The geological conditions for coal mining in China are complex,with various structural issues such as faults and collapsed columns seriously compromising the safety of coal mine production.In-seam wave exploration is ...The geological conditions for coal mining in China are complex,with various structural issues such as faults and collapsed columns seriously compromising the safety of coal mine production.In-seam wave exploration is an effective technique for acquiring detailed information on geological structures in coal seam working faces.However,the existing reflected in-seam wave imaging technique can no longer meet the exploration precision requirements,making it imperative to develop a new reflected in-seam wave imaging technique.This study applies the Gaussian beam summation(GBS)migration method to imaging coal seams'reflected in-seam wave data.Firstly,with regard to the characteristics of the reflected in-seam wave data,methods such as wavefield removal and enveloped superposition are employed for the corresponding wavefield separation,wave train compression and other processing of reflected in-seam waves.Thereafter,imaging is performed using the GBS migration technique.The feasibility and effectiveness of the proposed method for reflected in-seam wave imaging are validated by conducting GBS migration tests on 3D coal-seam fault models with different dip angles and throws.By applying the method to reflected in-seam wave data for an actual coal seam working face,accurate imaging of a fault structure is obtained,thereby validating its practicality.展开更多
RISC-V作为一种新兴的开源精简指令集架构,是后摩尔时代处理器技术发展与创新的关键之一.浮点求和与点积运算是数值运算的基础组成部分,在众多领域应用广泛.目前RISC-V架构尚未适配兼具高精度和高效率的求和与点积运算算法,这是因为现...RISC-V作为一种新兴的开源精简指令集架构,是后摩尔时代处理器技术发展与创新的关键之一.浮点求和与点积运算是数值运算的基础组成部分,在众多领域应用广泛.目前RISC-V架构尚未适配兼具高精度和高效率的求和与点积运算算法,这是因为现有优化方案难以良好地平衡运算精度和效率,要么侧重于低精度算法效率,要么通过牺牲效率实现高精度运算.本文利用RVV(RISC-V Vector instruction set extension,RVV)矢量扩展指令,设计并实现了一种基于无误差变换技术的高效、高精度求和与点积算法.首先避免使用规约指令以防止运算精度降低,实现并优化两类运算基于RVV的向量化算法;其次根据算法中的数据依赖关系,对寄存器配置参数进行优化.最后针对算法核心步骤进行汇编优化,增加指令级并行度,提高流水线利用率.实验结果表明,与两类运算操作的原始算法相比,优化后的算法运算效率分别提高了4.4和4.2倍.优化后的算法与多精度库MPFR中的四精度算法有相同精度,但其运算效率明显优于后者,其计算速度与OpenBLAS的双精度计算速度相当.展开更多
Long-period free oscillations provide robust information for the spatio-temporal characteristics of large earthquakes.In this study,we employ a normal-mode summation algorithm to generate threecomponent seismograms wi...Long-period free oscillations provide robust information for the spatio-temporal characteristics of large earthquakes.In this study,we employ a normal-mode summation algorithm to generate threecomponent seismograms within an aspherical,anelastic,and rotating Earth model,focusing on the excitation of seismic normal modes by the 2011 Tohoku megathrust earthquake.Specifically,we analyze the effects of seismic source parameters,including fault geometry,focal depth,and rupture duration.By comparing synthetic free oscillation spectra with observed data,we validate several source mechanisms and emphasize the need for horizontal observations to improve seismic mechanism inversions.Our quantitative analyses reveal that among fault geometry parameters,dip and slip angles have a more pronounced impact on excitation amplitudes than fault strikes.Certain fault configurations enhance the detectability of specific modes,underscoring the relationship between fault geometry and mode excitation.Normal modes also exhibit varying sensitivity to focal depth,with significant excitation amplitude changes at discontinuity boundaries.Additionally,we demonstrate that while rupture duration can be inferred by minimizing differences between observed and synthetic spectra,more extensive records and modes should be included.展开更多
