Compared with other methods, the chirp scaling (CS) algorithm is a novel one for compensating the range migration without any interpolation in SAR imaging. However, its resolution ability can't exceed that of Four...Compared with other methods, the chirp scaling (CS) algorithm is a novel one for compensating the range migration without any interpolation in SAR imaging. However, its resolution ability can't exceed that of Fourier transformation. To realize the super-resolution ability in the azimuth direction a chirp scaling Burg (CSB) algorithm is proposed in this paper, which can still reserve the advantage of avoiding any interpolation in the process of the two-dimensional space-variant correlation in the CS algorithm.展开更多
A full-polarimetric super-resolution algorithm with spatial smoothing processing is presented for one-dimensional(1-D)radar imaging.The coherence between scattering centers is minimized by using spatial smoothing pr...A full-polarimetric super-resolution algorithm with spatial smoothing processing is presented for one-dimensional(1-D)radar imaging.The coherence between scattering centers is minimized by using spatial smoothing processing(SSP).Then the range and polarimetric scattering matrix of the scattering centers are estimated.The impact of different lengths of the smoothing window on the imaging quality is mainly analyzed with different signal-to-noise ratios(SNR).Simulation and experimental results show that an improved radar super-resolution range profile and more precise estimation can be obtained by adjusting the length of the smoothing window under different SNR conditions.展开更多
The centralized radio access cellular network infrastructure based on centralized Super Base Station(CSBS) is a promising solution to reduce the high construction cost and energy consumption of conventional cellular n...The centralized radio access cellular network infrastructure based on centralized Super Base Station(CSBS) is a promising solution to reduce the high construction cost and energy consumption of conventional cellular networks. With CSBS, the computing resource for communication protocol processing could be managed flexibly according the protocol load to improve the resource efficiency. Since the protocol load changes frequently and may exceed the capacity of processors, load balancing is needed. However, existing load balancing mechanisms used in data centers cannot satisfy the real-time requirement of the communication protocol processing. Therefore, a new computing resource adjustment scheme is proposed for communication protocol processing in the CSBS architecture. First of all, the main principles of protocol processing resource adjustment is concluded, followed by the analysis on the processing resource outage probability that the computing resource becomes inadequate for protocol processing as load changes. Following the adjustment principles, the proposed scheme is designed to reduce the processing resource outage probability based onthe optimized connected graph which is constructed by the approximate Kruskal algorithm. Simulation re-sults show that compared with the conventional load balancing mechanisms, the proposed scheme can reduce the occurrence number of inadequate processing resource and the additional resource consumption of adjustment greatly.展开更多
The process of producing dissolving pulp with SuperBatch cooking was introduced. The factors that affected the quality of the dissolving pulp and the corresponding operations were investigated.
Some properties of Super-Brownian motion have been approached by Dawson & Hochberg [1], Iscoe [2] & L3], Konno & Shiga [4] and so on. In this paper, we limit our attention to the occupation time processes ...Some properties of Super-Brownian motion have been approached by Dawson & Hochberg [1], Iscoe [2] & L3], Konno & Shiga [4] and so on. In this paper, we limit our attention to the occupation time processes of the Super-Brownian motion,and try to give an intuitive proof for their absolute continuity with respect to the Lebesgue measure on Rd (d≤3) when the initial measure of the Super-Brownian motion has the absolute continuity.展开更多
We introduce a super-Lévy process and study maximal speed of all particles in the range and the support of the super-Lévy process. The state of historical super-Lévy process is a measure on the set of p...We introduce a super-Lévy process and study maximal speed of all particles in the range and the support of the super-Lévy process. The state of historical super-Lévy process is a measure on the set of paths. We study the maximal speed of all particles during a given time period, which turns out to be a function of the packing dimension of the time period. We calculate the Hausdorff dimension of the set of a-fast paths in the support and the range of the historical super-Lévy process.展开更多
