1).A strain compensated constitutive equation based on the Arrhenius-type model was established to predict the flow stress.The hot processing map based on the dynamic materials model was achieved to identify the optimum processing parameters.In addition,the features of microstructure evolution combined with the processing map were systematically investigated.The experimental results revealed that the flow stress increased with decreasing deformation temperature or increasing strain rate.Dynamic recovery was confirmed to be the predominant softening mechanism.The values of flow stress predicted by the strain compensated constitutive equation agreed well with the experimental values.The extent of dynamic recrystallization and recrystallized grain size increased with increasing deformation temperature or decreasing strain rate,and the continuous dynamic recrystallization was attributed to be the predominant mechanism of recrystallization during hot deformation.The optimum hot working parameters were determined to be the deformation temperature of 1070–1150℃ and strain rate of 0.1–1 s^(−1) with a peak power dissipation efficiency of 42%.
文摘In this paper, the super spectral viscosity (SSV) method is developed by introducing a spectrally small amount of high order regularization which is only activated on high frequencies. The resulting SSV approximation is stable and convergent to the exact entropy solution. A Gegenbauer-Chebyshev post-processing for the SSV solution is proposed to remove the spurious oscillations at the disconti-nuities and recover accuracy from the spectral approximation. The ssv method is applied to the scahr periodic Burgers equation and the one-dimensional system of Euler equations of gas dynamics. The numerical results exhibit high accuracy and resolution to the exact entropy solution,
文摘To achieve restoration of high frequency information for an undersampled and degraded low-resolution image, a nonlinear and real-time processing method-the radial basis function (RBF) neural network based super-resolution method of restoration is proposed. The RBF network configuration and processing method is suitable for a high resolution restoration from an undersampled low-resolution image. The soft-competition learning scheme based on the k-means algorithm is used, and can achieve higher mapping approximation accuracy without increase in the network size. Experiments showed that the proposed algorithm can achieve a super-resolution restored image from an undersampled and degraded low-resolution image, and requires a shorter training time when compared with the multiplayer perception (MLP) network.
基金Project supported by National Center for Research and Development on Superconduc-tivity of China.
文摘At the transition from normal to superconducting states there were anomalies of ultrasonic attenuation in single-phased specimens Bi_(2-x)Pb_(x)Sr_(2)CaCu_(2)O_(y)(T_(cmid)=80K);and as the temperature was lowered below Tcmid,the attenuation decreased rapidly.At the temperature about 135K there was a relatively high peak,which may be due to a certain relaxation process.
文摘Image or video resources are often received in poor condition, mostly with noise or defects making the resources hard to read. We propose an effective algorithm based on digital image inpainting. The mechanism can be used in restoring images or video frames with very high noise or defect ratio (e.g., 90%). The algorithm is based on the concept of image subdivision and estimation of color variations. Noises inside blocks of different sizes are inpainted with different levels of surrounding information. The results showed that an almost unrecognizable image can be recovered with visually good result. The algorithm can be further extended for processing motion picture with high percentage of noise.
基金sponsored by Major State Basic Research Development Program of China(No.2011CB012900)National Natural Science Foundation of China(No.51374144)
文摘Isothermal hot compression tests on the as-cast high-Cr ultra-super-critical rotor steel with columnar grains were carried out in the temperature range from 1223 to 1523Kand at strain rates from 0.001 to 1s^(-1).The compression direction was parallel to the longitudinal direction of columnar grains.The constitutive equation based on Arrhenius model was presented,and the processing maps based on the dynamic material model were developed,correlating with microstructure observation.The main softening mechanism was dynamic recovery at 1223 Kunder strain rates from 0.1to 1s^(-1),whereas it was dynamic recrystallization under other deformation conditions.The constitutive equation modified by strain compensation reasonably predicted the flow stresses.The processing maps and microstructure evolution mechanism schematic indicated that the optimum hot working parameters lay in the zone defined by the temperature range from 1423 to 1473Kand the strain rate range from 0.001 to 1s^(-1).