BACKGROUND Bile leakage is a common complication following laparoscopic common bile duct exploration(LCBDE)with primary duct closure(PDC).Identifying and analyzing the risk factors associated with bile leakage is cruc...BACKGROUND Bile leakage is a common complication following laparoscopic common bile duct exploration(LCBDE)with primary duct closure(PDC).Identifying and analyzing the risk factors associated with bile leakage is crucial for improving surgical outcomes.AIM To explore the value analysis of common risk factors for bile leakage after LCBDE and PDC,with a focus on strict adherence to indications.METHODS Clinical data of 106 cases undergoing LCBDE+PDC in the Hepatobiliary and Pancreatic Surgery Department(Division 1)of Chuzhou First People’s Hospital from April 2019 to March 2024 were collected.Retrospective and multiple factor regression analysis were conducted on common risk factors for bile leakage.The change in surgical time was analyzed using the cumulative summation(CUSUM)method,and the minimum number of cases required to complete the learning curve for PDC was obtained based on the proposed fitting curve by identifying the CUSUM maximum value.RESULTS Multifactor logistic regression analysis showed that fibrinous inflammation and direct bilirubin/indirect bilirubin were significant independent high-risk factors for postoperative bile leakage(P<0.05).The time to drain removal and length of hospital stay in cases without bile leakage were significantly shorter than in cases with bile leakage(P<0.05),with statistical significance.The CUSUM method indicated that a minimum of 51 cases were required for the surgeon to complete the learning curve(P=0.023).CONCLUSION With a good assessment of duodenal papilla sphincter function,unobstructed bile-pancreatic duct convergence,exact stone clearance,and sufficient surgical experience to complete the learning curve,PDC remains the preferred method for bile duct closure and is worthy of clinical promotion.展开更多
波动方程系数矩阵对称化是整合不同类别波动方程、降低波传播模拟难度的有效方法,目前已成功应用于声波方程、各向同性与各向异性介质弹性波动方程。该研究将推导出双项介质波动方程的系数矩阵对称式;随后,引入多轴完全匹配层,采用迎风...波动方程系数矩阵对称化是整合不同类别波动方程、降低波传播模拟难度的有效方法,目前已成功应用于声波方程、各向同性与各向异性介质弹性波动方程。该研究将推导出双项介质波动方程的系数矩阵对称式;随后,引入多轴完全匹配层,采用迎风格式分部求和-一致逼近项(summation by parts-simultaneous approximation terms,SBP-SAT)有限差分方法离散波动方程,并通过能量法进行稳定性评估。通过数值仿真,表明所提出的离散框架具有整合度高,稳定性好和拓展性强等特点。此外,该方法可以稳定模拟曲线域中的波传播并降低其实现成本,表明了波动方程系数矩阵对称化方法及其离散框架在波传播模拟领域具有广泛的应用前景。展开更多
基金supported by the National Natural Science Foundation of China(Grant No.42174157)the CAGS Research Fund(Grant No.JKY202216)the Chinese Geological Survey Project(Grant Nos.DD20230008,DD20233002).
文摘The geological conditions for coal mining in China are complex,with various structural issues such as faults and collapsed columns seriously compromising the safety of coal mine production.In-seam wave exploration is an effective technique for acquiring detailed information on geological structures in coal seam working faces.However,the existing reflected in-seam wave imaging technique can no longer meet the exploration precision requirements,making it imperative to develop a new reflected in-seam wave imaging technique.This study applies the Gaussian beam summation(GBS)migration method to imaging coal seams'reflected in-seam wave data.Firstly,with regard to the characteristics of the reflected in-seam wave data,methods such as wavefield removal and enveloped superposition are employed for the corresponding wavefield separation,wave train compression and other processing of reflected in-seam waves.Thereafter,imaging is performed using the GBS migration technique.The feasibility and effectiveness of the proposed method for reflected in-seam wave imaging are validated by conducting GBS migration tests on 3D coal-seam fault models with different dip angles and throws.By applying the method to reflected in-seam wave data for an actual coal seam working face,accurate imaging of a fault structure is obtained,thereby validating its practicality.
文摘RISC-V作为一种新兴的开源精简指令集架构,是后摩尔时代处理器技术发展与创新的关键之一.浮点求和与点积运算是数值运算的基础组成部分,在众多领域应用广泛.目前RISC-V架构尚未适配兼具高精度和高效率的求和与点积运算算法,这是因为现有优化方案难以良好地平衡运算精度和效率,要么侧重于低精度算法效率,要么通过牺牲效率实现高精度运算.本文利用RVV(RISC-V Vector instruction set extension,RVV)矢量扩展指令,设计并实现了一种基于无误差变换技术的高效、高精度求和与点积算法.首先避免使用规约指令以防止运算精度降低,实现并优化两类运算基于RVV的向量化算法;其次根据算法中的数据依赖关系,对寄存器配置参数进行优化.最后针对算法核心步骤进行汇编优化,增加指令级并行度,提高流水线利用率.实验结果表明,与两类运算操作的原始算法相比,优化后的算法运算效率分别提高了4.4和4.2倍.优化后的算法与多精度库MPFR中的四精度算法有相同精度,但其运算效率明显优于后者,其计算速度与OpenBLAS的双精度计算速度相当.