Suppose X is a super-α-stable process in R^d, (0 〈 α〈 2), whose branching rate function is dr, and branching mechanism is of the form ψ(z) = z^1+β (0 〈0 〈β ≤1). Let Xγ and Yγ denote the exit measur...Suppose X is a super-α-stable process in R^d, (0 〈 α〈 2), whose branching rate function is dr, and branching mechanism is of the form ψ(z) = z^1+β (0 〈0 〈β ≤1). Let Xγ and Yγ denote the exit measure and the total weighted occupation time measure of X in a bounded smooth domain D, respectively. The absolute continuities of Xγ and Yγ are discussed.展开更多
In this paper, we investigate advanced digital signal process ing (DSP) at the transmitter and receiver side for signal pre equalization and postequalization in order to improve spec trum efficiency (SE) and trans...In this paper, we investigate advanced digital signal process ing (DSP) at the transmitter and receiver side for signal pre equalization and postequalization in order to improve spec trum efficiency (SE) and transmission distance in an optical access network. A novel DSP scheme for this optical super Nyquist filtering 9 Quadrature Amplitude Modulation (9 QAM) like signals based on muhimodulus equalization with out post filtering is proposed. This scheme recovers the Ny quist filtered Quadrature PhaseShift Keying (QPSK) signal to a 9QAMlike one. With this technique, SE can be increased to 4 b/s/Hz for QPSK signals. A novel digital superNyquist signal generation scheme is also proposed to further suppress the Nyquist signal bandwidth and reduce channel crosstalk without the need for optical prefiltering. Only optical cou plers are needed for superNyquist wavelengthdivisionmulti plexing (WDM) channel multiplexing. We extend the DSP for shorthaul optical transmission networks by using highorder QAMs. We propose a highspeed Can'ierless Amplitude/Phase 64 QAM (CAP64 QAM) system using directly modulated la ser (DML) based on direct detection and digital equalization. Decisiondirected least mean square is used to equalize the CAP64QAM. Using this scheme, we generate and transmit up to 60 Gbit/s CAP64QAM over 20 km standard single mode fiber based on the DML and direct detection. Finally, several key problems are solved for real time orthogonalfre quencydivisionmultiplexing (OFDM) signal transmission aml processing. With coherent detection, up to 100 Glfit/s 16 QAMOFDM realtime transmission is possible.展开更多
文摘Compared with other methods, the chirp scaling (CS) algorithm is a novel one for compensating the range migration without any interpolation in SAR imaging. However, its resolution ability can't exceed that of Fourier transformation. To realize the super-resolution ability in the azimuth direction a chirp scaling Burg (CSB) algorithm is proposed in this paper, which can still reserve the advantage of avoiding any interpolation in the process of the two-dimensional space-variant correlation in the CS algorithm.
基金Supported by the National Naturral Science Foundation of China(61301191)
文摘A full-polarimetric super-resolution algorithm with spatial smoothing processing is presented for one-dimensional(1-D)radar imaging.The coherence between scattering centers is minimized by using spatial smoothing processing(SSP).Then the range and polarimetric scattering matrix of the scattering centers are estimated.The impact of different lengths of the smoothing window on the imaging quality is mainly analyzed with different signal-to-noise ratios(SNR).Simulation and experimental results show that an improved radar super-resolution range profile and more precise estimation can be obtained by adjusting the length of the smoothing window under different SNR conditions.
基金supported in part by the National Science Foundationof China under Grant number 61431001the Beijing Talents Fund under Grant number 2015000021223ZK31
文摘The centralized radio access cellular network infrastructure based on centralized Super Base Station(CSBS) is a promising solution to reduce the high construction cost and energy consumption of conventional cellular networks. With CSBS, the computing resource for communication protocol processing could be managed flexibly according the protocol load to improve the resource efficiency. Since the protocol load changes frequently and may exceed the capacity of processors, load balancing is needed. However, existing load balancing mechanisms used in data centers cannot satisfy the real-time requirement of the communication protocol processing. Therefore, a new computing resource adjustment scheme is proposed for communication protocol processing in the CSBS architecture. First of all, the main principles of protocol processing resource adjustment is concluded, followed by the analysis on the processing resource outage probability that the computing resource becomes inadequate for protocol processing as load changes. Following the adjustment principles, the proposed scheme is designed to reduce the processing resource outage probability based onthe optimized connected graph which is constructed by the approximate Kruskal algorithm. Simulation re-sults show that compared with the conventional load balancing mechanisms, the proposed scheme can reduce the occurrence number of inadequate processing resource and the additional resource consumption of adjustment greatly.