基金supported by the National Natural ScienceFoundation of China(42204003,42274011,42388102,42192533,42192531)the Natural Science Foundation of Wuhan(2024040701010027)+1 种基金the Open Fund Supported by the State KeyLaboratory of Precision Geodesy,Innovation Academy for PrecisionMeasurement Science and Technology,Chinese Academy of Sci-ences(SKLGED2024-1-1)the Open Fund Supported by KeyLaboratory of Polar Environment Monitoring and Public Gover-nance(Wuhan University),Ministry of Education(202401)。
文摘Long-period free oscillations provide robust information for the spatio-temporal characteristics of large earthquakes.In this study,we employ a normal-mode summation algorithm to generate threecomponent seismograms within an aspherical,anelastic,and rotating Earth model,focusing on the excitation of seismic normal modes by the 2011 Tohoku megathrust earthquake.Specifically,we analyze the effects of seismic source parameters,including fault geometry,focal depth,and rupture duration.By comparing synthetic free oscillation spectra with observed data,we validate several source mechanisms and emphasize the need for horizontal observations to improve seismic mechanism inversions.Our quantitative analyses reveal that among fault geometry parameters,dip and slip angles have a more pronounced impact on excitation amplitudes than fault strikes.Certain fault configurations enhance the detectability of specific modes,underscoring the relationship between fault geometry and mode excitation.Normal modes also exhibit varying sensitivity to focal depth,with significant excitation amplitude changes at discontinuity boundaries.Additionally,we demonstrate that while rupture duration can be inferred by minimizing differences between observed and synthetic spectra,more extensive records and modes should be included.
基金Supported by the Wannan Medical College Teaching Hospital Special Application for Scientific Research,No.WK2023JXYY036the Anhui Provincial Translational Clinical Medical Research Special Application,No.202204295107020062.
文摘BACKGROUND Bile leakage is a common complication following laparoscopic common bile duct exploration(LCBDE)with primary duct closure(PDC).Identifying and analyzing the risk factors associated with bile leakage is crucial for improving surgical outcomes.AIM To explore the value analysis of common risk factors for bile leakage after LCBDE and PDC,with a focus on strict adherence to indications.METHODS Clinical data of 106 cases undergoing LCBDE+PDC in the Hepatobiliary and Pancreatic Surgery Department(Division 1)of Chuzhou First People’s Hospital from April 2019 to March 2024 were collected.Retrospective and multiple factor regression analysis were conducted on common risk factors for bile leakage.The change in surgical time was analyzed using the cumulative summation(CUSUM)method,and the minimum number of cases required to complete the learning curve for PDC was obtained based on the proposed fitting curve by identifying the CUSUM maximum value.RESULTS Multifactor logistic regression analysis showed that fibrinous inflammation and direct bilirubin/indirect bilirubin were significant independent high-risk factors for postoperative bile leakage(P<0.05).The time to drain removal and length of hospital stay in cases without bile leakage were significantly shorter than in cases with bile leakage(P<0.05),with statistical significance.The CUSUM method indicated that a minimum of 51 cases were required for the surgeon to complete the learning curve(P=0.023).CONCLUSION With a good assessment of duodenal papilla sphincter function,unobstructed bile-pancreatic duct convergence,exact stone clearance,and sufficient surgical experience to complete the learning curve,PDC remains the preferred method for bile duct closure and is worthy of clinical promotion.
文摘波动方程系数矩阵对称化是整合不同类别波动方程、降低波传播模拟难度的有效方法,目前已成功应用于声波方程、各向同性与各向异性介质弹性波动方程。该研究将推导出双项介质波动方程的系数矩阵对称式;随后,引入多轴完全匹配层,采用迎风格式分部求和-一致逼近项(summation by parts-simultaneous approximation terms,SBP-SAT)有限差分方法离散波动方程,并通过能量法进行稳定性评估。通过数值仿真,表明所提出的离散框架具有整合度高,稳定性好和拓展性强等特点。此外,该方法可以稳定模拟曲线域中的波传播并降低其实现成本,表明了波动方程系数矩阵对称化方法及其离散框架在波传播模拟领域具有广泛的应用前景。