文摘The process of producing dissolving pulp with SuperBatch cooking was introduced. The factors that affected the quality of the dissolving pulp and the corresponding operations were investigated.
文摘Some properties of Super-Brownian motion have been approached by Dawson & Hochberg [1], Iscoe [2] & L3], Konno & Shiga [4] and so on. In this paper, we limit our attention to the occupation time processes of the Super-Brownian motion,and try to give an intuitive proof for their absolute continuity with respect to the Lebesgue measure on Rd (d≤3) when the initial measure of the Super-Brownian motion has the absolute continuity.
基金Project supported by the National Natural Science Foundation of China(No.10571159)the Ph.D.Programs Foundation of Ministry of Education of China(No.20060335032)and the Foundation of Hangzhou Dianzi University(No.KYS091506042)
文摘We introduce a super-Lévy process and study maximal speed of all particles in the range and the support of the super-Lévy process. The state of historical super-Lévy process is a measure on the set of paths. We study the maximal speed of all particles during a given time period, which turns out to be a function of the packing dimension of the time period. We calculate the Hausdorff dimension of the set of a-fast paths in the support and the range of the historical super-Lévy process.
基金Supported by NNSF of China (10001020 and 10471003), Foundation for Authors Awarded Excellent Ph.D.Dissertation
文摘Suppose X is a super-α-stable process in R^d, (0 〈 α〈 2), whose branching rate function is dr, and branching mechanism is of the form ψ(z) = z^1+β (0 〈0 〈β ≤1). Let Xγ and Yγ denote the exit measure and the total weighted occupation time measure of X in a bounded smooth domain D, respectively. The absolute continuities of Xγ and Yγ are discussed.
基金supported by the High Technology Research and Development Program of China("863"Program)under Grant No.2012AA011303 and 2013AA010501National Nature Science Foundation of China under Grant No.61325002
文摘In this paper, we investigate advanced digital signal process ing (DSP) at the transmitter and receiver side for signal pre equalization and postequalization in order to improve spec trum efficiency (SE) and transmission distance in an optical access network. A novel DSP scheme for this optical super Nyquist filtering 9 Quadrature Amplitude Modulation (9 QAM) like signals based on muhimodulus equalization with out post filtering is proposed. This scheme recovers the Ny quist filtered Quadrature PhaseShift Keying (QPSK) signal to a 9QAMlike one. With this technique, SE can be increased to 4 b/s/Hz for QPSK signals. A novel digital superNyquist signal generation scheme is also proposed to further suppress the Nyquist signal bandwidth and reduce channel crosstalk without the need for optical prefiltering. Only optical cou plers are needed for superNyquist wavelengthdivisionmulti plexing (WDM) channel multiplexing. We extend the DSP for shorthaul optical transmission networks by using highorder QAMs. We propose a highspeed Can'ierless Amplitude/Phase 64 QAM (CAP64 QAM) system using directly modulated la ser (DML) based on direct detection and digital equalization. Decisiondirected least mean square is used to equalize the CAP64QAM. Using this scheme, we generate and transmit up to 60 Gbit/s CAP64QAM over 20 km standard single mode fiber based on the DML and direct detection. Finally, several key problems are solved for real time orthogonalfre quencydivisionmultiplexing (OFDM) signal transmission aml processing. With coherent detection, up to 100 Glfit/s 16 QAMOFDM realtime transmission is possible.